Series Expansions Using
Wavelets and Modulated Bases

“All this time, the guard was looking at her;
first through a telescope, then through a microscope,
and then through and opera glass.”

Lewis Carroll, Through the Looking Glass

Definition of the problem

Multiresolution concept and analysis

Construction of wavelets using Fourier techniques
Wavelets derived from iterated filter banks and regularity
Wavelet series and its properties

Generalizations in one dimension

Multidimensional wavelets

Local cosine bases
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Wavelets ...
. what are they and how to build them??

Orthonormal bases of wavelets
 Haar’s construction of a basis for L,(*R) (1910)
« Meyer, Battle-Lemariée, Stromberg (1980’s)
« Mallat and Meyer’s multiresolution analysis (1986)

Wavelets from iterated filter banks
« Daubechies’ construction of compactly supported wavelets
- smooth wavelet bases for L,(R) and computational algorithms

Relation to other constructions
e« successive refinements in graphics and interpolation
« multiresolution in computer vision
« multigrid methods in numerical analysis
« subband coding in speech and image processing

Goal: y(t) such that its scale and shifts form an
orthonormal basis for L,(R).
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Wavelets ...
... definition of the problem

series expansions for L,(R)
good time and frequency localization
orthonormal bases and expansion: (g; (pj> = 8[i—]]

f - Z(@ia 1:>(p|

piecewise Fourier series:
poor frequency localization, Gibbs

local cosine bases

Wavelet series: given a wavelet y(t), then the following

-m/2

V) = 2 w(2Mt=n) m,neJ

Is an orthonormal basis for Ly(R): f(t) = > > (¥ n,HY (0
« famous example: Haar in 1910 m n
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Wavelets

-m/2

Y = 2 w2 ™Mt -n) mne3

scale 9 1 2 3 4 5 p Shift
m=-1 @6 © © e e e e e o o o o

m=0 o o o o o [ ]
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Haar system

Basis functions

(1 0<t<05 T -
y(t) = <-1 05<t«1

0 else ¥ R A

-m/2 -m I
\an(t) =2 \V(Z t_n)
Basis functions across scales
A
m=1 | N |
m=20 p
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Haar system...

. scaling function and wavelet

The Haar scaling function
(indicator of unit interval)

1 0<t<l1
o(t) =
0 else

helps in the construction
of the wavelet, since

y(t) = e(21)-@(2t-1)

and satisfies a
two-scale equation

o(t) = o(21) +(2t-1)

Note:

Haar wavelet a bit too trivial
to be useful...

(t)
1“P
1>
) @) A ¢(2t) — 0(2t-1)
1 1
= 1
1 1
t o(2t) + p(2t-1)

1A<P( ) 1*

T g
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Haar system...
scaling function and wavelet

pl

scaling i
function -

Frequency [radians]

wavelet .

Frequency [radians]
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Haar system...
... proof it is an orthonormal basis for L,(R)

* piecewise constant functions are dense in L,(*R)
« write ) = {17V g0 Y
e show that ‘f(')‘ —>0as i—>wx

£0)

876543 |~ |67
L,—'—|J '2'“" 1234 t geometric proof

1)
d®

876543 17§ 4854 A2 ] g
""" -1?12345 t e o a4 ] t

£@ —

T Ad(z)
B7 654, L L g e T e O I
""" -'3-'2-191'2'345'67é’t+' e NNET Y R==ri

Note: two functions are involved _ |
 scaling function (p(l)(t), to go from {17 to f('_)
 wavelet w(')(t) to represent the difference d"
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A

B

C

D

Proof that Haar is an orthonormal basis for L,(R)

.Piecewise constant functions are dense in L,(‘R)
. pieces of arbitrarily small size, 2', i —> -

f—f(i)‘2—>0 as I — -

. Write function as a sum and a difference

o f() o D) | (041

 this can be done on coefficients of the expansion

IS a linear combination of scaling functions of size 2

Is a linear combination of scaling functions of size 2

N

. f(i+1)

. d(i b is a linear combination of wavelets of size 2'
. Iterate N _

. f(l) _ f(|+|\|)+ Z d(l+m)

. f(i +N) e

. Cl(i+m)

. Limit as N—> o
*show that |f('\_')|2—>0 as N — oo
+thus, [0 -32d""™|, 50 with m

IS a linear combination of wavelets of size 2, m =

1,...N,as N>

1,...,N
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Sinc system ...

