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Algorithms and Complexity

“ . . .  d iv ide each di ff icul ty at  hand into as many pieces as
possible and as could be required to better solve them.”

René Descartes,  Discourse on the Method

Classic results
Complexity of discrete bases computation
Complexity of wavelet series computation
Complexity of overcomplete expansions
Special  topics
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Classic results. . .
. . .  fast convolution

Example: 

Reduction, pointwise multipl ication, interpolation

a n[ ]*b n[ ] A x( )B x( )⇔

a 0[ ] a 1[ ],{ }* b 0[ ] b 1[ ],{ }

c0

c1

c2

1 0 0
1 1– 1
0 0 1

b0 0 0

0 b0 b1– 0

0 0 b1

1 0
1 1–
0 1

a0

a1
⋅ ⋅ ⋅=

B(x)

Modulo Pi(x)

X

Chinese Remainder
Theorem reconstruction

from residues

A(x)

C(x)

ReductionModulo
Pi(x)

ReductionModulo
Pi(x)
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Classic results. . .
. . .  Chinese Remainder Theorem

There is a one-to-one map between integers  and 
their residues mod  when  and ,  

Reconstruction formula from residues :

where β i  is  the solut ion of

which has always a solut ion since  (Bezout)

mod N( )
pi N pi∏= pi pj,( ) 1= i j≠

ai a mod pi( )=

a ai βi
N
pi
----⋅ ⋅

i
∑=

βi
N
pi
----⋅ 1= mod pi( )

N
pi
---- pi,⎝ ⎠
⎛ ⎞ 1=
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Classic results. . .
. . .  Convolution Theorem

Theorem: [Convolut ion Theorem]

• c i rcular convolut ion:  
•  factor izat ion into roots of  uni ty

•  reduct ion modulo  is equivalent to the
evaluat ion of   and  at  roots of  uni ty

•  in matr ix notat ion,  th is leads to the usual  Four ier 
t ransform factor izat ion of  c i rcular convolut ion

• therefore:  eff ic ient  convolut ion requires eff ic ient
Four ier t ransforms

A x( )B x( )mod xN 1–( )

xN 1– x WN
i–( )

i
∏=

xN 1–( )
A x( ) B x( )

c B a⋅ F 1– Λ F a⋅ ⋅ ⋅= =
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Classic results. . .
. . .  fast Fourier transform

Fast Fourier transform

where WN is the root of  uni ty,  and N is a power of  2

Idea: consider {x2n,x2n+1}  and {Yk,Yk+N/2}  instead

Yk xn WN
nk⋅

n 0=

N 1–

∑= k 0…N 1–=

Yk x2n WN 2⁄
nk⋅

n 0=

N 2⁄ 1–

∑ x2n 1+ WN 2⁄
nk⋅

n 0=

N 2⁄ 1–

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

WN
k+=

Yk N 2⁄+ x2n WN 2⁄
nk⋅

n 0=

N 2⁄ 1–

∑ x2n 1+ WN 2⁄
nk⋅

n 0=

N 2⁄ 1–

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

– WN
k=

FFT-N/22

FFT-N/22z

+

+
WN

k

Yk

Yk+N/2

xn
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Classic results. . .
. . .  fast Fourier transform

Iterative procedure
•   t imes
•  mult ip l icat ions each t ime
• order  complexi ty
•  th is is the famous Cooley-Tukey FFT, for  

Other lengths
•  pr ime factor:  N is  composi te,  copr ime factors
• th is leads to a t rue MD FFT

Rader ’s algorithm: when N is prime 
it  becomes a circular convolution N-1

Other famous transform: DCT
•  DCT-N  permutat ion + FFT-N + post-rotat ions
• same complexi ty as a real-FFT +  mult ip l icat ions

These algorithms come in handy for fast STFT and FWT.. .

N2log 1–
N/2

N N2log
N 2m=

⇔
3N/2
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Classic results. . .
. . .  complexity of mult irate signal processing

Compute at lowest possible rate

Complexity remains bounded when iterating, since 

A(x) 2B(x) C0(x)

B(x) A0(x)2
B0(x)

A1(x)2
B1(x)

D

+ C0(x)

L L/2 L/4 L/8 … 2L<+ + + +

A(x) 2B(x) A(x) 2 A(x) 2 ...
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Classic results. . .
. . .  complexity of mult irate signal processing

Multirate implementation of narrow-band f i l ters

Iteration of 1/3-band fi l ter leads to 1/12-band f i l ter,  with 
transit ion band 1/4 of original,  and bounded complex

ω
π 2π

|H(e jω)|
|H(e j2ω)|

|H(e j4ω)|

π/12

H(x) 2 H(x) 2 H(x) 2
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Complexity of discrete bases computation

