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Figure 7.21  Frequency decomposition of iterated quincunx scheme.

and vertical frequencies, while it cuts off diagonals to half of their original range.
This is a good match to the human eye and often, the highpass channel (which is
complementary to the lowpass channel) can be disregarded altogether. That is, a
compression by a factor of two can be achieved with no visible degradation. Such
preprocessing has been used in intraframe coding of HDTV [12]. The above quin-
cunx scheme is often iterated on the lowpass channel, leading to a frequency decom-
position as shown in Figure 7.21. This actually corresponds to a two-dimensional
nonseparable wavelet decomposition [163] and has been used for image compression
[14].

The hexagonal system, besides having a fairly good approximation to a circu-
larly symmetric lowpass, has three directional channels which can be used to detect
directional edges [264]. However, the goal of an isotropic analysis is only approx-
imated, since the horizontal and vertical directions are not treated in the same
manner (see Figure 7.20(c)). Therefore, it is not clear if the added complexity of a
nonseparable four-channel system based on the hexagonal sublattice is justified for
coding purposes.

Choice of Filters ~ Unlike in audio compression, the filters for image subband cod-
ing do not need high out-of-band rejection. Instead, a number of other constraints
have to be satisfied.

Linear phase In regular image filtering, the need for linear phase is well-known since
without linear phase, the phase distortion around edges is very visible. Therefore,
the use of linear phase filters in subband coding has been often advocated [14].
Recall from Section 3.2.4, that in two-band FIR systems, linear phase and orthog-
onality are mutually exclusive and this carries over to four-band separable systems
which are most often used in practice.

However, the case for linear phase is not as obvious as it seems at first sight.
For example, in the absence of quantization, the phase of the filters has no bearing
since the system has perfect reconstruction. This argument carries over for fine
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quantization as well. In the case of coarse quantization, the situation is more
complex. One scenario is to consider the highpass channel as being set to zero.
Look at the two impulse responses of this system. Nonlinear phase systems lead to
nonsymmetric responses, but so do some of the linear phase systems. Only if the
filters meet additional constraints do the two impulse responses remain symmetric.
Note also, that for computational purposes, linear phase is more convenient because
of the symmetry of the filters.

Note that orthogonal FIR filters of sufficient length can be made almost linear
phase by appropriate factorization of their autocorrelation function. Also, there
are nonseparable orthogonal filters with linear phase. Finally, by resorting the IIR
filters, one can have both linear phase and orthogonality, and such noncausal ITR
filters can be used in image processing without problems since we are dealing with
finite-length input signals.

Orthogonality Orthogonal filters implement a unitary transform between the input
and the subbands. The usual features of unitary transforms hold, such as con-
servation of energy. In particular, the total distortion is the sum of the subband
distortions, or:

D = > D, (7.3.1)

and the total bit rate is the sum of all the subband’s bit rates. Therefore, optimal
bit-allocation algorithms which assume additivity of bit rate and distortion can be
used (see Section 7.1.2). In the nonorthogonal case, (7.3.1) does not hold, and thus,
these bit allocation algorithms cannot be used directly. It should be noted that well
designed linear phase FIR filter banks (that is, with good out-of-band rejection) are
often close to being orthogonal and thus satisfy (7.3.1) approximately.

Filter size  Good out-of-band rejection or high regularity require long filters. Be-
sides their computational complexity, long filters are usually avoided because they
tend to spread coding errors. For example, sharp edges introduce distortions be-
cause high-frequency channels are coarsely quantized. If the filters are long (and
usually their impulse response has several sign changes), this causes an annoying
artifact known as ringing around edges. Therefore, filters used in audio subband
compression, such as length-32 filters, are too long for image compression. Instead,
shorter “smooth” filters are preferred. Sometimes both their impulse and their step
response are considered from a perceptual point of view [167]. The step response
is important since edges in images will generate step responses at least in some
of the channels. Highly oscillating step responses will require more bits to code,
and coarse quantization will produce oscillations which are related to the step re-
sponse. As can already be seen from this short discussion, there is an intertwining
between the choice of filters and the type of quantization that follows. However,
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it is clear that the frequency-domain criterions used in audio (sharp cut-off, strong
out-of-band rejection) have little meaning in the image compression context, where
time-domain arguments such as ringing, are more important.

Regularity An orthogonal filter with a certain number of zeros at the aliasing fre-
quency (7 in the two-channel case) is called regular if its iteration tends to a con-
tinuous function (see Section 4.4). The importance of this property for coding is
potentially twofold when the decomposition is iterated. First, the presence of many
zeroes at the aliasing frequency can improve the coding gain and second, compres-
sion artifacts might be less objectionable. To investigate the first effect, Rioul [243]
compared the compression gain for filters of varying regularity used in a wavelet
coder, or octave-band subband coder, with four stages. The experiment included
bit allocation, quantization, and entropy coding and is thus quite realistic. The
results are quite interesting: Some regularity is desired (the performance with no
regularity is poor) and higher regularity improves compression further (but not
substantially).

As for the compression artifacts, the following argument shows that the filters
should be regular when an octave-band decomposition is used: Assume a single
quantization error in the lowpass channel. This will add an error to the recon-
structed signal which depends only on the equivalent — iterated lowpass filter. If
the iterated filter is smooth, this will be less noticeable than if it is a highly irregular
function (even though both contribute the same MSE). Note also that the lowest
band is upsampled 2=! times (where i is the number of iterations) and thus, the
iterated filter’s impulse response is shifted by large steps, making irregular patterns
in the impulse response more visible.

In the case of biorthogonal systems such as linear phase FIR filter banks, one is
often faced with the case where either the analysis or the synthesis is regular, but
not both. In that case, it is preferable to use the regular filter at the synthesis, by
the same argument as above. Visually, an irregular analysis is less noticeable than
an irregular synthesis, as can be verified experimentally.

When the decomposition is not iterated, regularity is of little concern. A typical
example is the lapped orthogonal transform, that is, a multi-channel filter bank
which is applied only once.

Frequency selectivity What is probably the major criterion in audio subband filter
design is of much less concern in image compression. Aliasing, which is a major
problem in audio, is much less disturbing in images [331]. The desire for short filters
limits the frequency selectivity as well. One advantage of frequency selectivity is
that perceptual weighting of errors is easier, since errors will be confined to the
band where they occur.
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In conclusion, subband image coding requires relatively short and smooth filters,
with some regularity if the decomposition is iterated.

Quantization of the Subbands There are basically two ways to approach quan-
tization of a subband-decomposed image: Either the subbands are quantized inde-
pendently of each other, or dependencies are taken into account.

Independent quantization of the subbands While the subbands are only independent
if the input is a Gaussian random variable and the filters decorrelate the bands, the
independence assumption is often made because it makes the system much simpler.
Different tree structures will produce subbands with different behaviors, but the
following facts usually hold:

(a) The lowest band, being a lowpass and downsampled version of the original,
has a behavior much like the original image. That is, traditional quantization
methods used for images can be applied here as well, such as DPCM [337] or
even transform coding [174, 285].

(b) The highest bands have negligible energy and can usually be discarded with
no noticeable loss in visual quality.

(¢) Except along edges, little correlation remains within higher bands. Because of
the directional filtering, the edges are confined to certain directions in a given
subband. Also, the probability density function of the pixel values peaks
in zero and falls off very rapidly. While it is often modeled as a Laplacian
distribution, it is actually falling off more rapidly. It is more adequately fitted
with a generalized Gaussian pdf with faster decay than the Laplacian pdf [329].

Besides the lowband compression, which uses known image coding methods, the
bulk of the compression is obtained by appropriate quantization of the high bands.
The following quantizers are typically used:

(a) Lloyd quantizers fitted to the distribution of the particular band to be quan-
tized. Tables of such Lloyd quantizers for generalized Gaussian pdf’s and
decay values of interest for image subbands can be found in [329].

(b) Uniform quantizers with a so-called dead zone which maps a region around the
origin to zero (typically of twice the step size used elsewhere). Such dead zone
quantizers have proven useful because they increase compression substantially
with little loss of visual quality, since they tend to eliminate what is essentially
noise in the subbands [111].
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Because entropy coding is used after quantization, uniform quantizers are nearly
optimal [285]. Thus, since uniform quantizers are much easier to implement than
Lloyd quantizers, the former are usually chosen, unless the variable rate associated
with entropy codes has to be avoided. Note that vector quantization could be used
in the subbands, but its complexity is usually not worthwhile since there is little
dependence between pixels anyway.

An important consideration is the relative perceptual importance of various
subbands. This leads to a weighting of the MSE in various subbands. This weighting
function can be derived through perceptual experiments by finding the level of “just
noticeable noise” in various bands [252]. As expected, high bands tolerate more
noise because the human visual system becomes less sensitive at high frequencies.
Note that more sophisticated models would include masking as well.

Quantization across the bands Looking at subband decomposed images, it is clear
that the bands are not independent. A typical example is the representation of a
vertical edge. It will be visible in the lowpass image and appears in every band
that contains horizontal highpass filtering. It has thus been suggested to use vector
quantization across the bands instead of in the bands [329, 332]. While there is
some gain in doing so, there is also the following problem: Because the subbands are
downsampled versions of the original, we have a shift-variant system. Thus, small
shifts can produce changes in the subband signals which reduce the correlation.
That is, while visually the edge is “preserved”, the exact values in the various
bands depend strongly on the location and are thus difficult to predict from band
to band. In Section 7.3.4, we will see schemes which, by using an approach that
does not rely on vector quantization but simply on local energy, can make use of
some dependence between bands.

It should be noted that the straightforward vector quantization across bands
is easiest when equal-size subbands are used. In the case of an octave-band de-
composition, the vector should use pixels at each level that correspond to the same
region of the original signal. That is, the number of pixels should be inversely pro-
portional to scale. The comparison of vector quantization for equally-spaced bands
and octave-spaced bands is shown in Figure 7.22 for the one-dimensional case for
simplicity.

Bit Allocation  For bit allocation between the bands, one can directly use the
procedures developed in Section 7.1.2, at least if the filters are orthogonal. Then,
the total distortion is the sum of the subbands distortions, and the total rate is the
sum of rates for the various bands. In the nonorthogonal case, the distortion is not
additive, but can be approximated as such.

The typical allocation problem is the following: For each channel i, one has a
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Figure 7.22 Vector quantization across the bands in subband decomposition.
(a) Uniform decomposition. (b) Octave-band, or, wavelet decomposition. Note
that the number of samples in the various bands corresponds to a fixed region
of the input signal.

choice from a set of quantizers {g; j}. Choosing a given quantizer ¢; ; will produce a
distortion d; ; and a rate r; ; for channel ¢ (one can use weighted distortion as well).
The problem is to find which combination of quantizers in the various channels will
produce the minimum squared error while satisfying the budget constraint. The
optimal solution is found using the constant-slope solution as described in Section
7.1.2. The pairs (d; ;,75;), that is, the operational rate-distortion curves can be
measured over a set of representative images and then used as a fixed allocation.
The problem is that, when applied to a particular image, the budget might not
be met. On the other hand, given an image to be coded, one can measure the
operational rate-distortion curves and use the constant-slope allocation procedure.
This will guarantee an optimal solution, but is computationally expensive. Finally,
one can use allocations based on probability density functions, in which case it is
often sufficient to measure the variance of a particular channel in order to find its
allocation (see (7.1.19) for example). Note that the rates used in the allocation
procedure are after entropy coding.