... bandlimited function spaces

Cover L,(R) with octave bands

* Vi: [-2_iTC,2-iTE]

e Wit [-27%1x, -2711] & [27', 27 1n]

A
<;V1>
- VO vV
- -t -
W, Wo
T 21

2

« orthonormal basis for V;: sinc functions

Ll V)

« orthonormal basis for W;: difference of sinc functions
e successive approximation by more and more octave bands
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scaling
function

wavelet

Amplitude

Amplitude

Sync system
scaling function and wavelet

AI\I\/\/\/\AAA”

AA{\AAAI\AI\

vvvvvvvvv
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4 6
Frequency [radians
4 6
Frequency [radians
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Daubechies’ construction...
. scaling function and wavelet

« Haar and sync systems: either good time OR frequency localization
« Daubechies system: good time AND frequency localization

scaling
function

Frequency [radians]

wavelet

A
“\\\‘\\\\\f,/r,/

15 2.0 2.5 3.0

Time

Finite length, continuous o(t)and y(t), based on L=4 iterated filter

nnnnnnnnnnnnnnnn

Wavelet series - 12



Multiresolution concept and analysis

Multiresolution analysis for L,(R) [Mallat, Meyer]
 ladder of spaces

Vo,cV,cVycV_cV,

completeness

OVi = Ly(R), AV = @

scaling property

eV, o f(2'1) eV,

shifting property

f(t) e Vo< f(t-n) eV,

existence of an orthonormal basis for Vg

{o(t—-n)} neJ
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Multiresolution concept and analysis

Assume a basis for V, given by {¢(t-n)}, ne 3
* since ¢(2t-n) is a basis for V_; (use V,cV_,)

o(t) = 42¥golk] - (2t k)

« orthogonal complement to V, in V_;

V_, = V,@W,

* basis for W,: wavelet

w(t) = 4239, [K] - o(2t-k)

g,[n] = (-1)" - gyl-n+L-1]
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Multiresolution concept and analysis

Basic examples

» Sinc Vo = BL[O, ], W, = BL[m, 2n]
* Haar V, = const[n,n+ 1], W, = difference
« Daubechies between Haar and sinc
A - A
Haar — T -
|
L

A
Sinc — T +
0
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Multiresolution analysis ...
. Iteration

Decomposition
V_1 = W8V,

* basis for V,:o(t-n)
* basis for Wy: y(t-n)

Iterate the decomposition

V=W, 0W, &W,®dW,
Consider Vy as N— -, and the above decomposition
Limit

L(R) = W,
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Construction of bases ...
... Fourier method

Method of Meyer and Lemarié

Idea: construct a scaling function that:
» satisfies a two-scale equation

1

2

* is orthogonal to its integer translates

jo/2

YO (w/2)

(1) = V25 golK] - 0(2t—k) & D(0) = “=Gy(e

(@(D). o(t-n) =8[n] & Y|d(o+k2m)’ =1
k

 then, using the multiresolution framework,
we will get the wavelet
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Construction of bases...
. Fourier method

Inspiration: sinc function
e use as transition function 06(t) that smooths sinc

. 0(1) satisfies 0(t)+0(1-1t) = 1

400D 30 AD(o)
1 9(2+ 271 ( 271)
| / /2
> 2 \
1 T i Y
2 3 3 3 3

 orthogonality

y/ D(w + 2m) A y/ D(w) ( d(o — 27)

Q)

- | | | i i i >

0n 37 8% _op An g _2n 2n g 4n 21 8n 35 10m

3 T3 3 3 3 3 3 3

S D(w + k2m)|® =
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Construction of bases...
... Fourier method

 two-scale equation Ao(o)
o(t) = ¥23 gg[n]le(2t-n) \
1 _ :——nn%— > 3n dn O
D(w) = =G, (el*?)D(w/2) b)) ®Qo-41) Q2o -8n)
2
1 .
O(20) = —G,(el®)D(w
) = G (o) o)