QMF fi l ter

since the polyphase matr ix al lows the factor izat ion

where  are the polyphase components of  

H(z) 2

H(-z) 2

H0(z)2

H1(z)2z-1

+

+

H0 H1

H0 H1–
1 1
1 1–

H0 0

0 H1
⋅=

Hi H z( )
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Complexity of discrete bases computation.. .
. . .  latt ice forms

Linear phase latt ice: section with symmetric matrices

•  1 or 2 mult ip l icat ions per sect ion

Orthogonal latt ice: sections with rotation matrices

•  2 or 3 mult ip l icat ions per sect ion

1 α
α 1

c 1 1
1 1–

β 0
0 1

1 1
1 1–

⋅ ⋅=

α β
β– α

1 0 1
0 1 1

α β+ 0 0
0 α β– 0
0 0 β–

1 0
0 1
1 1–

⋅ ⋅=
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Complexity of discrete bases computation.. .
. . .  f i l ter bank trees

Full  tree: depth t imes complexity of f irst stage

Octave-band tree: 2 t imes complexity of f irst stage

Parallel ized version

H0(z) 2

H1(z) 2

H0(z) 2

H1(z) 2

H0(z) 2

H1(z) 2

H1(z)H0(z2) 4

H1(z)H1(z2) 4

H0(z)H0(z2) 4

H0(z)H1(z2) 4
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Complexity of discrete bases computation.. .
. . .  Fourier-domain computation

FFT - N

H1[k]

H0[k]
X[k]

FS

FS

IFFT - N/4

IFFT - N/4

FS

FS

H0[k]

H1[k]

IFFT - N/4

IFFT - N/4FS

FS

H0[k]

H1[k]
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Downsampling in Fourier transform domain

Consider

as wel l  as

then one can show (discrete version of  subsampl ing)

This can be used to do multirate operations in the Fourier 
domain, as in the previous algorithm

Complexity: Modulated f i l ter banks

All  f i l ters derived from one prototype by modulation

Yk xn WN
nk⋅

n 0=

N 1–

∑= k 0…N 1–=

Zk x2n WN 2⁄
nk⋅

n 0=

N 2⁄ 1–

∑= k 0…N
2
---- 1–=

Zk
1
2
--- Yk Yk N 2⁄++( )=

Hk z( ) H WN
k z( )=
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Polyphase matrix has a particular form

Example: 

hk n[ ] h 0[ ] WN
k– h 1[ ] WN

2k– h 2[ ] WN
3k– h 3[ ] …, , , ,{ }=

2πk/N

H Hk

ω

H0 H1 H2

H0 W 1– H1 W 2– H2

H0 W 2– H1 W 1– H2

1 1 1

1 W 1– W 2–

1 W 2– W 1–

H0 0 0

0 H1 0

0 0 H2

⋅=
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Complexity of discrete bases computation.. .
. . .  modulated f i l ter banks

Implementation: polyphase f i l ters + FFT

•  th is leads to eff ic ient  STFT
• other modulated banks (such as cosine) 

have simi lar  algor i thms

H00(z)3

H02(z)3z2

H01(z)3z DFT - 3
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Complexity of wavelet series computation

Total complexity: 

I terated f i l ters

Complexity:  or  using FT

fs

fs/2

fs/4

H1 2

H0 2 H1 2

H0 2 H1 2

H0 2

x

stage J

stage 2

stage 1

C C/2 C/4 C/8 … 2C<+ + + +

G i( ) z( ) G z2k

⎝ ⎠
⎛ ⎞

k 0=

i 1–

∏ G z( )G i 1–( ) z2( ) G z2i 1–

⎝ ⎠
⎛ ⎞G i 1–( ) z( )= = =

2iL2 2iL Llog
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Complexity of overcomplete expansions

STFT: use modulated f i l ter banks

CWT: use ‘‘algorithme à trous’’

time

scale

1

2

3

time

scale

1

2

3

time

scale

1

2

3

wavelet series approximation to CWT

multiple voices per octave: interpolate signal first
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Algorithme à trous

Move downsamplers to the end and skip downsampling

H1 2

H0 2 H1 2

H0 2 H1 2

H0 2

x

stage J

stage 2

stage 1

H1(z)

H0(z) H1(z2)

H0(z2) H1(z2^J)

H0(z2^J)

x

stage J

stage 2

stage 1
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Special  topics in complexity. . .
. . .  overlap save/add algorithm as f i l ter bank

C0

CN-1 Μ

CN-2

...Size N
modulated
filter bank
(pruned to
length M)

Size N
modulated
filter bank

Μ

ΜΜ

ΜΜ
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Special  topics in complexity. . .
. . .  generalizations

Channel f i l ters

Filter banks based on fast convolutions

2

2z-1

H0(z)

H1(z)

H0(z) - H1(z)

z−12

2 +

1 1 0
0 1– 1

1 1
0 1–

z 1–
1