Entropy Coding  Substantial reductions in rate, especially in the case of uniform
quantizers, is obtained by entropy coding quantized samples or groups of samples.
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LL, HL |LH, HL |HH, HL|HL, HL

LL, HH |LH, HH [HH, HH|HL, HH

LL,LH |LH, LH |HH, LH|HL, LH

LL, LL [LH, LL |HH, LL [HL, LL

Figure 7.23 Uniform subband decomposition of an image into 16 subbands.
The spectral decomposition and ordering of the channels is shown. The first
two letters correspond to horizontal filtering and the last two to vertical fil-
tering. LH, for example, means that a lowpass is used in the first stage and
a highpass in the second. The ordering is such that frequencies increase from
left to right and from bottom to top.

Table 7.4 Variances in the various bands of
a uniform decomposition (defined as in Fig-
ure 7.23).

| LL | LH | HH | HL
HL [ 0.58959 | 0.86237 | 1.77899 | 0.83081

HH || 2.87483 | 6.71625 | 8.56729 | 3.25402
LH || 23.5474 | 33.4055 | 60.9195 | 14.8490
LL || 2711.45 | 56.0058 | 52.5202 | 13.9685

Any of the techniques discussed in Section 7.1.3 can be used, such as Huffman
coding. Since Huffman codes are only within one bit of the true entropy [109], they
tend to be inefficient for small alphabets. Thus, codewords from small alphabets
are gathered into groups and vector Huffman coded (see [285]). Another option is to
use vector quantization to group samples [256]. Because higher bands tend to have
large amounts of zeros (especially after deadzone quantizers), run-length coding
and an end of block symbol can be used to increase compression substantially.

Examples Two typical coding examples will be described in some detail. The first
is a uniform separable decomposition. The second is an octave-band or constant
relative bandwidth decomposition (often called a wavelet decomposition).

Uniform decomposition By using a separable decomposition into four bands and
iterating it once, we obtain 16 subbands as shown in Figure 7.23. The resulting
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Figure 7.24 Uniform subband decomposition of the Barbara image. The or-
dering of the subbands is given in Figure 7.23.

Table 7.5 Step sizes for the quantiz-
ers in the various bands (as defined in
Figure 7.23), for a target rate of 0.5
bits/pixel. The lowest band was JPEG
coded, and the step size corresponds to
the quality factor (QF) used in JPEG.

| LL | LH | HH | HL
HL || 9.348 | 8246 | 8.657 | 22.318
HH || 8.400 | 10.161 | 8.887 | 13.243
LH || 6.552 | 7.171 | 10.805 | 16.512
LL | QF-89 | 8.673 | 11.209 | 15.846

subband images are shown in Figure 7.24. The filters used are linear phase length-
12 QMEF’s [144] and the image was symmetrically extended before filtering. The
variances of the samples in the bands are shown in Table 7.4. We code the lowest
subband (LL,LL) with JPEG (see Section 7.3.1). For all other bands, we use
uniform quantization with a dead zone of twice the step size used elsewhere. Using
a set of step sizes, one can derive rate-distortion curves by measuring the entropy
of the resulting quantized channels. A true operational rate-distortion curve would
have to include run-length coding and actual entropy coding. Based on these rate-
distortion curves, one can perform an optimal constant-slope bit allocation, that
is, one can choose the optimal quantizer step sizes for the various bands. The step
sizes for a budget of 0.5 bits/pixel are listed in Table 7.5. A set of Huffman codes
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L,H H,H

LL,LH |LH, LH

LLL, |LLH,
LLH |LLH

LLL, |LLH,
LLL |LLL

LH, LL

Figure 7.25 Octave-band or wavelet decomposition of an image into unequal
subbands. The spectral decomposition and ordering of the channels is shown.

Figure 7.26 Subband images corresponding to the spectral decomposition
shown in Figure 7.25.

and run-length codes are designed for each subband channel. Note that the special
symbol “start of run” (SR) is entropy coded as any other nonzero pixel. Altogether,
one obtains the final rate of 0.497 bits/pixel (the difference in rate comes from the
fact that bit allocation was based on entropy measures). Then, the coded image
has SN R, of 30.38 dB. Figure 7.27 (top row) shows the compressed Barbara image
and a detail at the same rate.

Octave-band decomposition Instead of uniformly decomposing the spectrum of the
image, we iterate a separable four-band decomposition three times. The resulting
split of the spectrum is shown in Figure 7.25, together with the subband images
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Figure 7.27 Compression results on Barbara image. Top left: Subband coding
in 16 uniform bands at 0.4969 bits/pixel and SNR, = 30.38 dB. Top right:
Detail of top left. Bottom left: Octave-band or wavelet compression at 0.4990
bits/pixel and SN R, = 29.21 dB. Bottom right: Detail of bottom left.

in Figure 7.26. Here, we used the Daubechies’” maximally flat orthogonal filters
of length 8. At the boundaries, we used periodic extension. The variances in the
bands are shown in Table 7.6. Histograms of pixel values of the bands are similar
to the ones in a uniform decomposition. Because the lowest band (LLL, LLL) is
small enough (64 x 64 pixels), we use scalar quantization on it as on all other bands.
Again, uniform quantizers with double-sized dead zone are used and rate-distortion
curves are derived for bit-allocation purposes. The resulting step sizes for the target
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Table 7.6 Variances in the different Table 7.7 Step sizes for uniform quan-
bands of an octave-band decomposi- tizer in the octave subband or wave-
tion (defined as in Figure 7.25). let decomposition of Figure 7.25, for a

target rate of 0.5 bits/pixel.

Band || Variance

LLL,LLL 2559.8 Band || Step size

LLH,LLL 60.7 LLL,LLL 5.21

LLL,LLH 43.8 LLH,LLL 3.69

LLH,LLH 21.2 LLL,LLH 4.42

LH,LL 55.4 LLH,LLH 4.08

LL,LH 24.5 LH,LL 8.42

LH,LH 33.7 LL,LH 9.22

H,L 141.4 LH,LH 7.45

L,H 15.2 H,L 17.23

HH 16.2 LH 22.05

HH 21.57

bit rate of 0.5 bits/pixel are given in Table 7.7.

The development of entropy coding (including run-length coding for higher
bands) is similar to the uniform-decomposition case discussed earlier. The final
rate is 0.499 bits/pixel, with SN R, of 29.21 dB. The coded image and a detail are
shown in Figure 7.27 (bottom row). Note that there is little difference between the
uniform and the octave-band decomposition results.

We would like to emphasize that the above examples are “textbook examples”
for illustration purposes. For example, no statistics over large sets of images were
taken and thus, the entropy coders might perform poorly for a substantially different
image. The aim was more to demonstrate the ingredients used in a subband /wavelet
image coder.

State of the art coders, which can be found in the current literature, improve
substantially the results shown here. Major differences with respect to the simple
coders we discussed so far are the following:

(a) Vector quantization can be used in the subbands, such as lattice vector quan-
tization [13].

(b) Adaptive entropy coding is used to achieve immunity to changes in image statis-
tics.

(¢) Adaptive quantization in the subbands can take care of busy versus nonbusy
regions.

(d) Dependencies across scales, either by vector quantization or prediction of
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Figure 7.28 Zero-tree structure on an octave-band decomposed image. Three
possible trees in different bands are shown.

structures across scales, are used to reduce the bit rate [176, 222, 259].

(e) Perceptual tuning using band sensitivity, background luminance level and mask-
ing of noise due to high activity can improve the visual quality [252].

The last point — perceptual models for subband compression, is where most gain
can be obtained.

With these various fine tunings, good image quality for a compressed version
of a 512 x 512 original image such as Barbara can be obtained in the range of 0.25
to 0.5 bits/pixel. Note that the complexity level is still of the same order as the
coders we presented and is comparable in order of magnitude to a DCT coder such
as JPEG.

7.3.4 Advanced Methods in Subband and Wavelet Compression

The discussion so far has focused on standard methods. Below, we describe some
more recent algorithms which are both of theoretical and practical interest.

Zero-Tree Based Compression From looking at subband pictures such as those
in Figures 7.24 or 7.26, it is clear that there are some dependencies left among
the bands, as well as within the bands. Also, for natural images with decaying
spectrums, it is unlikely to find significant high-frequency energy if there is little
low-frequency energy in the same spatial location. These observations lead to the
development of an entropy coding method specifically tailored to octave-band or
wavelet coding. It is based on a data structure called a zero tree [176, 260], which
is the analogous to zig-zag scanning and the end of block (EOB) symbol used in
the DCT.
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The idea is to define a tree of zero symbols which starts at a root which is also
zero. Therefore, this root can be labeled as an “end of block”. A few such zero
trees are shown in Figure 7.28. Because the tree grows as powers of four, a zero
tree allows us to disregard many insignificant symbols at once. Note also that a
zero tree gathers coefficients that correspond to the same spatial location in the
original image.

Zero trees have been combined with bit plane coding in an elegant and efficient
compression algorithm due to Shapiro [260, 259]. It incorporates nicely many of
the key ideas presented in this section and demonstrates the effectiveness of wavelet
based coding. The resulting algorithm is called embedded zero-tree wavelet (EZW)
algorithm. Embedded means that the encoder can stop encoding at any desired
target rate. Similarly, the decoder can stop decoding at any point resulting in the
image that would have been produced at the rate of the truncated bit stream. This
compression method produces excellent results without requiring a priori knowledge
of the image source, without prestored tables of codebooks, and without training.

The EZW algorithm uses the discrete-time wavelet transform decomposition
where at each level ¢ the lowest band is split into four more bands: LL;q, LH;11,
HL;y1, and HH;;q. In simulations in [260], six levels are used with length-9 sym-
metric filters given in [1].

The second important ingredient is that the absence of significance across scales
is predicted by exploiting self-similarity inherent in images. A coefficient x is called
insignificant with respect to a given threshold 7', if |x| < T. The assumption is that
if x is insignificant, then all of its descendents of the same orientation in the same
spatial location at all finer scales are insignificant as well. We call a coefficient at
a coarse scale a parent. All coefficients at the next finer scale at the same spatial
location and of similar orientation are children. All coefficients at all finer scales
at the same spatial location and of similar orientation are descendents. Although
there exist counterexamples to the above assumption, it holds true most of the
time. Then, one can make use of it, and code such a parent as a zero-tree root
(ZTR), thereby avoiding to code all its descendants. When the assumption is not
true, that is, the parent is insignificant but down the tree, there exists a significant
descendant, then such a parent will be coded as an isolated zero (IZ). To code the
coefficients, Shapiro uses four symbols, ZTR, IZ, POS for a positive significant
coefficient, and NEG for a negative significant one. In the highest bands which
do not have any children, IZ and ZTR are merged into a zero symbol (Z). The
order in which the coefficients are scanned is of importance as well. It is performed
so that no child is scanned before its parent. Thus, one scans bands LLy, HLy,
LHy, HHpy, and moves on to the scale (N —1) scanning HLy_1, LHy_1, HHy_1,
until reaching the starting scale HLy, LH1, HH;. This scanning pattern orders the
coefficients in the order of importance, allowing for embedding.
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Table 7.8 An example of a 3-level
discrete-time wavelet transform of an

8 x 8 image.
5 11 5 6/ 0 3 -4 4
2 -3 6 413 6 3 6
3 0 -3 213 -2 0 4
-5 9 -1 47 | 4 6 -2 2
9 -7 |-14 814 -2 3 2
15 14 3 -12 |5 -7 3 9
=31 23 14 -13 |3 4 6 -1
63 |-34| 49 107 13 -12 7

The next step is successive approximation quantization. It entails keeping at
all times two lists: the dominant list and the subordinate list. The dominant list
contains the coordinates of those coefficients that have not yet been found to be
significant. The subordinate list contains the magnitudes of those coefficients that
have been found to be significant. The process is as follows: We decide on the initial
threshold Tp, (for example, it could be half of the positive range of the coefficients)
and start with the dominant pass where we evaluate each coefficient in the scanning
order described above to be one of the four symbols ZTR, IZ, POS and NEG.
Then we cut the threshold in half obtaining 77 and add another bit of precision
to the magnitudes on the list of coefficients known to be significant, that is, the
subordinate list. More precisely, we assign the symbols 0 and 1 depending whether
the refinement leaves the reconstruction of a coefficient in the upper or lower half
of the previous bin. We reorder the coefficients in the decreasing order and go onto
the dominant pass again with the threshold T;. Note that now those coefficients
that have been found to be significant during a previous pass are set to zero so that
they do not preclude a possibility of finding a zero tree. The process then alternates
between these two passes until some stopping condition is met, such as that the
bit budget is exhausted. Finally, the symbols are losslessly encoded using adaptive
arithmetic coding.

