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Applications in Compression

“That which shr inks must f i rst  expand.”

Lao-Tzu, Tao Te Ching

Compression systems based on l inear transforms
Speech and audio compression
Image compression
Video compression
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Compression systems based on l inear transforms

Goal: remove built-in redundancy, send only necessary info

•  LT: l inear t ransform (KLT, WT, SBC, DCT, STFT)
• Q:  quant izat ion
• EC: entropy coding

LT Q EC 0100101001

0.5 bits/pixel8 bits/pixel
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Linear transforms

Variation on a theme of KLT: 
decorrelates data and eff iciently packs energy into a small  
number of coefficients

DCT, STFT

SBC, WT



Applications: Compression - 4

Quantization

Continuous amplitude set becomes discrete: digital  signal

Usually,  loss of information occurs only here

Behavior:  where D is MSE, R is number of 
bits and c is a constant dependent on distribution
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Quantization . . .
. . .  optimality condit ions for scalar quantizers

Nearest neighbor condit ion

Centroid condit ion

Algorithm: Lloyd-Max
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Quantization . . .
. . .  vector quantization

Regular vector quantizer in two dimensions

Comparison of scalar and vector quantizers
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two-dimensional
probability density
function

scalar quantizer
2.0 bits/sample

vector quantizer
1.5 bits/sample
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Quantization.. .
. . .  predictive quantization

Quantize the differences instead of the samples themselves
•  open- loop predict ive quant izat ion

• c losed- loop predict ive quant izat ion:  DPCM
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Quantization . . .
. . .  bit  al location

How to choose quantizers for various transform coefficients?

Fundamental trade-off:  between rate R and distortion D
•  rate-distort ion theory

Minimize D given a budget R
•  assume rate and distort ion are addi t ive
• use Lagrange mult ip l ier
•  we get a constant-s lope solut ion

• 
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Entropy coding

Represents a sequence of symbols as a bit-stream

Example: Huffman coding
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Transform coding and the KLT

Best l inear approximation

Result:  Given an orthonormal basis for  a space S,  

the best l inear approximat ion is given by the project ion onto 
a f ixed subspace of  s ize M

The error is thus (MSE)
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Transform coding and the KLT

Vector processes

Consider l inear approximat ion in a basis

Then:

Result:  For ,  the expected error is minimized for 
the basis  where  are the eigenvectors of   ordered 
in order of  decreasing eigenvalues. 
This is the Karhunen-Loeve transform (KLT).

Proof: Eigenvector argument induct ively
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Transform coding and the KLT

Jointly Gaussian vector process
•  X is  jo int ly Gaussian
• f ine scalar quant izat ion of  t ransform coeff ic ients

• opt imal bi t  a l locat ion between transform coeff ic ients

Result:  Among al l  or thogonal f ixed transforms, the KLT 
achieves lowest overal l  d istort ion in MSE sense.

Proof: Determinant inequal i ty (see [GG92])

Coding gain: Given variances of transform coefficients
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Transform coding and the KLT

Geometric intuit ion: principal axes of distribution

Theorem: [Waterpour ing] As f i rst  approximat ion, th is is quan-
t iz ing uni formly al l  coeff ic ients above threshold

This can be used to show D(R),  assuming vector coding

N

λi
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Transform coding and the KLT

The optimality of KLT is usually invoked as the basis
for practical transform coding:
Assume process is f i rst-order Markov with correlat ion ρ

then the DCT is a c lose approximat ion to the KLT for ρ  c lose 
to 1 and/or large block s izes

RX σ2

1 ρ ρ2 …
ρ 1 ρ …

ρ2 ρ 1 …
… … … …

⋅=

LT Q EC 0100101001

0.5 bits/pixel8 bits/pixel



Applications: Compression - 15

Speech compression

Good production model is available 
•  vocal  cords produce exci tat ion:  pulse/noise- l ike
• vocal  t ract ,  mouth and l ips act  as a f i l ter

LPC: f ind an inverse f i l ter,  then examine residual
•  for  voiced/unvoiced Í smal l  number of  coeff ic ients

Good results
•  speech at  64 kbi ts/sec Í 2.4 kbi ts/sec

(sampled at  8 kHz)
• high-qual i ty speech: sampled at  14 kHz

(simi lar  to audio,  more emphasis on percept ion)
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Audio compression
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Audio compression

Generic perceptual coder

Examples
•  MUSICAM: known as MPEG-I,  32-band uni form FB
• PAC: intended for DAB, cosine-modulated FB
• Dolby:  in NTSC mult ichannel ,  cosine-modulated FB

...
...

