Discrete-Time Bases and Filter Banks

“What is more beautiful than the Quincunx,
which, from whatever direction you look is correct?”

Quintilian :,:
Series expansions of discrete-time signals
Two-channel filter banks
Tree-structured filter banks
Multichannel filter banks
Pyramids and overcomplete expansions
Multidimensional filter banks

Transmultiplexers
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Introduction

Focus
» series expansions of discrete-time signals

« many signals inherently discrete time
need to manipulate them

* most signals end up being processed in discrete-time

e some construction fundamental for continuous-time
wavelets

« computational tool for continuous-time signals
e computation basis for algorithms

Filter banks - 2



Series expansions of discrete-time signals

Orthonormal
e basis functions are orthonormal
e conservation of energy

Biorthogonal
* basis functions are biorthogonal

Overcomplete
e redundant sets of functions

e €1 = ¢q
1 ¢
P9 P 1
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Series expansions of discrete-time signals...

.orthonormal

Expansion

X[n] Z<(Pk [IDe[n] = > X[Kk]o,[n]
Kk

Transform coeff|C|ents
X[K] = (@, [1, x[1]) = chk[l]x
Orthonormality constraint

(@y[nl, o)[n]) = d[k—1]

Conservation of energy

Ix[12 = |12
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Series expansions of discrete-time signals...
. biorthogonal

Expansion

x[n] z<cpk [IDoKIn] = 3 X[K]pk[n]
k

x[n] z<<pk [1De,[n] = S X[K]g,[n]
k

Transform coeff|C|ents

X[K] = (@[], x[I]) = (P,U
X[k] = <<Pk[ L x[I) = <Pk[|]X[|]
|

Biorthogonality constraint
(oy[n], @i[n]) = 5[k —1]

Conservation of energy

I = (X[k], X[K])
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Series expansions of discrete-time signals ...

. why not Fourier?

Possibility: discrete-time Fourier series
« deals with limited signal space (periodic or finite)

Block discrete Fourier transform
« deals with arbitrary signals
e transform is periodically time varying
e certain time locality is achieved
« abrupt changes between intervals

Look for structured expansions
« simple characterization
« some localization in time and frequency
e certain invariance properties
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Discrete-time bases from filter banks

These are structured bases for L,(R%) where a finite set
of N filters generates the basis.

Result: Given N filters with impulse responses g;[n] the set
{gO[n_ Nk]) gl[n_ Nk]9 AR gN_l[n_ Nk]}k c Z

Is a basis for 1,(3).

Result: Given 2 filters with impulse responses g;[n] the set
{9oln-2k1, g;[n-2k1}, _,

Is a basis for 1,(3).
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Orthogonal filter banks...
.acomprehensive example

Recall P

x[n] (292 yin]

where (g[n],g[n-2k]) = §, and g[n] = g[—n]

A. Pis an orthogonal projection onto the subspace V
V = span{g[n-2K]}, _ 5

Proof: From background material and y[n] = Zai-g[n—Zi]

I
* {g[n-2Kk]}, _ - Is an orthonormal basis for V
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B. Projection onto V
x[n] @ @ yIn]
y[n] = Zai-g[n—Zi]
i
o; = (g[k - 2i], X[KD),

» convolution with g[n] is equivalent to inner product with g[n]
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C. Orthogonal complement Wto Vin 1|,(3):

,(Z) = VoW V1W

e find gL[n] such that

il
(9 [n],g[n-2k)n = O keZ
« completeness: span must be equal to |,(3)

b w
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D. Ansatz

g [n] = (-1)" - g[-n+L-1]

 g[n] is FIR of length L, L is even

Example: 1
g[n] - [aa ba Ca d] g [n] - [da _C> ba _a]
Show that:
1
(g7 [n],g[n=2k])n = 0 keZ

Then: _ _ _d_ L

cdO0O ) 0

abcd|- b =10

0OO0ab 0

A 1 |-l A

General proof: similar, use pairwise cancellation
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E. Completeness:

* Now, gL[n] and its shift by 2 are orthogonal, which
follows from the orthogonality of g[n-2Kk]

So we have an orthonormal basis for W, and we know from
above that V.W. But do we have:

1,(3) = VOW?
Proof: Intuition: I,(3) splits into two halves, V and W

Proof: Clean proof:
Use Parseval and show that

2 2 2
™= ]+ xw]

for all x e 1,(3).

* this will be shown later using paraunitary matrices
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F. How to find such g[n]'s?
(g[n], g[n-2K]), =

e this is simply the autocorrelation of g[n]] evaluated at
even lags, or subsampled by 2.