Example 7.2 EZW Exzample from [260]

Let us consider a simple example given in [260]. We assume that we are given an 8 x 8
image whose 3-level discrete-time wavelet transform is given in Table 7.8. Since the largest
coefficient is 63, the initial threshold is Ty = 32.

We start in the scanning order as we explained before. 63 is larger than 32 and thus
gets POS. —34 is larger than 32 in absolute value and gets N EG. We go onto —31 which is
smaller in absolute value than 32. However, going through its tree, which consists of bands
LH> and LH,, we see that it is not a root of a zero tree due to a large value of 47. Therefore
its assigned symbol is IZ. We continue with 23 and establish that it is a root of a zero tree
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Table 7.9 The first dominant pass through the
coefficients.

Subband || Coefficient | Symbol | Reconstruction

LL3 63 POS 48
HL; -34 NEG -48
LHs -31 |V/ 0
HH; 23 ZTR 0
HL, 49 POS 48
HL, 10 ZTR 0
HL, 14 ZTR 0
HL, -13 ZTR 0
LH, 15 ZTR 0
LH, 14 |V/ 0
LH, -9 ZTR 0
LH, -7 ZTR 0
HL; 7 Z 0
HL, 13 Z 0
HI, 3 Z 0
HI, 4 Z 0
LH,; -1 Z 0
LH, 47 POS 48
LH, -3 Z 0
LH, -2 Z 0

comprising bands H H2 and H Hs. We continue the process in the scanning order, except
that we skip all those coefficients for which we have previously established that they belong
to a zero tree. The result of this procedure is given in Table 7.9.

After we have scanned all available coefficients, we are ready to go onto the first
subordinate pass. We commence by halving the threshold, to obtain 77 = 16 as well
as quantization intervals. The resulting intervals are now [32,48) and [48,64). The first
significant value, 63, obtains a 1, and is reconstructed to 56. The second one, —34, gets
a 0 and is reconstructed to —40, 49 gets a 1 and is reconstructed to 56, and finally, 47
gets a 0 and is reconstructed to 40. We then order these values in the decreasing order of
reconstructed values, that is, (63,49, 34,47). If we want to continue the process, we start
the second dominant pass with the threshold of 16. We first set all significant values from
the previous pass to zero, in order to be able to identify zero trees. In this pass, we establish
that —31 in LH3 is NEG and 23 in HHs is POS. All the other coefficients are then found
to be either zero tree roots or zeros. We add to the list of significant coefficients 31 and 23
and halve the quantization intervals, to obtain, [16,24), [24, 32), [32, 40), [40, 48), [48, 56),
and [56,64). At the end of this pass, the revised list is (63,49, 47,34, 31,23), while the
reconstructed list is (60, 52, 44, 36, 28, 20). This process continues until, for example, the bit
budget is met.
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Adaptive Decomposition Methods In our discussions of subband and wavelet
coding of images, we have seen that both full-tree decompositions and octave-band
tree decompositions are used. A natural question is: Why not use arbitrary binary-
tree decompositions, and in particular, choose the best binary tree for a given
image? This is exactly what the best basis algorithm of Coifman, Meyer, Quake and
Wickerhauser [62, 64] attempts. Start with a collection of bases given by all binary
subband coding trees of a given depth, called wavelet packets (see Section 3.3.4).
From a full tree, the best basis algorithm uses dynamic programming to prune back
to the best tree, or equivalently, the best basis.

In [233], the best basis algorithm was modified so as to be optimal in an oper-
ational rate-distortion sense, that is, for compression. Assume we choose a certain
tree depth K, and for each node of the tree, a set of quantizers. Thus, given an in-
put signal, we can evaluate an operational rate-distortion curve for each node of the
binary tree. Then, we can prune the full tree based on operational rate distortion.
Specifically, we introduce a Lagrange multiplier A (as we did in bit allocation, see
Section 7.1.2) and compute a cost L(A) = D + AR for a root r and its two children
c1 and cy. This is done at points of constant slope —A. Then, if

Lr(A) < Ley(N) + Loy (V),

we can prune the children and keep the root, otherwise, we keep the children. The
comparison is made at constant-slope points (of slope A) on the respective rate-
distortion curves. Going up the tree in this fashion will result in an optimal binary
tree for the image to be compressed. Note that in order to apply the Lagrange
method, we assumed independence of the nodes, an assumption that might be
violated (especially for deep trees).

An extension of this idea consists of considering not only frequency divisions
(obtained by a subband decomposition) but also splitting of the signal in time,
so that different wavelet packets can be used for different portions of the time-
domain signal (see also Figure 3.13). This is particularly useful if the signal is
nonstationary. The solution consists in jointly splitting in time and frequency
using a double-tree algorithm [132, 230] (one tree for frequency and another for
time splitting). Using dynamic programming and an operational rate-distortion
criterion, one can obtain best time and frequency splittings. This algorithm was
applied to image compression in [15]. An example of space and frequency splitting
of the Barbara image is shown in Figure 7.29, showing that large regions with
similar characteristics are gathered into blocks, while busy regions get split into
many smaller blocks. Over each of these blocks, a specific wavelet packet is used.

Methods Based on Wavelet Maximums Since edges are critical to image percep-
tion [168], there is a strong motivation to find a compression scheme that contains
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Figure 7.29 Simultaneous space and frequency splitting of the Barbara image
using the double-tree algorithm. Black lines correspond to spatial segmenta-
tions, while white lines correspond to frequency splits.

edges as critical information. This is done in Mallat and Zhong’s algorithm [184]
which is based on wavelet maximums representations. The idea is to decompose
the image using a redundant representation which approximates the continuous
wavelet transform at scales which are powers of two. This can be done using non-
downsampled octave-band filter banks. Because there is no downsampling, the
decomposition is shift-invariant. If the highpass filter is designed as an edge de-
tector (such as the derivative of a Gaussian), then we will have edges represented
at all scales by some local maximums or minimums. Because the representation is
redundant, keeping only these maximums/minimums still allows good reconstruc-
tion of the original using an iterative procedure (based on alternating projections
onto convex sets [29, 70, 184]). While this is an interesting approach, it turns out
that coding the edges is expensive. Also, textures are not easily represented and
need separate treatment. Finally, the computational burden, even for reconstruc-
tion only, is heavy due to the iterative algorithm involved. Thus, such an approach
needs further research in order to fully assess its potential as an image compression
method.

Quantization Error Analysis in a Subband System In compression schemes
we have seen so far, the approach has been to first design the linear transform
and then find the best quantization and entropy coding strategies possible. The
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problem of analyzing the system as a whole, although of significant theoretical and
practical importance, has not been addressed by many authors. One of the few
works on the topic is due to Westerink, Biemond and Boekee [331]. The authors
use the optimal scalar quantizer to quantize the subbands — Lloyd-Max. For that
particular quantizer, it can be shown that (see, for example, [143])

02 = o2 - 02, (7.3.2)

2, o2, 05 are the variances of the quantization error, the input and output

signals, respectively. Consider now a so-called “gain plus additive noise” linear
model for this quantizer. Its input/output relationship is given by

where o

Yy =oar + 7

where @,y are the input/output of the quantizer,” r is the additive noise term, and
a is the gain factor (o < 1). The main advantage of this model is that, by choosing

0.2

q
a =1 0—%, (7.3.3)
the additive noise will not be correlated with the signal and (7.3.2) will hold. In
other words, to fit the model to our given quantizer, (7.3.3) must be satisfied. Note
also, that the additive noise term is not correlated with the output signal.

The authors in [331] then incorporate this model into a QMF system (where the
filters are designed to cancel aliasing, as given in (3.2.34-3.2.35)). That is, each of
the two channel signals are quantized, use a gain factor «;, and generate an additive
noise ;. Consequently, the error at the output of the system can be written as the

sum of the error terms

E(z) = Eq(2) + Es(z) + Ea(z) + Eg(2),

where
Bo(z) = 3lH*:) — H*(-2) — 2 X(2),
Bs(z) = gllao~DH:) — (o~ DHI(-2)] X(2),
Fa(z) = 3lo0—a) H) H(=2) X(=2)

FEr(z) = H(2)Ro(z*) — H(—2)Ry(?).

Note that here, z? in R;(22) appears since the noise component passes through the
upsampler. This breakdown into different types of errors allows one to investigate

"Bold letters denote random variables.
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their influence and severity. Here, Eg denotes the QMF (lack of perfect reconstruc-
tion) error, Fg is the signal error (term with X (2)), E4 is the aliasing error (term
with X (—z)), and Eg is the random error. Note that only the random error Egr
is uncorrelated with the signal. The QMF error is insignificant and can be disre-
garded. Aliasing errors become negligible if filters of length 12 or more are used.
Finally, the signal error determines the sharpness while the random error is most
visible in flat areas of the image.

Joint Design of Quantization and Filtering in a Subband Syst em Let us now
extend the idea from the previous section into more general subband systems. The
surprising result is that by changing the synthesis filter bank according to the quan-
tizer used, one can cancel all signal-dependent errors [161]. In other words, the re-
constructed signal error will be of only one type, that is, random error, uncorrelated
to the signal.

The idea is to use a general subband system with Lloyd-Max quantization and
see whether one can eliminate certain types of errors. Note that here, no assump-
tions are made about the filters, that is, filters (Hy, H;) and (G, G1) do not consti-
tute a perfect reconstruction pair. Assume, however, that given (Hy, Hy), we find
(Th, T1) such that the system is perfect reconstruction. Then, it can be shown that
if the synthesis filters are chosen as

Gol2) = aiOTo@), Gi(2) = - Ti(z),

where «; are the gain factors of the quantizer models, all errors depending on X (z)
and X (—z) are cancelled and the only remaining error is the random error

1 2 1 2

E(z) = Egr(z) = —To(2)Ro(2%) + —T1(2)R1(2%),

@ aq
where R;(z) are the noise terms appearing in the linear model. In other words,
by appropriate choice of synthesis filters, the only remaining error is uncorrelated
to the signal. The potential benefit of this approach is that one has to deal only
with a random, noise-like error at the output, which can then be alleviated with
an appropriate noise removal technique. Note, however, that the random error has
been boosted by dividing the terms by «; < 1. For more details, see [161].

Nonorthogonal Subband Coding Most of the subband coding literature uses
orthogonal filters, since otherwise the squared norm of the quantization error would
not be preserved leading to a possibly large reconstruction error. If nonorthogonal
transforms are used, they are usually very close to the orthogonal ones [14].
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Moulin in [200] shows that the fact that nonorthogonal transforms do not per-
form well when compared to orthogonal ones, is due to an inappropriate formulation
of the coding problem, rather than to the use of the nonorthogonal transform itself.

Let us recall how the usual subband decomposition/reconstruction is performed.
We have an image @, going through the analysis stage H, to produce subband
images

y = Hx.

The next step is to compute a quantized image ¥,
¥ = Q).
Finally, we reconstruct the image as
z = Gy,

where the system is perfect or near-perfect reconstruction. Moulin, instead, suggests
the following: Find ¢ that minimizes the squared error at the output

E('gopt) = HG@opt —113”27

where 9,,, belongs to the set of all possible quantized images. Due to this con-
straint, the problem becomes a discrete optimization problem and is solved using a
numerical relaxation algorithm. Experiments on images show significant visual as
well as MSE improvement. For more details, refer to [200].