...
...

. . .

filter bank

spectral
analysis

masking
threshold
calculation

input
quantization ...

entropy
encoding
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Audio compression

Architecture
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Audio compression . . .
. . .  MUSICAM

32-channel modulated f i l ter bank

Quantization based on psychoacoustics
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Image compression . . .
. .  JPEG

8 x 8 blocks

Quantizer Entropy
encoder

Compressed
image data

Source
image data

Quantizer Entropy
coder table

DCT-based encoder

table
specification specification

DCT

AC(7,0) AC(7,7)

AC(0,7)AC(0,1)DC x

63

EOB

zig-zag scanning of 8x8 DCT coefficients
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Next image coding standard.. .  JPEG 2000

All  the best coders based on wavelets
•  24 ful l  proposals and a few part ia l  ones
• 18 used wavelets,  4 used DCT and 5 used others
• top 75% are wavelet-based
• top 5 use advanced wavelet  or iented quant izat ion
• systems requirements ask for mult i resolut ion

Final JPEG 2000 is wavelet based



Applications: Compression - 22

Image compression . . .
. . .  pyramid scheme
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Image compression . . .
. . .  pyramid scheme

One-step pyramid coding

Advantages
•  robustness
• decimat ion and interpolat ion operators:  arbi t rary

Drawbacks
•  not  cr i t ical ly sampled
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Pyramid scheme . . .
. . .  quantization noise analysis

Source of quantization noise l imited to the last quantizer
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Subband coding of images

One can introduce perceptual criteria
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Subband coding of images.. .
. . .  typical subband outputs
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Subband coding of images.. .
. . .  how to compress?
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Image coding using quincunx sampling

Nonseparable,  data reduction by 2
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Successive approximation source coding

Theoretical foundation [Equi tz & Cover]
•  certain sources can be ref ined without loss

(but not al l . . . )

Practice of source coding: many schemes can be seen as 
successive approximation

•  pyramid coding
• wavelet  and subband coding
• t ree-structured vector quant izat ion

Standard coding schemes are not successively refinable 
(at least not eff iciently)

•  JPEG
• MPEG

The most successful current image compression schemes
are refinable ( lucky coincidence?)

•  for  example,  wavelet  compression using EZW
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Embedded wavelet hierarchical image coder (EZW) 
[Shapiro]

Most state-of-the-art  image coders based on this

Features
•  b i ts are ordered in importance
• decoder can cease decoding at  any point
•  DWT: compact MR representat ion of  s igni f icant data
• zerotrees predict  insigni f icance across scales

i f  a parent is insigni f icant,  so are al l  h is chi ldren
• bi t -p lane encoding: looks at  most s igni f icant bi ts

DWT

Q
zero
trees C
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Embedded wavelet hierarchical image coder . . .
. . .  zerotrees

Data structure
•  analogous to z ig-zag 
scanning and EOB in DCT
• def ine a t ree of  zero 
symbols start ing at  the 
root
•  s igni f icant 
high-frequency energy 
unl ikely i f  there is l i t t le 
low-frequency energy at  
the same spat ia l  locat ion

• i f  there is an edge, 
there is probably an edge in al l  h igher bands 
(s low decay)

•  i f  there is no edge ⇒  zerotree
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Embedded wavelet hierarchical image coder. . .
. . .  dependence across scales

Key insight -  dependence across scales

DWT
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Embedded wavelet hierarchical image coder . . .
. . .  extension

Consider splitt ing in t ime, not only frequency
•  jo int ly spl i t  in f requency and t ime 

using double-tree algor i thm
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Embedded wavelet hierarchical image coder . . .
. . .  lessons to be learned

The world is not Gaussian!
•  decorrelat ion does not mean independence
• posi t ion coding is key
• sel f -s imi lar i ty across scales
• most gain f rom zerotrees or structure across scales
• predict ion of  posi t ion of  features

Strong interactions
•  t ransform/quant izat ion/entropy coding interact !
•  in part icular,  matching quant izat ion and entropy 

coding gains a lot

Embedded bitstreams make great systems
•  progressive transmission
• unequal error protect ion
• browsing
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Universal compression

Problem
•  compression of  an unknown source ( f rom a class)
•  compression of  a t ime-varying source