In z-transform domain, the autocorrelation is
i -1
(g[n],g[n-1]), <= G(z)-G(z ")

The first condition becomes equivalent to

5[6(2) Gz )+ G(-2)- (-2 )] = 1

Introducing P(z) = G(z)-G(z_l) we need
« a symmetric positive definite polynomial P(z)
satisfying P(z)+P(-z) = 2

By spectral factorization, we get a possible G(z2)
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G. Putting it all together!
* {g[n-2Kk]}, _ ,Is an orthonormal basis for V
e {gt[n-2K]}ke 7z is an orthonormal basis for W
* 1,(3) splits into V and W

Use assignment:
 synthesis filters: goln] = g[n g
« analysis filters: holn] = 9[n] hi[n] = @ [n]

>

We have developed filter banks as orthonormal
expansions and projections into complementary
subspaces

analysis synthesis

-,
Xo— X
2* Yo @ Xo Vv
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H. Time domain view

Example: L =4

g[n] = [a,b,c,d] g [n] = [d,—c,b,-a]
Ly o a bc d0 00 O 1
« analysis: |Yo d—cb-a0 00 0 x.[.d]
1[0l _ 1o 0a bc do 0/ 413
Yol1] 0 0d-cb-a0 O X[2]
0 00 0d-cb-a - -
y:T.X
: T
e synthesis: X=T -y

e in this orthonormal case, we have:

7.7 =T .7 =
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Haar expansion and its FB implementation

1

(PZk[n] = E for n=2k,2k+1 ho[n] = (po[—n] hl[n] = (pl[_n]
0 otherwise 9gn] = @gln]  gq[n] = @q[n]
average difference
= for n =2k LL» if.
J2
= 1 1
Pak+ 1M = —% forn=2k+1 oD 5D
0 otherwise
analysis synthesis

X1

Hq

Gy

x>
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Sinc expansion and its FB implementation

sinn(n —2k)

analysis synthesis

X
Y1 @* G, 1

Hy

x>

ho[n] = (Po[_n] and hl[n] = (Pl[_n]

ggln] = ogln] and g;[n] = o[n]
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Two-channel filter banks

analysis synthesis
y X . .
)b & — Ho(@l®)], [Hy(ei®)
Xeo— X A
(e
O
%)
/:\l | — >
7T T (6
A A
e il = S e | ] -
E— e E— ——— -
- - = o N N N N
gl e — | /ﬁ - il -
-7 TT Q) -7 T 0
%)
,Nl\, ;/|/1\>
-7 7T Q]
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MR concept underlying filter banks
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Analysis methods for filter banks

analysis synthesis
y
Xo—
/e
— Gy

e time domain
 polyphase domain
* modulation domain

x>
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Time-domain analysis

X—H—@—y

y[1] .0 0

Perfect reconstruction:

Orthogonal system:

y[0]| _ |... h[L—1] h[L -

2] h[L-3] h[L-4] ...
h[L-1] h[L-2] ...

X[0]
X[1]

(Hy) Hg+ (Hp) Hy = 1 Gy = (Hy)
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Polyphase-domain analysis

analysis synthesis

Yo
X e— H G X
p Y1 p
Polyphase components: Y(z) = IPT(z)Gp(zz)Hp(zz)xp(zz)
» even and odd subsequences x[2n] and x[2n + 1]
Perfect reconstruction: Gp 0" I

Orthogonal system: (Hy)™Hy = | G, = (Hp)
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Polyphase-domain analysis...
... key results

Result: If Gp(z) IS paraunitary, choose:
_ T, -1
to get perfect reconstruction.
Proof: By inspection.

Result: Gp(z) paraunitary and Hp(z) as above lead
to an orthonormal expansion

Proof: Parseval's equality.

Result: Choosing g[n] orthonormal to its even translates,
and the other filter as usual (ansatz) leads
automatically to a paraunitary polyphase matrix

Proof: By inspection.
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Modulation-domain analysis
analysis synthesis

X1
Gq
-} X
Xo
Go
X o—1 H 1 I '¢
m 2
Gy

D G
® G

9

1 .
|
N

>

Hy(2) Hy(-2)
Y(2) = %[Go(z) Gl(z)} 00770 {X(Z)}
H,(z) Hy(-2)| [X(-2)
Aliasing component: X(-2)
Perfect reconstruction: GH,, = [2 ¢

m
Orthogonal system: H'H = | G =H"
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Aliasing cancellation:

I/O relationship

Ho(2) Hy(-2)
Y(2) = l[eo(z) Gl(z)} 0% 0 X(2)
2 H,(2) Hy(-2)| [X(-2)

To guarantee aliasing cancellation
[Go(2), G1(D)] L [Hp(=2), Hy(-2)]
or
[Gy(2), G1(2)] = a(2) - [Hy(-2),-Hy(-2)]
Then