7.4 VIDEO COMPRESSION

Digital video compression has emerged as an area of intense research and devel-
opment activity recently. This is due to the demand for new video services such
as high-definition television, the maturity of the compression techniques, and the
availability of technology to implement state of the art coders at reasonable costs.
Besides the large number of research papers on video compression, good examples
of the increased activity in the field are the standardization efforts such as MPEG
[173, 201] (the Moving Pictures Experts Group of the International Standardiza-
tions Organization). While the video compression problem is quite different from
straight image coding, mainly because of the presence of motion, techniques suc-
cessful with images are often part of video coding algorithms as well. That is, signal
expansion methods are an integral part of most video coding algorithms and are
used in conjunction with motion based techniques.

This section will discuss both signal expansion and motion based methods used
for moving images. We start by describing the key problems in video compression,
one of which is compatibility between standards of various resolutions and has a
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Figure 7.30 Moving objects in a video sequence. One object is still — zero
motion, whereas the other has a purely translational motion.

natural answer in multiresolution coding techniques. Standard motion compensated
video compression is described next, as well as the use of transforms for coding
the prediction error signal. Then, pyramid coding of video, which attempts to
get the best of subband and motion based techniques, is discussed. Subband or
wavelet decomposition techniques in three dimensions are presented, indicating both
their usefulness and their shortcomings. Finally, the emerging MPEG standard is
discussed.

Note that by intraframe coding we will denote video coding techniques where
each frame is coded separately. On the other hand, interframe coding will mean
that we take the time dimension and the correlation between frames into account.

7.4.1 Key Problems in Video Compression

Video is a sequence of images, that is, a three-dimensional signal. A number of
key features distinguishes video compression from being just a multidimensional
extension of previously discussed compression methods. Moreover, the data rates
are several orders of magnitude higher than those in speech and audio (for exam-
ple, digital standard television uses more than 200 Mbits/sec, and high-definition
television more than 1 Gbits/sec).

Motion Models in Video The presence of structures related to motion in the
video signal indicates ways to achieve high compression by using model based pro-
cessing. That is, instead of looking at the three-dimensional video signal as simply
a sequence of images, one knows that very often, future images can be deduced
from the past ones by some simple transformation such as translation. This is
shown schematically in Figure 7.30, where two objects appear in front of a uniform
background, one being still (no motion) and the other moving (simple, translational
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motion). It is clear that a compact description of this scene can be obtained by de-
scribing the first image and then indicating only how the objects move in subsequent
images. It turns out that most video scenes are well described by such motion mod-
els of objects, as well as global modifications such as zooms and pans. Of course, a
number of problems have to be addressed such as occlusion or uncovering of back-
ground due to an object’s movement. Overall, the motion based approaches in video
processing have been very successful [207]. Note that motion is an “image-domain”
phenomenon, since we are looking for displacements of image features. Thus, many
of the motion estimation algorithms are of a correlative nature. An example is the
block matching algorithm, which searches for local correlation maximums between
successive images.

A Transform-Domain View  Assume the following simplified view of video: a sin-
gle object has a translational motion in front of a black background. One can verify
that the three-dimensional Fourier transform is zero except on a plane orthogonal
to the motion vector and passing through the origin. The values on the plane are
equal to the two-dimensional Fourier transform of the object. That is, motion sim-
ply tilts the Fourier transform of a still object. It seems therefore attractive to code
the moving object in Fourier space, where the coding would reduce to coding of the
object’s Fourier transform and the direction of the plane. This idealized view has
lead to various proposals for video coding which would first include an appropriate
transform domain approximating Fourier space (such as a subband division) and
then locate the region where the energy is mostly concentrated (corresponding to
the tilted plane of the object). It would then disregard other Fourier components
to achieve compression. While such an approach seems attractive at first sight, it
has some shortcomings.

First, real video scenes do not match the model. The background, which has
an “untilted” Fourier transform, gets covered and uncovered by the moving object,
creating spurious frequencies. Then, there are usually several moving objects with
different motions, thus several tilted planes would be necessary. Finally, most
of the transforms proposed (such as N-band subband division where N is not a
large integer for complexity reasons) partition the spectrum coarsely and thus,
they cannot approximate the tilted plane very well.

Since coding the spectrum requires coding of one image (or its two-dimensional
spectrum) plus the direction of the tilted plane, staying in the sequence domain will
perform just as well. Note also that motion is easier to analyze in the image plane
rather than the Fourier domain. The argument is simple; compare two images where
an object has moved. In the image plane, it is a localized phenomenon described
by a single motion vector, while in spectral domain, it results in a different phase
shift of every Fourier component.



7.4. VIDEO COMPRESSION 449

The Perceptual Point of View Just as in coding of speech or images, the ultimate
judge of quality is the human observer. Therefore, spatio-temporal models of the
human visual system (HVS) are important. These turn out to be more complex
than for static images, especially because of spatio-temporal masking phenomena
related to motion. If one considers sensitivity to spatio-temporal gratings (sinusoids
with an offset and various frequencies in all three dimensions), then the eye has
a lowpass/bandpass characteristic [207]. The sensitivity is maximum at medium
spatial and temporal frequencies, falls off slightly at low frequencies, and falls off
rapidly toward high frequencies (note that the sensitivity function is not separable
in space and time). Finally, sinusoids separated by more than an octave in spatial
frequency are treated in an independent manner.

Masking does occur, but it is a very local effect and cannot be well modeled in
the frequency domain. This masking is both spatial (reduced sensitivity at sharp
transitions) and temporal (reduced sensitivity at scene changes). The perception of
motion is a complex phenomenon and psychophysical results are only starting to be
applicable to coding. One effect is clear and intuitive however: The perception of a
moving object depends on if it is tracked by the eye or not. While in the latter case,
the object could be blurred without noticeable effect, in the former, the object will
be perceived as accurately as if it were still. Since it cannot be predicted if the viewer
will or will not follow the object, one cannot increase compression of moving objects
by blurring them. This somewhat naive approach has sometimes been suggested
in conjunction with three-dimensional frequency-domain coding methods, but does
not work, since more often than not, the interest of the viewer is in the moving
object.

Progressive and Interlaced Scanning When thinking of sampling a three-di-
mensional signal, the most natural sampling lattice seems to be the rectangular
lattice, as shown in Figure 7.31(a). The scanning corresponding to this lattice
is called progressive scanning in television cameras and displays. However, for
historical and technological reasons, a different sampling called interlaced scanning
is often used. It corresponds to a quincunx lattice in the (vertical, time)-plane and
its shifted versions along the horizontal axis, as shown in Figure 7.31(b). The name
interlaced comes from the fact that even and odd lines are scanned alternately. A
set of even or odd lines is called a field, and two successive fields form a frame.
While interlacing complicates a number of signal processing tasks such as mo-
tion estimation, it represents an interesting compromise between space and time
resolutions for a given number of sampling points in a space-time volume. Typi-
cally, high frequencies in both vertical and time dimensions cannot be represented,
but this loss in resolution is not very noticeable. Progressive scanning would have
to reduce the sampling rate by two in either dimension in Figure 7.31(a) to achieve
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Figure 7.31 Scanning modes used in television. (a) Progressive scanning,
which corresponds to the ordinary rectangular lattice. (b) Interlaced scan-
ning, which samples alternately even and odd lines. It corresponds to the
quincunx lattice in the (vertical, time)-plane. (c) Face centered orthorhombic
(FCO) lattice, which is the true three-dimensional downsampling by two of the
rectangular lattice.

the same density as in Figure 7.31(b), which is more noticeable than to resort to
interlacing.

An even better compromise would be obtained with the face-centered orthorhom-
bic (FCO) lattice [164], which is the true generalization of the two-dimensional
quincunx lattice to three dimensions (see Figure 7.31(c)). Then, only frequencies
which are high in all three dimensions simultaneously are lost, and these are not well
perceived anyway. However, for technological reasons, FCO is less attractive than
interlaced scanning. Of course, in the various sampling schemes discussed above,
one can always construct counter examples that lose resolution, in particular when
tracked by the human observer (for example, objects with high frequency patterns
moving in a worst case direction). However, these counter examples are unlikely in
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real world imagery, particularly for interlaced and even more for FCO scanning.®

Compatibility  In three-dimensional imagery such as television and movies, the
issue of compatibility between various standards, or at least easy transcoding, has
become a central issue. For many years, progressive scanning used in movies and
interlaced scanning used in television and video had an uneasy coexistence, just as
the 50 Hz frame rate for television in Europe versus 60 Hz frame rate for television in
US and Japan. Some ad hoc techniques were used to transcode from one standard
to another, such as the so-called 2/3 pull-down to go from 24 Hz progressively
scanned movies to 60 Hz interlaced video.

The advent of digital television with its potential for higher quality, as well as
the development of new formats (usually referred to as high definition television or,
HDTYV) has pushed compatibility to the forefront of current concerns.

Conceptually, multiresolution techniques form an adequate framework to deal
with compatibility issues [323]. For example, standard television can be seen as a
subresolution of high definition television (although this is a very rough approxima-
tion), but with added problems such as different aspect ratios (the ratio of width
and height of the picture). However, there are two basic problems which make the
problem difficult:

Sublattice property Unless the lower-resolution scanning standard is a sublattice of
the higher-resolution one, it cannot be used directly as a subresolution signal in
a multiresolution scheme such as a subband coder. Consider the following two
examples in Figure 7.32.

First, take as full resolution a 1024 x 1024 progressive sequence at 60 Hz, with a
512 x 512 interlaced sequence at 60 Hz as subresolution (note that 60 Hz is the frame
and field rate in the progressive and interlaced case, respectively). The latter exists
on a sublattice of the former, namely, by downsampling by two in the horizontal and
vertical dimension, followed by quincunx downsampling in the (vertical, time)-plane
(see Figure 7.32(a)).

The second example starts with a 1024 x 1024 interlaced sequence at 60Hz
and one would like to obtain a 512 x 512 interlaced one at 60Hz as well (see Fig-
ure 7.32(b)). Half of the points have to be interpolated, since the latter scanning
is not a sublattice of the former. It can still be used as a coarse resolution in a
pyramid coder, but cannot be used as one of the channels in subband coding.

Compatibility as an overconstraint Sometimes, it is stated that all video services from
videotelephone to HDTV should be embedded in one another, somewhat like Rus-
sian dolls. That is, the whole video hierarchy can be progressively built up from the

8The famous backward turning wagon wheels in movies provide an example of aliasing in pro-
gressive scanning which could only be avoided by blurring in time.
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Figure 7.32 Sublattice property for compatibility (the (vertical, time)-plane
is shown). The “eo” represents the original lattice, and the squares the sparser
lattice. (a) 1024 x 1024 progressive, 60 Hz versus 512 x 512 interlaced, 60 Hz.
The sublattice property is verified. (b) 1024 x 1024 interlaced, 60 Hz versus
512 x 512 interlaced, 60 Hz. The sublattice property is not verified.

simplest to the most sophisticated. However, the successive refinement property is a
constraint with a price [93] and a complete refinement property with some stringent
bit rates requirements (for example, videotelephone at 64 Kbits/sec, standard tele-
vision at 5 Mbits/sec and HDTV at 20 Mbits/sec) is quite constrained and might
not lead to the best quality pictures. This is because each of the individual rates
is a difficult target in itself, and the combination thereof can be an overconstrained
problem.

While we will discuss compatibility issues and use multiresolution techniques
as a possible technique to address the problems, we want to point out that there
is no panacea. Each case of compression with compatibility requirement has to be
carefully addressed essentially from scratch.