3 ? T 27 3n A Q)
Ao 2w) = D(0) G(o)

I —é—T'c 2n 3w 4t @
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Meyer’s system

? D(0/2)
| f f | f f T f f -
3z 87 on A% _p2rn Zn o 4n 0
3 3 3
A
| G()|
O(w + 2m) O(w — 2m)
f f f f f f f f I f ol
3 81 on Am _p2n 2n o An 27 ST 3 @
3 3 3 3 3
A
'V (o)l
y f f f f i f f y T ol
3n 87 on A% _p2rn Zn o o4n 2n 8n 3p @
3 3 3 3 3
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Meyer’s system
scaling function and wavelet

Ampl

scaling
function ——
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Splines

Piecewise polynomial spaces

» bases are B-spline
convolution of box function with itself

« they are not orthogonal, need to orthogonalize
 Battle-Lemarié

constant linear

guadratic
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Fourier method for splines

Consider linear spline spaces:
* V, = piecewise linear and continuous over [n,n+1]
« V; = piecewise linear and continuous over [2'n,2'(n+1)]

These spaces are embedded:
ViCVj | > ]

We have a nonorthogonal basis for V,;, namely the hat
function h(t);, which satisfies a two-scale equation:

A A

s -

h(t) = %h(Zt— 1)+ h(2t) + %h(Zt +1)
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Fourier method for splines

Except orthogonality, all the axioms for multiresolution
are satisfied + orthogonalize!

Recall  (o(t), p(t-n) =3[n] < T|0(o +k2m)|* = 1
Guess k

H(w)
(ZlH(a) + k27c)|2>1/2

Kk

dO(w) =

Then, the numerator is 2n periodic and one can verify

S d(w + k2n)l” = 1
k

One can show that ZIH(m+k2n)|2>O and thus the above is
well defined K

Now we have an orthogonal scaling function for Vj and we
find the wavelet using MR
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scaling
function

wavelet

Amplitude

Amplitude

Splines ...
... alinear basis

o
o
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Splines ...
... 10 reasons to use them [Unser]

closed-form representation

simple manipulation

symmetry

shortest scaling function of order N
maximum regularity for a given order N
m-scale relation

variational properties

best approximation

optimal time-frequency localization
convergence to the ideal filter
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Daubechies’ system...
. iterated filter banks

Start with an orthonormal basis for [,(J)
 perfect reconstruction filter bank, FIR length L
* {gpln-2k], g;[n-2K]} is an orthonormal set (h,[n] = g;[-n])

analysis synthesis

n

Consider Gy(z) = >'gyln] v
Orthonormality: P(z) = Go(z)Go(z_l) (deterministic ACF)

P(z)+P(-z) = 2
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Daubechies’ construction...
. iterated filter banks

Iteration will generate an orthonormal basis for [,(3J)

. (20— G

N 1

[ @;%ej
O e

Consider equivalent basis sequences Gg)(z) and G(li)(z)
(generates octave-band frequency analysis)

O

n/8 /4 /2
Interesting question: what happens in the limit?
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A

2.2
J2

Ilterated filter banks...

A |Gye!)

J2

. example

2 |
N

/4

| Go(e1®) Go(e ) Gy (e 1)

>
/8 7/4 3n/8 m/2

A | Gy(e!®) Gy(e12®)|

3n/4

J2

T

| Go(e1®) Go(e ) Gy(e )|

)
/8 m/4 /2
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Daubechies’ system...
. iterated filter banks

Consider equivalent LP basis sequences G{)(z)
-1

_ k
G{)(2)= T Go(zz)
k=0
and bandpass G{)(z)

(i) ol =1 ! oK
G;(2)= Gl(z ) I1 Go(z )
k=0
Proof:

W - - o

Thus: applying the above identity i times leads to
i—1

)

G(z)-G(z%) - G(ZY) - ... - G(z

Wavelet series - 30



Daubechies’ system...
. iterated filter banks

Associate piecewise constant approximation

(P(I)(t) _ 2'/2g()[k], K.<t<k+.1
2 2

(')(t) = 2'/29()[k], K.<t<—k +.1
2! 2!