Y(2) = % -a(2) - [Hy(2)H(=2) = Hy(=2)H(2)] - X(2)

that is, X(-z) is automatically cancelled,
independent of the filters Hy(z), Hy(z) used.
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Quadrature Mirror Filters (QMF)

Earliest example of aliasing cancellation,
very important in speech compression

[Esteban-Galand, 1976]

analysis synthesis

Hy

Thus

B H(z) H(-2)| .| X(2)
Y(2) = 5 —H(=2)] |
(2) = 5+ [H(2) -H(-2) [H(—z) H(z)} L((—ZJ

or Y(2) = %-[Hz(z)—Hz(—z)]-X(z)

* H(z) should be linear phase and even length
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Orthogonal FIR filter banks

 synthesis filters the same as analysis (within reversal)
* no linear phase in this case (except trivial Haar filters)

analysis

Hq

DG

ot

Split the space in two:

.
2y

e coarse approximation and

added detail

* V_; = Vy®W, and V, LW,

V_,: space of sequences |,(3)
* rows of matrix Hy: basis for V
» rows of matrix Hy: basis for V,

e rows of Hpand Hj: basis for V4

synthesis

Gy

x>
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Design methods for orthogonal filter banks...
... based on lattice structures

[Vaidyanathan & Hoang]
« well-conditioned
« factorization of a paraunitary matrix

Uk-1 Uk-2 Up

Xo ® coe ) yo
. X, . X

X1 e >< z z z o Y1

cos(a;) —sin(a;)

B 10 | _
Hp(z) = Ry 1 1 Ry, with R; =
j=1102
e all orthogonal solutions can be reached
using this cascade

sin(a;) cos(a;)
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Design methods for orthogonal filter banks...
... based on spectral factorization

« numerically ill-conditioned
* like “taking a square root”

[Smith&Barnwell]
« PR condition for orthogonal filter banks

Hy(2)Ho(2) + Hy(-2)Hg(-2) = P(2) +P(-2) = 2
« even subsequence is §[n]

 find such an autocorrelation sequence P(2)

 factor into roots (oc,%) and assign from each pair one to H(z)
04
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Design methods for orthogonal filter banks...
... based on spectral factorization

[Daubechies]: minimum phase, designed to obtain wavelets
 repeat the Smith & Barnwell procedure
e impose maximum number of zeros at «
 for the rest, take factors only inside unit circle

Consequently, these filters are often called “discrete wavelets”
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Design methods for orthogonal filter banks

[dB]

. example of length 8

0 0.5 1 1.5 2 2.5 3

Frequency [radians]

Smith & Barnwell

Frequency [radians]

Vaidyanathan & Hoang

0

10 F

[aB]

30 F

1.5

Frequency [radians]

Daubechies

Frequency [radians]

Butterworth
N=4
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Orthogonal filter banks ...
... projection view

A <) - g[en]

g[n]

with (g[n],g[n-2Kk]) = §,, then
Pis an orthogonal projection
or, in other words,

P maps 1,(3) into V subspace of [,(3J)
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Design methods for biorthogonal filter banks

Analysis and synthesis filters are not the same anymore
Particular case of interest: linear phase

[Vetterli & LeGall]: lattice structure

_ 10 : 1o
Hp(z) = R T] 1 Ry, with R; =
=102
[Vetterli & Herley]:
« PR condition for biorthogonal filter banks

Hy(2)H1(2) + Hy(-2)H1(-2) = P(2) +P(2) = 2

e find such a P(2)
- factor into LP factors and distribute between Hy(z) and H,(z)
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Two-channel filter banks ...
. summary

orthogonal

linear phase
Haar
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Tree-structured filter banks

Easiest way

to build H —(1)
multichannel —
filter banks H, 2y N
Nl 2y
terpanks -
octave band N 2y
2y N
e wavelet 1 P
packes -

Example: All possible trees of depth two

< Sl

Hq
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DWT - Octave band filter banks

'—@ Hl—@—< analysis
— -G —

stage J

detail 1

detail 2

\Z.
stage 2 coarse 2
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DWT - Octave band filter banks...
... three stages with Haar filters

. <:>%(1,—1 ~F) (:> %(1,1)4 *
._@i(l,l)

2

x>

step 1

1
—(1,-1 X
(2 X

step 2
-~ 44 %(1, 1,-1,-1)
'1/\ 1
._@ S0
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DWT - Octave band filter banks...
... three stages with Haar filters

1
VoIl +—( 24— 5D

yan] e— 44 — 3 1-1.-1)

X[n]

yo[n] o G’ %(1,1,1,1,—1,—1,—1,—1) e

1
.  Laninniiia |
ya[n] e g4 — 55 )
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Basis functions...
... three stages with Haar filters