7.4.2 Motion-Compensated Video Coding

As discussed above, motion models allow a compact description of moving imagery
and motion prediction permits high compression. Typically, a future frame is pre-
dicted from past frames using local motion information. That is, a particular N x NV
block of the current frame to be coded is predicted as a displaced N x N block from
the previous reconstructed frame and the prediction error is compressed using tech-
niques such as transform coding. The decoder can construct the same prediction
and add it to the decoded prediction error. Such a scheme is essentially an adaptive
DPCM over the time dimension, where the predictor is based on motion estima-
tion. Figure 7.33 shows such a scheme, which is called hybrid motion-compensated
predictive DCT video coding and is part of several standard coding algorithms [177].
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Figure 7.33 Hybrid motion-compensated predictive DCT coding.

As can be seen in Figure 7.33, the prediction error is compressed using the DCT,
even though there is little correlation left in the prediction error on average.

Note also that the DCT could be replaced by another expansion such as sub-
bands (see Figure 7.39(b)). Because of its resemblance to a standard coder, the
approach will work. However, because motion compensation is done on a block-by-
block basis (for example, in block matching motion compensation), there can be a
block structure in the prediction error. Thus, choosing a DCT of the same block size
is a natural expansion, while taking an expansion that crosses the boundaries could
suffer from that blocking structure (which creates artificially high frequencies). It
should not be forgotten, however, that the bulk of the compression comes from the
motion compensation loop using accurate motion estimates and thus, replacing the
DCT by a LOT or a discrete wavelet transform can improve the performance, but
not dramatically.

7.4.3 Pyramid Coding of Video

The difficulty of including motion in three-dimensional subband coding will be
discussed shortly. It turns out that it is much easier to include motion in pyramid
coding, due to the fact that the prediction or interpolation from low resolution to
full resolution (see Figure 7.18) can be an arbitrary predictor [9], such as a motion
based one. This is a general idea which can be used in various forms for video
compression and we will describe a particular scheme as an example.

This video compression scheme was studied in [301, 302, 303]. Consider a pro-
gressive video sequence and its subresolutions, obtained by spatial filtering and
downsampling as well as frame skipping over time. Note that filtering over time
would create so-called “double images” when there is motion and thus straight
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Figure 7.34 Spatio-temporal pyramid video coding. (a) Three layers of the
pyramid, corresponding to three resolutions. (b) Prediction of the higher res-
olution. The spatial resolution is interpolated first (using linear filtering) and
then the temporal resolution is increased using motion interpolation.

downsampling in time is preferable. This is shown schematically in Figure 7.34(a),
where the resolution is decreased by a factor of two in each dimension between
one level of the pyramid and the next. Now we apply the classic pyramid coding
scheme, which consists of the following:

(a) Coding the low resolution.
(b) Predicting the higher resolution based on the coded low resolution.

(c) Taking the difference between the predicted and the true higher resolution,
resulting in the prediction error.

(d) Coding the prediction error.

While these steps could be done in the three dimensions at once, it is preferable
to separate the spatial and temporal dimensions. First, the spatial dimension is
interpolated using filtering and then the temporal dimension is interpolated using
motion-based interpolation. This is shown in Figure 7.34(b). Following each inter-
polation step, the prediction error is computed and coded and this coded value is
added to the prediction before going to the next step. Because at each step, we
use coded versions for our prediction, we have a pyramid scheme with quantization
noise feedback, as was described in Figure 7.19. Therefore, there is only one source
of error, namely the compression of the last prediction error.

The oversampling inherent in pyramid coding is not a problem in the three-
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dimensional case, since, following (3.5.4), we have a total number of samples which

increases only as
N

1 8
(I+g+g+ N < =N,
or at most 14%, since every coarser level has only 1/8th the number of samples of
its predecessor.

The key technique in the spatio-temporal pyramid scheme is the motion interpo-
lation step, which predicts a frame from its two neighbors based on motion vectors.
Assume the standard rigid-object and pure translational motion model [207]. If we
denote the intensity of a pixel at location » = (x,y) and time ¢ by I(r,t), we are
looking for a mapping d(r,t) such that we can write:

I(r,t) = I(r —d(r,t),t —1).
If motion is not changing over time, we also have:
I(r,t) = I(r+d(r,t),t+1).

The goal is to find the function d(r,t), that is, estimate the motion. This is
a standard estimation procedure, where some simplifying assumptions are made
(such as constant motion over a neighborhood). Typically, for a small block b in
the current frame, one searches over a set of possible motion vectors such that the
sum of squared differences,

> (e, t) = I(r 1) (7.4.1)
reb

is minimized, where

I(r,t) = I(r —dp,t—1), (7.4.2)
corresponds to a block in the previous frame displaced by dp, (the motion for the
block under consideration in the current frame). It is best to actually perform a
symmetric search by considering the past (as in (7.4.2)), the future ((7.4.2) with
sign reversals for dy), and the average,

I(r,t) = S[I(r —dp,t —1)+1(r +dp,t+1)],

N =

and then to choose the best match. Choosing past or future for the interpolation
is especially important for covering and uncovering of background due to moving
objects, as well as in case of abrupt changes (scene changes).

Interestingly, a very successful technique to perform motion estimation (that
is, finding the displacement dp, that minimizes (7.4.1)) is based on multiresolution
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Figure 7.35 Multiresolution motion vector fields used in the interpolation.
Each corresponds to a layer in the pyramid, with coarse (top left), medium
(top right) and fine (bottom) resolutions.

or successive approximation. Instead of solving (7.4.1) directly, one solves a coarse
version of the same problem, refines the solution (by interpolating the motion vector
field), and uses this new field as a starting point for a new, finer search. This is not
only computationally less complex, but also more robust in general [31, 302]. It is
actually a regularization of the motion estimation problem.

As an illustration of this video coding scheme, a few representative pictures are
shown. First, Figure 7.35 shows the successive refinement of the motion vector field,
which starts with a sparse field on a coarse version and refines it to a fine field on the
full-resolution image. In Figure 7.36, we show the resulting spatial and temporal
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Figure 7.36 Results of spatio-temporal coding of video (after [301]). The
spatial (left) and temporal (right) prediction errors are shown. The recon-
struction (not shown) is indistinguishable from the original at the rate used in
this experiment (around 1.0 bits/pixel).

prediction error signals. As can be seen, the spatial prediction error has higher
energy than the temporal one, which shows that temporal interpolation based on
motion is quite successful (actually, this sequence has high frequency spatial details,
which cannot be well predicted from the coarse resolution).

A point to note is that the first subresolution sequence (which is downsampled by
2 in each dimension) is of good visual quality and could be used for a compatible
coding scheme. This coding scheme was implemented for high quality coding of
HDTYV with a compatible subchannel and it performed well at medium compression
(of the order of 10-15 to 1) with essentially no visible degradation [301, 303].

7.4.4 Subband Decompositions for Video Representation and Compression

Decompositions for Representation We will discuss here two ways of sampling
video by 2; the first, using quincunx sampling along (vertical, time)-dimensions and
the second, true three-dimensional sampling by 2, using the FCO sampling lattice.

Quincunx sampling for scanning format conversions We have outlined previously the
existence of different scanning standards (such as interlaced and progressive) as well
as the desire for compatibility. A simple technique to deal with these problems is
to use perfect reconstruction filter banks to go back and forth between progressive
and interlaced scanning, as shown in Figure 7.37 [320]. This is achieved by quin-
cunx downsampling the channels in the (vertical, time)-plane. Properly designed
filter pairs (either orthogonal or biorthogonal solutions) lead to a lowpass channel
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Figure 7.37 Progressive to interlaced conversion using a two-channel perfect
reconstruction filter bank with quincunx downsampling.

that is a usable interlaced sequence, while the original sequence can be perfectly
recovered when using both the lowpass and highpass channels in the reconstruction.
This is a compatible solution in the following sense: A low-quality receiver would
only decode the lowpass channel and thus show an interlaced sequence, while a
high-quality receiver would synthesize a full resolution progressive sequence based
on both the lowpass and the highpass channels.

If one starts with an interlaced sequence, one can obtain a progressive sequence
by quincunx downsampling. Thus, an interlaced sequence can be broken into low-
pass and highpass progressive sequences, again allowing perfect reconstruction when
perfect reconstruction filter banks are used. This is a very simple, linear technique
to produce a deinterlaced sequence (the lowpass signal) as well as a helper signal
(the highpass signal) from which to reconstruct the original signal. While more
powerful, motion based techniques can produce better results, the above technique
is attractive because of its low complexity and the fact that no motion model needs
to be assumed.

Perfect reconstruction filter banks for these applications, in particular having
low complexity, have been designed in [320]. Both orthogonal and biorthogonal
solutions are given. As an example, we give the two-dimensional impulse responses
of a simple linear phase filter pair,

-1
-2 4 =2 1
ho [’I’Ll, ng] = -1 4 28 4 -1 s h1 [nl, ng] = 1 -4 1 s
-2 4 -2 1
-1

(7.4.3)
which are lowpass and highpass filters, respectively. Since it is a biorthogonal pair,
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the synthesis filters (if the above are used for analysis) are obtained by modulation
with (—1)™1+72) and thus, the roles of lowpass and highpass are reversed (see also
Problem 7.7).

FCO sampling for video representation We mentioned previously that using the FCO
lattice (depicted in Figure 7.31(c)) might produce visually more pleasing sequences
if a data reduction by two is needed. This is due in part to the fact that an ideal
lowpass in the FCO case would retain more of the energy of the original signal than
the corresponding quincunx lowpass filter. Actually, assuming that the original
signal has a spherically uniform spectrum, and that the ideal lowpass filters are
Voronoi regions both in the quincunx and the FCO cases, the quincunx lowpass
would retain 84.3% of the original spectrum, while the FCO lowpass would retain
95.5% of the original spectrum [164].

To evaluate the gain of processing a video signal with a true three-dimensional
scheme when a data rate reduction of two is needed, we can use a two-channel
perfect reconstruction filter bank [164]. The sampling matrix is

1 0 1
Dpco = | -1 -1 1],
0 -1 0
and the perfect reconstruction filter pair is a generalization of the above diamond-
shaped quincunx filters to three dimensions. To compare the low bands obtained
in this manner, they are interpolated back to the original lattice, since we cannot
observe the FCO output directly. Upon observing the result, the conclusion is that
FCO produces visually more pleasing sequences. For more detail, see [164].

Three-Dimensional Subband Decomposition for Compression A straightfor-
ward generalization of separable subband decomposition to three dimensions is
shown in Figure 7.38, with the separable filter tree shown in part (a) and slicing
of the spectrum given in part (b) [153]. In general, most of the energy will be
contained in the band that has gone through lowpass filtering in all three directions
thus iterating the decomposition on this band is most natural. This is actually
a three-dimensional discrete-time wavelet decomposition and is used in [153, 224].
Such three-dimensional decompositions work best for isotropic data, such as tomo-
graphic images used in medical imaging or multispectral images used in satellite
imagery. In that case, the same filters can be used in each dimension, together with
the same compression strategy (at least as a first approximation).

As we said, in video sequences, time should be treated differently from the
spatial dimensions. Typically, only very short filters are used along time (such as
Haar filters given in (3.1.2) and (3.1.17)) since long filters will smear motion in the
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Figure 7.38 Three-dimensional subband decomposition of video. (a) Sepa-
rable filter bank tree. LP and HP stand for lowpass and highpass filtering,
respectively, and the circle indicates downsampling by two. (b) Slicing of the
three-dimensional spectrum.

lowpass channel and create artificial high frequencies in the highpass channel. If
one looks at the output of a three-dimensional subband decomposition, one can
note that the lowpass version is similar to the original and the only other channel
with substantial energy is the one containing a highpass filter over time followed by
lowpass filters in the two spatial dimensions. This channel contains energy every
time there is substantial motion and can be used as a motion indicator.