Goal
•  perform as wel l  as i f  the source stat ist ics 

or the var iat ion of  the stat ist ics were known

Application
•  deep space photographic compression
• nonstat ionary sources (e.g.  mixed documents)
•  f lexible and robust compression

Method
•  learn the stat ist ics on the f ly f rom the data
• backward and/or forward adaptat ion

Examples
•  lossless compression (Lempel-Ziv,  ar i thmet ic coding . . . )
•  lossy compression (universal  t ransform coding, VQ)
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Universal transform coding 

[Goyal, Zhuang, Vetterli]

Goal: adaptive KLT
•  wi l l  learn stat ist ics on the f ly
•  wi l l  t rack t ime-varying sources
• can be backward adapt ive or forward adapt ive

Problems
•  can i t  be done in a backward manner? (yes!)
•  performance (speed, accuracy)
•  convergence

Results
•  LMS type algor i thm for backward adaptat ion
• proof of  convergence in certain cases (Gaussian)
•  speed of  t racking unsat isfactory 

for  ‘ ‘ real ’ ’  nonstat ionary images
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What is a ‘‘good’’  basis?

Quality?
•  norms L1,  L2,  Linf
•  approximat ion in mean, minimax
• ‘ ‘perceptual  sense’’
•  some der ived ‘ ‘qual i ty ’ ’  (e.g.  detect ion)

Harmonic analysis
•  convergence propert ies,  funct ion c lasses

Approximation theory
•  speed of  convergence, propert ies of  approx. fct ,  . . .

Information theory
•  rate-distort ion
• l imi t  behavior

Signal processing
•  computat ional  complexi ty
•  operat ional  R(D)
•  ‘ ‘ real ’ ’  s ignals
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Best basis for Lena?

Easy
•  f i rst  vector is ============⇒
•  other vectors:  or thogonal

Expansion
•  s ingle nonzero component

What is wrong with this picture?
•  complexi ty of  the model
•  problem has just  been shi fted to 

descr ib ing the transform.. .

Yet,  there is something to be learned
•  adapt ing the transform can help

Goal: universal compression schemes
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Adaptive best bases

Question
given a s ignal  you have never seen before,  what is the 
‘ ‘best ’ ’  t ransform to code i t?

Fourier versus wavelet bases
•  l inear versus octave-band frequency scale
• di fferent t rade-offs

Wavelet packets
•  arbi t rary but f ixed t ime/frequency resolut ion
• algor i thm to f ind the best wavelet  packet
•  ‘ ‘nonstat ionary’’  case
• adapt t i l ing wi th t ime:

binary t ime-segmentat ion or arbi t rary segmentat ion
• computat ional  procedures: 

t ree pruning and dynamic programming
• adapt ive t ransform

not l inear:   not  equal  to 
•  operator is uni tary :  energy conservat ion

T a b+[ ] T a[ ] T b[ ]+
T*T I=
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Adaptive best bases

What is a ‘‘good’’  transform?
•  packing property

thresholding: keep f i rst  or  largest m coeff ic ients
rate of  decay

• c lasses of  s ignals
stat ist ical  descr ipt ion:  c lassic f ramework
smoothness classes [Donoho, DeVore-Jawerth-Lucie]

•  quant izat ion of  inner products,  entropy coding, R(D)

Classes of transforms
•  T:  uni tary NxN,  O[N2] parameters. . .
•  s ide informat ion
• fast  computat ion of  expansion

Cost function which al lows f inding the best basis is
•  addi t ive over dis jo int  sets (R,D),  independence
• basic step: Ta is  better than Tb i f

Cost Ta x[ ]( ) Cost Tb x[ ]( )<
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Adaptive best bases

What is an ‘‘optimal’’  t i l ing?
•  choose cr i ter ion:

best approximat ion? (minimum distort ion)
least informat ion? (minimum rate)

•  best in a rate-distort ion sense:
minimize :  two-sided cost

•  search over λ  such that budget is met

Operational R(d)
•  easi ly computed
• ‘ ‘c lose’’  to real  performance

Resource al location among 
competing units

J D λR+=

distortion

rate

x
x

x

x
x

x x

distortion 1

rate 1

distortion 2
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D1
D2
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Wavelet packets

[Coifman&Wickerhauser]

Among all  possible trees, f ind the best one

8
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Wavelet packets . . .
. . .  adding rate-distort ion