P P OFRPr OO0 O K

I
O PFr O O Fr O
I

b, Ok O O = O

P P P O O kL O O

I

P P PO O PFPr OO
I
I

R P P OPFP OO O
|
P P PO PR OO O,

' P OFr O O O '

e we did not include scale factors
to make rows of unit energy
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DWT - Octave band filter banks

Results in the discrete wavelet transform

Volf Wit Wy ol
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Wavelet packets

Arbitrary tree: grows to fit the signal

)

=

o o

® ®

:
'

Filter banks - 41



Tree-structured filter banks ...
... time-frequency analysis

Af Af

: L

e S
i

t

i
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Multichannel filter banks

[Vaidyanathan & Doganata]: lattice structures
 similar to the two-channel case
« complete factorization

YN-1
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Modulated filter banks

All filters derived from one prototype by modulation

H (z) = H(WKIZ)

he[n] = {h[O],W,‘\,kh[l],W‘NZkh[z],Wﬁ’kh[s], }

H

Hy

27k/N

Polyphase matrix has a particular form (ex. N=3)

1 1

L wliw?

1

LTwiwt

Hy

0
0

0 0
H, 0
0 H
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Modulated filter banks

Implementation: polyphase filters + DFT

e B
Jor e
SROE R

Theorem: [Discrete Balian-Low]
There are no FIR perfect reconstruction modulated
filter banks with modulation by the roots of unity
and critical sampling. In particular, there are no
orthonormal solutions.
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Local cosine bases ...
.answer to time-frequency problem

How does one achieve locality in time and frequency?

e solution: divide the axis into intervals and construct
Fourier series on them

Problems
e convergence slow and approximation poor
o discontinuity

How to divide the time axis?
« improvement by local cosine bases
« discrete time: [Malvar, Princen, Bradley]
e« continuous time: [Coifman & Meyer]

« smooth extension so that the functions overlap but with
folding that guarantees orthogonality
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Local cosine bases ...
.in discrete time

Filters: modulated prototype filter

21 (2K + 1)(n _2N- 1) T kfc)

+ 5+ ==
4N 2 4 2

he [n] = w[n] x cos(

Impulse responses magnitude responses
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Local cosine bases ...
. why does it actually work?

Reformulate the problem [Bernardini & Kovacevic]

_orthogonal spaces..

IA- S0 /;9A+< - }Bf 980 9g+
Contains symmetric functions Contains antisymmetric functions
_____ A— — — — — —
I<_ A | AO | A_:I | |
[ [ I B I BO I B+ |
- — — — — — — - B--————-— >
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Local cosine bases

Orthogonality of two subspaces 3,, and 3g.

antisymmetric
-~

symmetry point

e use projections to build functions in subspaces
« window satisfies power-complementarity

s
— — —>1
/7 7/ “/I‘ A\\_//' ‘\_’/‘
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Local cosine bases ...
... building the bases

General structure of an
orthonormal basis

H = WK

Properties ‘
e fast implementation extension
e one prototype filter ¢ /// \\/\
e can switch between /f | .
different transforms / | —= K

« any # of dimensions

|
: : ‘ | |

* starting basis not _ _ .
necessarily cosine  Wwindowing |
|

' i
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Local orthogonal bases ...
.summary

one prototype filter
can switch between different transforms
any # of dimensions
flexible design tool
design bases with prescribed properties
complexity low

Previous Local Orthogonal Bases
n o n o
W 32 /
256 248 K / 24
G 64 56
256 248 96 80

e used in almost all standard audio coders
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Oversampled filter banks

N>M

T
-
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Pyramid scheme

coarse

)
residual

i MR encoder MR decoder
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Pyramid scheme

Orthogonal filter used

coarse
version
L J
G z
original difference
signal signal
Vl ° Wl
Advantages

* robustness
« decimation and interpolation operators: arbitrary

Drawbacks
 not critically sampled
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Multidimensional filter banks

Main approach: use 1D techniques in a separable fashion

Xeo—

-G

horizontal

Problems

- G

vertical

f
n‘z

LL

HH

e very constrained filter design (separable filters)

e just rectangular spectrum divisions possible

e some solutions are not possible (ex. LP + ON)

Problem with MD: lack of factorization theorems
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Multidimensional filter banks ...

. sampling

Main difference when compared to 1D:
sampling represented by a lattice

To sample by 2:
in 1D

e in 2D

E% ( ; >n1@ j i » Nq
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Multidimensional filter banks

. two-channels

in 3D

in 2D

in 1D

band L

T
—T

band H
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Transmultiplexers

Dual to filter banks: used in telecommunications

av1 —(Mh—] 6@
XN-2 ® @ Gn-2(2)
TDM
o —(Mb— G

Analysis similar to that of filter banks
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