While motion-compensated methods can outperform subband decompositions
over time, recently, there have been some promising results [223, 286]. Also, it is
a simple, low-complexity method and can easily be used in a joint source-channel
coding environment because of the natural ordering in importance of the subbands
[323]. Subband representation is also very convenient for hierarchical decomposition
and coding [35] and has been used for compression of HDTV [336].

Motion and Subband Coding Intuitively, instead of lowpass and highpass fil-
tering along the time axis, one should filter along the direction of motion instead.
Then, motion itself would not create artificial high frequencies as it does in straight
three-dimensional subband coding. This view, although conceptually appealing, is
difficult to translate into practice, except in very limited cases (such as panning,
which corresponds to a single translational motion). In general, there are different
motion trajectories as well as covering and uncovering of background by moving
objects. Thus, subband decomposition along motion trajectories is not a practical
approach (see [167] for further discussions on this topic).
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Figure 7.39 Motion-compensated subband coding. SB: subband, ME: motion
estimation, MC: motion compensation, MCL: motion-compensation loop. (a)
Motion compensation of each subband. (b) Subband decomposition of the
motion-compensated prediction error.

Instead, one has to go back to more traditional motion-compensation techniques
and see how they fit into a subband coding framework or, conversely, how subband
coding can be used within a motion-compensated coder [110]. Consider inclusion of
motion compensation into a subband decomposition. That is, instead of processing
the time axis using Haar filters, we use a motion-compensation loop in each of the
four spatial bands. One advantage is that the four channels are now treated in an
independent fashion. While this scheme should perform better than the straight
three-dimensional decomposition, it also has a number of drawbacks. First, motion
compensation requires motion estimation. If it is done in the subbands, it is less
accurate than the motion estimates obtained from the original sequence. Also,
motion estimation in the high frequency subbands will be difficult. Thus, motion
estimation should probably be done on the original sequence and the estimates
then used in each band after proper rescaling (see Figure 7.39(a)). One of the
attractive features of the original scheme, namely that motion processing is done
in parallel and at a lower resolution, is thus partly lost, since motion estimation
is now shared. Moreover, it is hard to perform motion compensation in the high
frequency subbands, since they mostly consist of edge information and thus slight
motion errors lead to large prediction errors.

As can be been from the above discussion, motion compensation in the subbands
is not easy. An intuitive explanation is the following: motion, that is, translation of
objects, is a sequence-domain phenomenon. Going to a subband domain is similar to
going into frequency domain, but there, translation is a complex phenomenon, with
different phase factors at different frequencies. This shows that motion estimation
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Table 7.10 Comparison of subband and pyra-
mid coding of video. N is the number of
channels in the subband decomposition and
d is the quantizer step size.

Method || Subband | Pyramid
Oversampling 0% < 14%
Maximum coding error VN§ )
Subchannel quality Limited Good
Inclusion of motion Difficult Easy
Nonlinear processing Difficult Easy
Model-based processing || Difficult Easy
Encoding delay Moderate Large

and compensation is more difficult in the subband domain than in the original
sequence domain.

Consider the alternative of using subband decomposition within a motion- com-
pensated coder, as shown in Figure 7.39(b). The subband decomposition is used to
decompose the prediction error signal spatially and replaces simply the DCT which
is usually present in such a hybrid motion-compensated DCT coder. This approach
was discussed in Section 7.4.2, where we indicated its feasibility, but also some of
its possible shortcomings.

Comparison of Subband and Pyramid Coding for Video Because both sub-
band and pyramid coding of video are three-dimensional multiresolution decom-
positions, it is natural to compare them. A slight disadvantage of pyramid over
subband coding is the oversampling; however, it is small in this three-dimensional
case. Also, the encoding delay is larger in pyramid coding than in subband coding.
On all other counts, pyramid coding turns out to be advantageous when compared
to subband coding, a somewhat astonishing fact considering the simplicity of the
pyramid approach. First, there is an easy control of quantization error, using the
quantization error feedback and this leads to a tight bound on a maximum possi-
ble error, unlike in transform or subband coders. Second, the inclusion of motion,
which we discovered to be difficult in subband coding, is very simple in a pyrami-
dal scheme, as demonstrated in the spatio-temporal scheme discussed previously.
The quality of a compatible subchannel is limited in a subband scheme due to the
constrained filters that are used. In the pyramid case, however, the freedom on
the filters involved both before downsampling and for interpolation can be used
to obtain visually pleasing coarse resolutions as well as good quality interpolated
versions, a useful feature for compatibility. The above comparison is summarized
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in Table 7.10.

7.4.5 Example: MPEG Video Compression Standard

Just as in image compression, where several key ideas led to the JPEG standard (see
Section 7.3.1), the work on video compression led to the development of a successful
standard called MPEG [173, 201]. Currently, MPEG comes in two versions, namely
a “coarse” version called MPEG-I (for noninterlaced television at 30 frames/second,
and a compressed bit rate of the order of 1 Mbits/sec) and a “finer” version named
MPEG-II (for 60 fields/sec regular interlaced television, and a compressed bit rate
of 5 to 10 Mbits/sec). The principles used in both versions are very similar and
we will concentrate on MPEG-I in the following. What makes MPEG both in-
teresting and powerful is that it combines several of the ideas discussed in image
and video compression earlier in this chapter. In particular, it uses both hybrid
motion-compensated predictive DCT coding (for a subset of frames) and bidirec-
tional motion interpolation (as was discussed in the context of video pyramids).
But first, it segments the infinite sequence of frames into temporal blocks called
group of pictures (GOP). A GOP typically consists of 15 frames (that is, half a
second of video). The first frame of a GOP is coded using standard image compres-
sion and no prediction from the past frames (this decouples the GOP from the past
and allows one to decode a GOP independently of other GOP’s). This intraframe
coded image — I-frame, is used as the start frame of a motion-compensation loop
which predicts every N-th frame in the GOP where N is typically two or three.
The predicted frames (P-frames) are then used together with the I-frame in order
to interpolate the N — 1 intermediate frames (called B-frames because the inter-
polation is bidirectional) between the P-frames. A GOP, the various frame types,
and their dependencies are shown in Figure 7.40.

Both the intraframe and the various prediction errors (corresponding to the
difference between the true frame and its prediction either from the past or from
its neighbors in the P and B case, respectively) are compressed using a JPEG-like
standard (DCT, quantization with an appropriate quantization matrix, and zigzag
scanning with entropy coding). One important difference, however, is that the
quantization matrix can be scaled by a multiplicative factor and this factor is sent
as overhead. This allows a coarse form of adaptive quantization if desired.

A key for good compression performance is good motion estimation/prediction.
In particular, motion can be estimated at different accuracies (motion by integer
pixel distances, or finer, subpixel accuracy). Of course, finer motion information
increases the overhead to be sent to the decoder, but typically, the reduction in
prediction error justifies this finer motion estimation and prediction. For example,
it is common to use half-pixel accuracy motion estimation in MPEG.
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Figure 7.40 A group of pictures (GOP) in the MPEG video coding standard.
I, P, and B stand for intra, predicted and bidirectionally interpolated frames,
respectively. There are nine frames in this GOP, with two B-frames between
every P-frame. The arrows show the dependencies between frames.

7.5 JOINT SOURCE-CHANNEL CODING

The source coding methods we have discussed so far are used in order to transport
information (such as a video sequence) over a channel with limited capacity (such
as a telephone line which can carry up to 20 Kbits/sec). In many situations, source
coding can be performed separately from channel coding, which is known as the
separation principle of source and channel coding. For example, in a point-to-point
transmission using a known, time-invariant channel such as a telephone line, one
can design the best possible channel coding method to approach channel capacity,
that is, achieve a rate R in bits/sec such that R < C where C'is the channel capacity
[258]. Then, the task of the source compression method is to reduce the bit rate so
as to match the rate of the channel.

However, there exist other situations where a separation principle cannot be
used. In particular, when the channel is time-varying and there is a delay con-
straint, or when multiple channels are present as in broadcast or multicast, it can
be advantageous to jointly design the source and channel coding so that, for exam-
ple, several transmission rates are possible.

The development of such methods is beyond the scope of this book. As an
example, the case of multiple channels falls into a well studied branch of informa-
tion theory called multiuser information theory [66]. Instead, we will show sev-
eral examples indicating how multiresolution source coding fits naturally into joint
source-channel coding methods. In all these examples, the transmission, or channel
coding, uses a principle we call multiresolution transmission and can be seen as the
dual of multiresolution source coding.

Multiresolution transmission is based on the idea that a transmission system
can operate at different rates, depending on the channel conditions, or that certain
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bits will be better protected than others in case of adverse channel conditions. Such
a behavior of the transmission system can be achieved using different techniques,
depending on the transmission media. For example, unequal error protection codes
can be used, thus making certain bits more robust than others in the case of a
noisy channel. The combination of such a transmission scheme with a multires-
olution source coder is very natural. The multiresolution source coder segments
the information into a part which reconstructs a coarse, first approximation of the
signal (such as the lowpass channel in a subband coder) as well as a part which
gives the additional detail signal (typically, the higher frequencies). The coarse
approximation is now sent using the highly protected bits and has a high prob-
ability of arriving successfully, while the detail information will only arrive if the
channel condition is good. The scheme generalizes to more levels of quality in an
obvious manner. This intuitive matching of successive approximation of the source
to different transmission rates, depending on the quality of the channel, is called
multiresolution joint source-channel coding.

7.5.1 Digital Broadcast

As a first example, we consider digital broadcast. This is a typical instance of a
multiuser channel, since a single emitter sends to many users, each with a different
channel. One can of course design a digital communication channel that is geared
to the worst case situation, but that is somewhat of a waste for the users with
better channels. For simplicity, consider two classes of users U; and Us having
“s00od” and “bad” channels, with capacities C; > (5, respectively. Then, the idea
is to superimpose information for the users with the good channel on top of the
information that can be received by the users with the bad channel (which can
also be decoded by the former class of users ) [66]. Interestingly, this simple idea
improves the joint capacity of both classes of users over simply multiplexing between
the two channels (sending information at rate Ry < Cy to Uy part of the time, and
then at rate Re < C3 to Uy and U the rest of the time). See Figure 7.41(a) for
a graphical description of the joint capacity region and Figure7.41(b) for a typical
constellation used in digital transmission where information for the users with better
channels is superimposed over information which can be received by both classes
of users. Now, keeping our multiresolution paradigm in mind, it is clear that we
can send coarse signal information to both classes of users, while superposing detail
information that can be taken by the users with the good channel. In [231], a
digital broadcast system for HDTV was designed using these principles, including
multiresolution video coding [301] and multiresolution transmission with graceful
degradation (using constellations similar to the one in Figure 7.41(b)).