* this creates a graphical interpolation function

o iterated filters are of length ~ 2i(L-1)
given an initial filter of length L

e due to renormalization, the functions defined above will
have finite length tending to L-1 as i —

e interesting convergence questions

Example:

Gy(2) = % a+zh oW = 10,1]
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Daubechies’ system...
. example of iteration algorithm

1Gy(2) = 4%2«1 +B)+ 2 (1= B)+ 273 -3) + 251~ 3))

1=1 - | =2
0.8
0.6

Fundamental link between discrete and continuous time!
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Daubechies’ system...
. scaling function and wavelet

« Haar and sync systems: either good time OR frequency localization
« Daubechies system: good time AND frequency localization

scaling
function

wavelet

AN

\\/
15 2.0 2.5 3.0
Time

Finite length, continuous ¢(t) and y(t), based on L=4 iterated filter
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Daubechies’ system...
... two-scale equation

e(t) = > c e(2t—n)

n

Hat function

- -

Daubechies’ scaling function

e,

1.0 1.5 2.0 2.5
Time
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Daubechies’ system...
. construction

 find an orthogonal filter of the form

Gy(2) = (14271 -R(2)

* R(z) is minimum degree polynomial such that
P(z) = Go(z)GO(z_l) satisfies P(z)+P(-z) = 2
 solve linear system for symmetric Q(z) such that
P(z) = (1+2)(1+ZzHNQ(z) satisfies above
« if Q(z) is positive definite, take spectral factorization

(such as minimum phase)
« fortunately, for all N, solution possible!
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Daubechies’ system...
. example of construction

Example: N=2
P(z) = (1+2)%(1+2 1)?Q(z) and P(z)+P(-z) = 2 leads to
Q(z) = —1/M167 *+1/4 —1/16 2
1 -1
R(z) = ——[1+./3 1-./3
(2) 4ﬁ[+[+2( J3)]

Go(z) = —=[(1+/3)+Z (1~ 3)+Z “(3-3) +2 (1~ ./3)]

1
4.2
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Daubechies’ system...
... family with increasing smoothness

« Daubechies’ family is specified up to the “phase” of the
spectral factor of Q(z)

* minimum-phase solutions are tabulated for
L =4,6,8,10,12 in Table 4.3, p. 260

« HOlder regularity estimates

N L a(N)

2 4 0> actually differentiable
3 6 0.915 -

4 8 1.275

5 10 1.596

6 12 1.888

e closed-form formula for Q(z)
N—1

_ @2 _ N—1+j i
y = cos; P(y) = .ZO( j )y
| =
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Ampli

Amplit

Daubechies’ system...
family with increasing smoothness

Z
[
1N

pd
[
(@)
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Iterated filter banks...
... Fourier domain analysis

assume convergence

define My(o) = 127%G,(e!®), or My(1) = 1

then the graphical function becomes (l(w): interpolation)

-1
CI)(I)((D) - [H Mo(z%)j (o)
k=1

the limit is

®(0) = ] MO(Z%) = My(0/2) - D(0/2)
k=1  °
define M, (o) = 12"°G(e!®), then

Y(o) = My(0/2) - ¥(0/2)

A necessary condition for convergence is
Mo(m) = 0

Wavelet series - 39



Iterated filter banks...
. regularity analysis

« decompose My(o) = 12(1 + €”VR(w), R(n) %0
e consider infinite product

o0

00 N 00
- o) _ 1 (Joo)/zk) (9)
o) = T1(2) = 1 3eee™ )] (s
k=1 k=1 k=1
« sufficient condition for continuity of o(t), w(t)
N-1
SUP, ¢ [0, 2q7| R(@)] <2
Proof:
1/2(1+e’°°) goes to box function (Haar)
1/2(1 + e'*)N1/2(1 + ') goes to B-spline of order N-1
thus, U decay,
bound rest as not faster then o+~ ¢

e products decays faster then 1/o, proves continuity
 higher-order differentiability: similar argument
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Ilterated filter banks