[Ramchandran & Vetterli]

Previous scheme: uses entropy as the “goodness” criterion
Extension: for a given bit rate budget, 

choose the best basis together with the optimal quantizer

Best basis search: using rate-distortion criteria

For quality λ ,  prune if

parent

chi ld 1

chi ld 2

λ
Rc1

Dc1

λ
Rc2

Dc2

λ
Rp

Dp

Dc1 Dc2+( ) λ Rc1 Rc2+( )+ Dp λRp+( )>
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Wavelet packets

Criterion for search: entropy

Cut signal into pieces and f ind best basis for each one

Contains STFT- and wavelet-like schemes as special cases

waveletSTFT
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Wavelet packets.. .
. . .  adoptively

Splitt ing the signal in frequency works, how about t ime?

Question: 
What is the ‘ ‘best ’ ’  
segmentat ion of  a s ig-
nal
TOGETHER with the 
best wavelet  packet in 
each segment?

This has to be done jointly! 
(not segmentat ion fol lowed by WP)

Two problems to solve
•  f ind t ime-varying orthogonal  f i l ter  banks

boundary f i l ters
wavelets on the interval

•  f ind algor i thms to search for  the ‘ ‘best ’ ’  basis
double-tree algor i thm
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Wavelet packets . . .
. . .  double-tree algorithm

•  start  wi th binary segmentat ion in t ime

• for  a given λ ,  f ind best WP over each segment
• populate a binary t ree, prune tree

• i terate over λ  using bisect ion
• complexi ty:  O N Nlog( )2[ ]
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Video compression

Key problems
•  mot ion models

• t ransform-domain v iew
• perceptual  point  of  v iew
• progressive and inter laced scanning

• compat ib i l i ty

x

y t

time

vertical vertical

time
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Motion-compensated video coding

Hybrid motion-compensated predictive DCT coder

Part of several standard coding algorithms (e.g.  H.263)

Motion
compensation

DCTΣ Entropy
coding

Σ

Q

IDCT

Q-1

Motion
estimation

+ +

−
+

motion vectors
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Multiresolution coding of HDTV

[Uz,Vetterli,LeGall]

Goal: develop a high-quality coding method with
•  s ignal  decomposi t ion for compression
• compat ib le subchannels
• t ight  control  over coding error
•  easy jo int  source/channel coding
• robustness to channel  errors
• easy random access for digi ta l  storage

These point toward
•  mult i resolut ion scheme
• pyramid coding

al low for better f i l ters (compat ib le subchannels)
al low for inclusion of mot ion-based techniques
quant izat ion error easi ly control led
oversampl ing overhead: 14%
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Multiresolution coding of HDTV
.. .  spatio-temporal pyramid

Transmitted: 
lowest resolution (1/64)  + difference signals + MV

0 1 2 3 4 5 6 7

0 1 2 3

0 1
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Multiresolution coding of HDTV
.. .  interpolation step

0 2

0 1

0 1 2 3

temporal
MC

spatial
interpolation
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Quincunx sampling for HDTV

[Vetterli,Kovacevic,LeGall]

Nonseparable f i l tering/sampling
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Quincunx sampling for HDTV
.. .  progressive to interlaced

analysis

time

vertical

vertical

time

vertical

time
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3D subband coding of packet video

[Karlsson & Vetterli]

Separable f i l tering/sampling
•  channel 1:  DPCM, highest pr ior i ty
•  channels 2-11: PCM, lower pr ior i ty
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MPEG

Versions
•  MPEG-I:  b i t  rate 1 Mbit /sec
• MPEG-II :  b i t  rate 5-10 Mbit /sec
• MPEG-IV: current ly being developed

Uses hybrid motion-compensated predictive DCT
•  segments the sequence into group of  b locks (GOP)

I IB1 B2 P1 B3 B5 B6P2B4



Applications: Compression - 56

Conclusion on compression

Audio coding
•  standards include wavelets/ f i l ter  banks
• more sophist icated coders use 

state-of- the-art  t ime-frequency t i l ing

Image compression
•  JPEG 2000 includes wavelets
• interest ing new nonl inear approximat ion schemes

Video compression
•  mot ion residual  coding does include transforms

as wel l  as more sophist icated, wavelet  l ike ideas

Thus, compression is probably the area where f i l ter banks
and wavelets have had the most visible impact

The ideas developed in compression (e.g.  EZW) have lead 
to results in approximation theory