The principles just described can be used for transmission over unknown time-
varying channels. Instead of transmitting assuming the worst case channel, one can
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Figure 7.41 Digital broadcast. (a) Joint capacity region for two classes of users
with channel capacities C; and Cj, respectively, and C7; > C3. Any point on
or below the curves is achievable, but superposition outperforms multiplexing.
(b) Example of a signal constellation (showing amplitudes of cosine and sine
carriers in a digital communication system) using superposition of information.
As can be seen, there are four clouds at four points each. When the channel is
good, 16 points can be distinguished, (or four bits of information), while under
adverse conditions, only the clouds are seen (or two bits of information).

superpose information decodable on a better channel, in case the channel is actually
better than worst case. On average, this will be better than simply assuming worst
case all the time. As an example, consider a wireless channel without feedback.
Because of the changing location of the user, the channel can vary greatly, and
the worst case channel can be very poor. Superposition allows delivery of different
levels of quality, depending on how good the reception actually is. When there is
feedback (as in two-way wireless communication), then one can use a channel coding
optimized for the current channel (see [114]). The source coder then has to adapt to
the current transmission rate, which again is easy to achieve using multiresolution
source coding. A study of wireless video transmission using a two resolution video
source coder can be found in [157].
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7.5.2 Packet Video

Another example of application of multiresolution coding for transmission is found
in real-time services such as voice and video over asynchronous transfer mode
(ATM) networks. The problem is that packet transmission can have greatly varying
delays as well as packet losses. However, it is possible to protect certain packets (for
example, using priorities). Again, the natural idea is to use multiresolution source
coding and put the coarse approximation into high priority so that it will almost
surely be received [154]. The detail information is carried with lower priority pack-
ets and will only arrive when the network has enough resources to carry them. Such
an approach can lead to substantial improvements over nonprioritized transmission
[107]. In video compression, this approach is often called layered coding, with the
layers corresponding to different levels of approximation (typically, two layers are
used) and different layers having different protections for transmission.

This concludes our brief overview of multiresolution methods for joint source
and channel coding. It can be argued that because of increasing interconnectivity
and heterogeneity, traditional fixed-rate coding and transmission will be replaced
by flexible multiresolution source coding and multiple or variable-rate transmission.
For an interface protocol allowing such flexible interconnection, see [127]. The main
advantage is the added flexibility, which will allow users with different requirements
to be interconnected through a mixture of possible channels.

APPENDIX 7.A STATISTICAL SIGNAL PROCESSING

Very often, a signal has some statistical characteristics of which we can take
advantage. A full blown treatment of statistical signal processing requires the study
of stochastic processes [122, 217]. Here, we will only consider elementary concepts
and restrict ourselves to the discrete-time case.

We start by reviewing random variables and then move to random processes.
Consider a real-valued random variable X over R with distribution Px. The dis-
tribution Px(A) indicates the probability that the random variable X takes on a
value in A, where A is a subset of the real line. The cumulative distribution function
(cdf) Fx is defined as

Fx(a) = Px({z|z < a}), aeR.

The probability density function (pdf) is related to the cdf (assume that Flx is
differentiable) as
dFx (o
fx(a) = %, a e R,

and thus N
Fx(a) = / fx(x)dx, aecR.
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A vector random variable X is a collection of k random variables (X, ..., Xx_1),
with a cdf F'x given by

Fx(a) = Px({z|r; < a;,i =0,1,...,k — 1}),
where a = (v, ..., ag_1). The pdf is obtained, assuming differentiability, as

ak
- 80[0, 8@1, e ,8ak_1

fx(a)

Fx(ag,a1,...,ap_1).

A key notion is independence of random variables. A collection of £ random vari-
ables is independent if and only if the joint pdf has the form

Ixoxy-Xp 1 (X0, 21, .., Tp—1) = fxo(@o) - fxy (1) -+ fx, (Tp—1)- (7T.A.1)

In particular, if each random variable has the same distribution, then we have an
independent and identically distributed (iid) random vector.

Intuitively, a discrete-time random process is the infinite-dimensional general-
ization of a vector random variable. Therefore, any finite subset of random variables
from a random process is a vector random variable.

Example 7.3 Jointly Gaussian Random Process

An important class of vector random variables is the Gaussian vector random variable
of dimension k. To define its pdf, we need a length-k vector m and a positive definite matrix
A of size k x k. Then, the k-dimensional Gaussian pdf is given by

F(x) = (2m) /2 (det A) "2 @-TVIATH@-M) /2 o gk (7.A.2)

Note how, for k =1 and A = ¢, this reduces to the usual Gaussian (normal) distribution

f(ZC) — 1 . 67(x7m)2/2027 = ]R7

V2mo?2

of which (7.A.2) is a k-dimensional generalization.

A discrete-time random process is jointly Gaussian if all finite subsets of samples
{anXn17 R ch71} are Gaussian random vectors. Thus, a Gaussian random process is
completely described by m and A, which are called the mean and covariance as we will see.

For random variables as for random processes, a fundamental concept is that of
expectation, defined as -
E(X) :/ xfx(z) dx.
—0o0
Expectation is a linear operator, that is, given two random variables X and Y,
we have E(aX + bY) = aE(X) + bE(Y). The expectation of products of random
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variables leads to the concept of correlation. Given two random variables X and
Y, their correlation is E(XY'). They are uncorrelated if

E(XY) = E(X) E(Y).

From (7.A.1) we see that independent variables are uncorrelated (but uncorrelated-
ness is not sufficient for independence). Sometimes, the “centralized” correlation,
or covariance, is used, namely

cov(X,Y) = E((X - EX))(Y - E(®Y)))
= E(XY)- E(X)E®Y),

from which it follows that two random variables are uncorrelated if and only if their
covariance is zero. The variance of X, denoted by ag(, equals cov(X, X), that is,

U?X = E((X_E(X))2)7

and its square root ox is called the standard deviation of X. Higher-order moments
are obtained from E(X*),k > 2. The above functions can be extended to random
processes. The autocorrelation function of a process {X,,,n € Z}, is defined by

Rx[n,m]| = E(X,, X), n,m € 7,
and the autocovariance function is
Kx[n,m] = cov(X,, Xn)

An important class of processes are stationary random processes, for which the
probabilistic behavior is constant over time. In particular, the following then hold:

E(X,) = EX), neZ, (7.A.3)

0%, = 0% n € Z. (7.A.4)

By the same token, all other moments are independent of n. Also, correlation and
covariance depend only on the difference (n —m), or

Rx[n,m| = Rx[n—m], n,m € 7, (7.A.5)
Kx[n,m] = Kx[n—m], n,m € Z. (7.A.6)
While stationarity implies that the full probabilistic description is time-invariant,

nth-order stationarity means that distributions and expectations involving n sam-
ples are time-invariant. The case n = 2, which corresponds to (7.A.3-7.A.6) is called
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wide-sense stationarity. An important property of Gaussian random processes is
that if they are wide-sense stationary, then they are also strictly stationary.

Often, we are interested in filtering a random process by a linear time-invariant
filter with impulse response h[n]. That is, the output equals Y[n] = > 72 h[k]
X[n—k]. Note that Y[.] and X[.] denote random variables and are thus capitalized,
while h[.] is a deterministic value. We will assume a stable and causal filter. The
expected value of the output is

E(Y[n) = EQ_h[kX[n— k) => hKIEX[n k) =>_ hlklmn_g, (T.A7)
k=0 k=0 k=0

where m; is the expected value of X;. Note that if the input is wide-sense stationary,
that is, E(X,) = E(X) for all n, then the output has a constant expected value
equal to E(X) >"72, h[k]. It can be shown that the covariance function of the output
depends also only on the difference n —m (as in (7.A.5)) and thus, filtering by a
linear time-invariant system conserves wide-sense stationarity (see Problem 7.9).

When considering filtered wide-sense stationary processes, it is useful to intro-
duce the power spectral density function (psdf), which is the discrete-time Fourier
transform of the autocorrelation function

Sx(e™) = Y Rx[n] e 7"

n=—oo

Then, it can be shown that the psdf of the output process after filtering with h[n]
equals
Sy (/) = [H(e™)|" Sx(e), (TA8)

where H(e“) is the discrete-time Fourier transform of h[n]. Note that when the
input is uncorrelated, that is, Rx[n] = E%(X)d[n], then the output autocorrelation
is simply the autocorrelation of the filter, or Ry [n] = E?(X)(h[k], h[k +n]), as can
be seen from (7.A.8). If we define the crosscorrelation function

Rxy[m] = E(X|n] Y[n+m]),
then its Fourier transform leads to
SXy(ejw) = H(ej“) SX(ej“’). (7.A.9)

Again, when the input is uncorrelated, this can be used to measure H(e/).

An important application of filtering is in linear estimation. The simplest linear
estimation problem is when we have two random variables X and Y, both with zero
mean. We wish to find an estimate X of the form X = aV from the observation
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Y, such that the mean square error (MSE) E((X — X)?) is minimized. It is easy
to verify that

E(XY)

E(Y?)’
minimizes the expected squared error. Ome distinctive feature of the MSE esti-
mate is that the estimation error (X — X) is orthogonal (in expected value) to the
observation Y, that is,

E(X - X)Y)=E((X —aY)Y) = E(XY) —aE(Y?) =0.

This is known as the orthogonality principle: The best linear estimate in the MSE
sense is the orthogonal projection of X onto the span of Y. It follows that the
minimum MSE is
E((X - X)?) = E(X?)-?E(Y?),

because of orthogonality of (X — X) and Y. This geometric view follows from
the interpretation of E(XY) as an inner product and thus E(X?) is the squared
length of the vector X. Similarly, orthogonality of X and Y is seen as E(XY) = 0.
Based on this powerful geometric point of view, let us tackle a more general linear
estimation problem. Assume two zero-mean jointly wide-sense stationary processes
{X[n]} and {Y[n]}. We want to estimate X[n] from Y[n] using a filter with the
impulse response h[n], that is

= ) hlk] Yn - k], (7.A.10)
k

in such a way that E((X[n]— X [n])?) is minimized. The range of k is restricted to a
set K (for example, k£ > 0 so that only y[n],y[n—1],... are used). The orthogonality
principle states that the optimal solution will satisfy

E((X[n] — X[n))Y[k]) = 0, keK.

Using (7.A.10), we can rewrite the orthogonality condition as
E(X Z hli]Y [n — Y [k])
= Rxy[n, k] — Zh |Ry [n — i, k]
= Rxy[n—k Zh |Ry[n—k—i], kekK,
where we used wide-sense stationarity in Rxy[n, k] = Rxy[n — k]. Replacing n —k

by I, we get
Rxylll = Y hli] Ry[l—i], n-l€eK. (7.A.11)
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In particular, when there is no restriction on the set of samples {Y[n]} used for the
estimation, that is K = Z, then we can take the Fourier transform of (7.A.11) to
find .

Say(e’)

Sy(eiw)’

which is the optimal linear estimator. Note that this is in general a noncausal
filter. Finding a causal solution (K = (—oo,n]) is more involved [122], but the
orthogonality principle is preserved.

This concludes our brief overview of statistical signal processing. One more
topic, namely the discrete-time Karhunen-Loeve transform, is discussed in the main
text, in Section 7.1, since it lays the foundation for transform-based signal compres-
sion.

H(e¥) =
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PROBLEMS

7.1 For a uniform input pdf, as well as uniform quantization, prove that the distortion between
the input and the output of the quantizer is given by (7.1.14), that is

A2
D = —
12”7
where A is the quantizer step size A = (b—a)/N, a,b are the boundaries of the input, and
N is the number of intervals.

7.2 Coding gain as a function of number of channels: Consider the coding gain of an ideal filter
bank with N channels (see Section 7.1.2).

(@) Construct a simple example where the coding gain for a 2-channel system is bigger
than the coding gain for a 3-channel system. Hint: Construct a piecewise constant
power spectrum for which the 2-channel system is better matched than the 3-channel
system.

(b) For the example constructed above, show that a 4-channel system outperforms both
the 2- and 3-channel systems.

7.3 Consider the coding gain (see Section 7.1.2) in an ideal subband coding system with N
channels (the filters used are ideal bandpass filters). Start with the case N = 2 before

looking at the general case.

(@) Assume that the power spectrum of the input signal | X (e/“)|? is given by

xEp = 1= <
Give the coding gain as a function of V.
(b) Same as above, but with
IX(@)P = e <

Give the coding gain as a function of N and «, and compare to (a).

7.4 Huffman and run-length coding: A stream of symbols has the property that stretches of
zeros are likely. Thus, one can use code the length of the stretch of zeros, after a special
“start of run” (SR) symbol.