Orthogonality relations
(a) (@(1), o(t—n)) = o,
(b) (p(D), y(t-n)) =0
(©) (w(b), y(t-n)) = 9,
With the definition
Yon® = 2™ y(@ M=)
one can show
WD, Wig(D) = Oy~ O
and that Wmn(D} 14 Is an orthonormal basis for L,(R)

Wavelet series - 41



Iterated filter banks ...
. convergence issues

counter-example: [1,0,0,1]/212

1A oDt
0 12 1 2 5 ot
A 0@
Unnr

72 1 P 5o

o™t

. HHH HHHH&”E'%

01/2] S 3

absence of zero at =«

Smith & Barnwell, length 8

e One zero at «
necessary for
convergence

Wavelet series - 42



Iterated filter banks ...
... Cohen’s method for investigating regularity

» fixed-point method, gives a lower bound

| Mo(/2) |
An32n dr 16m/%n gr
| Mo(@/4) |
Y83 4n 1603w gr ~ ©
| Mo(/8) |
or Ar 16m/%n gr
|— 1
K _ i
T Mo = |My(2n3)
k=1 o= (2'1)/3
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Iterated filter banks ...
. iteration of length-4 orthogonal family

- <Haar
_second zero at Tt

Pi/2

Amplitude

Daubechies
232 “Second zero at T

 length 4, one zero at =«
e sixth iteration
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Wavelet packets

Iterate discrete-time filter banks, finish with arbitrary trees

" e
H, @ . Hy @

o N R
— — I —(v)

generates orthonormal basis for I,(z) as well
gives different frequency resolution

consider equivalent basis sequences
i-1
k
- 2
Gj(l)(z): I1 Gom(z )
k=0
number of bases, depth-i tree

N(i) = N(i—1)*+1

Wavelet series - 45



Multiwavelets

Iteration of a periodically time-varying filter

] o——hyglif—(2)—

o)1) —

ol - -Gy
—haili-2r)—

Matrix iteration but where My(w) and ®(w) are matrices
o0

O(0) = [T Mo(@/2%)
k=1
 several scaling functions, matrix two-scale equation
* necessary condition: eigenvalue/eigenvector condition
e continuous limits exist, several open guestions
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Definition

Properties
* linearity

Wavelet series

f(H) = Y FIM, Ny,

m.n

Flm,n] = [f(t) - ypa(Ddt

e shift: in a weak sense
(for scale-limited signals, by powers of 2)

e scaling: by powers of 2

Sampling of time-frequency plane

scale m
m=-21. 000000000000000000000
m=-1e¢ ° ° ° °
m=0¢ = s = o—p-Shiftn
m=1¢ °
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Wavelet series
... localization properties

scale m scale m
m:-2J>oooooooooooooooooooo m=-2j>oooooooooooooooooo
m=-10 o 0o e e @€ O O O O O m=-1 O O O O O O O 0o O

to-nl to t0+n2 shift n shift n
m=0¢ ® o o O O m=0e = = - .
m=1e ° ° m=1e ° °

* time: exponential cone of influence

« frequency: octave-band resolution,
local characterization of regularity

 pointwise characterization (see CWT as well)
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Wavelet series...
... properties of basis functions

Two-scale equation

Daubechies’ wavelet

Amplit
o

Moment properties of the wavelet

« if wavelet has N zero moments,
then the first N terms of a Taylor series expansion are
“killed’”’: smooth functions are well compressed
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Wavelet series ...
. computation using Mallat’s algorithm

e assume we start with an initial projection on V,
fIn] = (@g(t—n).f(1) = [oq(t—m)f(t)dt

 feed f[n] into filter bank algorithm to compute
coefficients of wavelet series

* V, has to be ““fine” enough
(otherwise, choose V_;, large i)

Worl o @) (win b

90 -0 9120 (v D

9 |20 01 20— w0
90 21— (5 1 )
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Generalizations of Wavelet Series

Biorthogonal wavelet series
Wavelet series based on recursive filters
Wavelet series based on multichannel filter banks

Multidimensional wavelet series
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Biorthogonal wavelet series

Wavelet bass and dual basis

<\|]mn(t)> \Vk|(t)> = S[m - k]S[n - l]

Expansion in either basis

f(t) - Z IE[ma n]\an(t) - Z F[m9 n]\I’mn(t)

m, n

m, n

Design based on biorthogonal filter banks
* Hy(z), Hy(z) when iterated lead to the dual basis
* Gy(2), Gy(z) when iterated lead to the basis

Difficult to get regular analysis and synthesis
 synthesis needs to be regular

O(0) = TT Mo(0/29)
k=1

O(w) = ] My(0/29)
k=1

o0

¥(o) = My(0/2)- |
k

' Mo(w/2)
2

¥(0) = My(0/2)- |
k =

T Mg(e0/2)

2
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Biorthogonal wavelet series ...
. example of a basis

* Gy(z) = 1/4+1/2 27t +1/477% leads to hat function
 dual function based on length-5 filter, highly irregular
 dual function based on length-9 filter, regular

A ..

3
1
o -]
3 2 3
i s
7 i
2 g 0.5
£
g ]
o ~— o AN A
a1
-0.5
-2 2 4 6

dual scaling function dual scaling function
length-5 filter length-9 filter

hat scaling fct \/ \/,\ /\\/ \//\,

wavelet dual wavelet
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Biorthogonal wavelet series...
. iteration of two length-4 filters

33

1 1
0 0

S
J\
J\
J\
/\

IS

|
|

¥
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Biorthogonal wavelet series...
iteration of length-4 biorthogonal family

°* NO regu lar lowpass filter with impulse response [1,a,0.,1]

analysis and
synthesis

e filters

hy = C,ll, a, 0, 1]

9

Cg[—l, o, o, —1]

4/4 '/5’/’//'
M“‘ b ///‘/,
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IIR wavelet series

Based on recursive (IIR) filters

« Daubechies: polynomial solution to maximally flat filters
Herley: rational solutions as well
Find

A+ a+ 2z Ry 1-2V 1-2Y R(-2) = 2

such that R(z) is all-pole or rational

P(z) has a special form, in particular, the Butterworth so-
lution gives:

_1.N
21-2)" - (1-z"H
-1 N -1 N
(z +2+z) -(-z +2-2)
such forms have closed form factorization (N odd)

they are computationally more efficient and have better
regularity than FIR-based wavelets

P(z) =
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IIR wavelet series

e pbest IIR solution: half-band Butterworth filters

scaling
function

wavelet /\ /\

rrrrrrrrrrrrrrrrrr
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Wavelets series ...
... based on multichannel filter banks

Example: 4-channel filter bank based on depth-2 binary tree
2 2
*Fo(2) = Go(2)Gp(z) F1(2) = Gy(2)Gy(Z)

- Fy(2) = G4(2)Gy(2°) Fa(2) = G,(2)G,(2°)

« one scaling function with shift by 4
 three wavelets with scales by powers of 4

(27" (4 " t-n)} with i = 1,2,3
* this is an orthonormal basis for L,(‘R)

General N-channel filter banks, downsampling by N
e scaling function

®
k=1 N
e regularity: sufficient number of zeros at the Nth roots of unity

My(o) = (1+e®+ .. +eN V) R(o)
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Wavelet series ...
. in multiple dimensions

Generalization of Haar

scaling function wavelet

mﬂ:‘. wﬂ;

“twin dragon” system
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Wavelet series
In multiple dimensions

Counterpart of Daubechies’ wavelet [Kovacevic & Vetterli]

Amplitude

« smallest regular 2D wavelet - continuous
e quincunx lattice
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Local cosine bases

Structured bases for L,(R): The Fourier case
 block Fourier transform: bad frequency localization
e Gabor transform: ill-behaved for critical sampling

« Balian-Low theorem: there is no local Fourier basis with
good time and frequency localization

« however: good local cosine bases!
A

L AAAAN o
TRV o

L A A s
CATATRIATAYAY .

Note
e shift and modulation
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Local cosine bases

continuous-time equivalent of LOT’s

shift by steps of size L

modulation by cosine of frequency =wk/L

window function with power complementary property

0 = - (g Y1 +5)

note: phase factor such that sine versus cosine behavior
wj(t) Wj+1(1)

« generalizes to windows of arbitrary length, as long as
overlaps have proper symmetry
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