(&) Assume there are runs of lengths 1 to 8, with probabilities:
Length |t | 23| 4 ] 5 | 6 | 7 | 8
Probability || 1/2 | 1/4 [ 1/8 | 1/16 | 1/32 | 1/64 | 1/128 | 1/128

Design a Huffman code for the run lengths. How close does it come to the entropy?
(b) There are 8 nonzero symbols, plus the start of run symbols, with probabilities:
Symbol || +1 | +2 | +3 | +4 | SR
Probability || 0.2 [ 0.15 | 0.075 | 0.05 | 0.05

Design a Huffman code for these symbols. How close does it come to the entropy?
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(c) As an example, take a typical sequence, including stretches of zeros, and encode it,
then decode it, with your Huffman code (small example). Can you decode your bit
stream?

(d) Give the average compression of this run-length and Huffman coding scheme.

7.5 Consider a pyramid coding scheme as discussed in Section 7.3.2. Assume a one-dimensional
signal and an ideal lowpass filter both for coarse-to-fine and fine-to-coarse resolution change.

(8) Assume an exponentially decaying power spectrum
IX (@) = eV w| <.

Derive the variances of the coarse and the difference channels.

(b) Assume now that the coarse channel is quantized before being interpolated and used
as a prediction. Assume an additive noise model, with variance ¢A? where A is the
quantizer step. Give the variance of the difference channel (which now depends on A,
or the number of bits allocated to the coarse channel).

(c) Investigate experimentally the bit allocation problem in a pyramid coder using a
quantized coarse version for the prediction. That is, generate some correlated random
process (for example, first-order Markov with high correlation) and process it using
pyramid coding. Allocate part of the bit budget to the coarse version, and the rest
for the difference signal. Discuss the two limiting cases, that is, zero bits to the coarse
version and all the bits for the coarse version.

7.6 Consider the embedded zero tree wavelet (EZW) transform algorithm discussed in Sec-
tion 7.3.4, and study a one-dimensional version.

(8) Assume a one-dimensional octave-band filter bank and define a zero tree for this case.
Compare to the two-dimensional case. Discuss if the dominant and subordinate passes
of the EZW algorithm have to be modified, and if so, how.

(b) One can define a zero tree for arbitrary subband decomposition trees (or wavelet
packets). In which case is the zero tree most powerful?

(¢) In the case of a full tree subband decomposition in two dimensions (for example, of
depth 3, leading to 64 channels), compare the zero tree structure with zig-zag scanning
used in DCT.

7.7 Progressive to interlaced conversion:

a) Verify that the filters given in (7.4.3) form a perfect reconstruction filter bank for
Verify that the filt i in (7.4.3) fi fect truction filter bank fa
quincunx downsampling and give the reconstruction filters as well.

(b) Show that cascading the quincunx decomposition twice on a progressive sequence (on
the vertical-time dimension) yields again a progressive sequence, with an intermediate
interlaced sequence. Use the downsampling matrix

o= (4)
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7.8 Consider a two-channel filter bank for three-dimensional signals (progressive video sequences)
using FCO downsampling (see Section 7.4.4).

(@) Consider a lowpass filter

Ho(z1,22,23) = (1 + z12223),

1
V2
and a highpass filter

Hi(z1,%2,23) = Ho(—z1,—22,—23).

Show that this corresponds to an orthogonal Haar decomposition for FCO downsam-
pling.

(b) Give the output of a two-channel analysis/synthesis system with FCO downsampling
as a function of the input, the aliased version, and the filters.

7.9 Filtering of wide-sense stationary processes: Consider a wide-sense stationary process {z[n]}
and its filtered version y[n] = >, h[k]z[n — k], where h[k] is a stable and causal filter.

(@) In Appendix 7.A, we saw that the mean of {y[n]} is independent of n (see below
Equation (7.A.7)). Show that the covariance function of {y[n|}, Ky [n, m] = cov(y[n]-
y[m]) is a function of (n — m) only, and given by

Ky[k] = > hin] h[m] Kx[k — (n —m)]
n=0m=0
(b) Prove (7.A.9) in time domain, or assuming zero-mean input,
Kxy[m] = > h[k] Kx[m —k].
h=0

(c) Consider now one-sided wide-sense stationary processes, which can be thought of as
wide-sense stationary processes that are “turned on” at time 0. Consider filtering of
such processes by causal FIR and IIR filters, respectively. What can be said about
E(Y[n]) n > 0 in these cases?

Projects: The following problems are computer-based projects with an experimental flavor.
Access to adequate data (images, video) is helpful.

7.10 Coding gain and R(d) optimal filters for subband coding: Consider a two-band perfect re-
construction subband coder with orthogonal filters in lattice structure. As an input, use a
first-order Markov process with high correlation (p = 0.9). For small filter lengths (L = 4,6
or s0), optimize the lattice coefficients so as to maximize coding gain or minimize first-order
entropy after uniform scalar quantization. Find what filter is optimal, and try for fine and
coarse quantization steps.

Use optimal bit allocation between the two channels, if possible. The same idea can be
extended to Lloyd-Max quantization, and to logarithmic trees. This project requires some
experience with coding algorithms. For relevant literature, see [79, 109, 244, 295].
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7.11 Pyramids using nonlinear operators: One of the attractive features of pyramid coding schemes
over critically sampled coding schemes is that nonlinear operators can be used. The goal of
the project is to investigate the use of median filters (or some other nonlinear operators) in
a pyramidal scheme.

The results could be theoretical or experimental. The project requires image processing
background. For relevant literature, see [41, 138, 303, 323].

7.12 Motion compensation of motion vectors: In video coding, motion compensation is used to
predict a new frame from reconstructed previous frames. Usually, a sparse set of motion
vectors is used (such as one per 8 x 8 block), and thus, sending motion vectors contributes
little to the bit rate overhead. An alternative scheme could use a dense motion vector field
in order to reduce the prediction error. In order to reduce the overhead, predict the motion
vector field, since it is usually not changing radically in time within a video scene. Thus,
the aim of the project is to treat the motion vector field as a sequence (of vectors), and find
a meta-motion vector field to predict the actual motion vector field (for example, per block
of 2x2 motion vectors).

This project requires image/video processing background. For more literature on motion
estimation, see [138, 207].

7.13 Adaptive Karhunen-Loeéve transform: The Karhunen-Loéve transform is optimal for energy
packing of stationary processes, and under certain conditions, for transform coding and
quantization of such processes. However, if the process is nonstationary, compression might
be improved by using an adaptive transform. An interesting solution is an overhead free
transform which is derived from the coded version of the signal, based on some estimate of
local correlations.

The goal of the project is to explore such an adaptive transform on some synthetic nonsta-
tionary signals, as well as on real signals (such as speech).

This project requires good signal processing background. For more literature, see [143].

7.14 Three-dimensional wavelet coding: In medical imaging and remote sensing, one often en-
counters three-dimensional data. For example, multispectral satellite imagery consists of
many spectral band images. Develop a simple three-dimensional coding algorithm based on
the Haar filters, and iteration on the lowpass channel. This is the three-dimensional equiv-
alent of the octave-band subband coding of images discussed in Section 7.3.3. Apply your
algorithm to real imagery if available, or generate synthetic data with a lowpass nature.
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digital video broadcast, 465 lattice factorizations, 138, 142, 172
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linear phase, 140, 142, 144
orthonormal, 129, 131, 133
power complementary, 131
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Smith-Barnwell, 134
Vaidyanathan and Hoang, 138
Fourier theory, 1, 37
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discrete Fourier transform, 53
discrete-time Fourier series, 52, 97, 101,
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discrete-time Fourier transform, 50
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Fourier transform, 39
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time localization of wavelet frames, 338
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time Fourier transform in continu-
ous time
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linear operators on, 85
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JPEG standard, 419
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wavelet coding, 425
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JPEG image coding standard, 419
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sions
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time-invariant, 110
overcomplete expansions, 28, 101, 179
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Parseval’s equality, see conservation of en-

ergy
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polyphase transform, 74
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differential pulse code modulation, 396
progressive scanning, 449
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bit allocation, 424

comparison with subband coding for video,
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decimation and interpolation operators,
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oversampling, 424

quantization noise, 423

quadrature mirror filters, 127
quantization, 390
bit allocation, 397
coding gain, 401
error analysis in a subband system, 443
Lloyd-Max, 393
of DCT coefficients, 417
of the subbands, 430
predictive, 395
scalar, 390
uniform, 391
vector, 394
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coding: quincunx
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sampling, 47
theorem, 48, 213
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centroid condition, 392
Lloyd-Max, 393
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uniform, 391
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series expansions, 3
block discrete-time Fourier series, 103
continuous-time, 38, 211
discrete-time, 38, 100
discrete-time Fourier series, 52, 101, 102
Fourier series, 43, 212
sampling theorem, 49, 213
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discretization, 331
fast algorithm and complexity, 371
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properties, 325

short-time Fourier transform in discrete time
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signal-to-noise ratio, 386

sinc expansion, 109, 212, 230, 248
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iterated, 160

Smith and Barnwell filters, 136

Smith-Barnwell condition, 131

spectral factorization, 65, 134

speech compression, 407
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production model, 407

spline spaces, 238

statistical signal processing, 467
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jointly Gaussian random process, 468
linear estimation, 470
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bit allocation, 431
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Vaidyanathan and Hoang filters, 136
vector quantization, 394
fractional bit rate, 394
of subbands, 431
packing gain, 394
removal of linear and nonlinear depen-
dencies, 394
vector spaces, 18

INDEX

video compression, 446
compatibility, 451
motion-compensated video coding, 452
MPEG standard, 463
perceptual point of view, 449
progressive/interlaced scanning, 449, 457
pyramid coding, 453
three-dimensional subband coding, 459
transform coding, 448

wavelet coding, 425, 438
based on wavelet maximums, 442
based on zero trees, 438
best basis algorithm, 442
wavelet series, 270
biorthogonal, 282
characterization of singularities, 275
fast algorithm and complexity, 369
frequency localization, 275
Haar, 216
Mallat’s algorithm, 280
properties of basis functions, 276
sinc, 230
time localization, 274
wavelet theory, 1
admissibility condition, 313
basis property of wavelet series, 255
Battle-Lemarié wavelets, 242
characterization of singularities, 275
continuous-time wavelet transform, see
wavelet transform
Daubechies’ wavelets, 267
discrete-time wavelet series, 150, 154
frequency localization, see frequency lo-
calization, 214, 275
Haar wavelet, 216, 228, 247
Meyer’s wavelet, 233
moment properties, 277
orthogonalization procedure, 240
regularity, 257
resolution of the identity, 314
scaling function, 224
sinc wavelet, 230, 248
Stromberg wavelet, 242
time localization, see time localization,
214, 274
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two-scale equation, 224, 255, 277, 293
wavelet, 226
wavelet packets, 161, 289
wavelet series, 270
wavelet transform, 82
wavelet transform, 313
admissibility condition, 313
characterization of regularity, 320
conservation of energy, 318
discretization of, 328
frequency localization, 320
properties, 316
reproducing kernel, 322
resolution of the identity, 314
scalograms, 325
time localization, 319
wavelets
"twin dragon”, 298
based on Butterworth filters, 288
based on multichannel filter banks, 289
Battle-Lemarié, 242
biorthogonal, 282
construction of, 226
Daubechies’, 221, 267
Haar, 216, 228, 247
Malvar’s, 300
Meyer’s, 233
Morlet’s, 323
mother wavelet, 313
multidimensional, 293
sinc, 230, 248
spline, 238
Stromberg’s, 242
with exponential decay, 288
Wigner-Ville distribution, 83
Winograd short convolution algorithms, 350

z-transform, 62, 117
zero trees, 438



