Applications in Compression

“That which shrinks must first expand.”

Lao-Tzu, Tao Te Ching

Compression systems based on linear transforms
Speech and audio compression

Image compression

Video compression
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Compression systems based on linear transforms

Goal: remove built-in redundancy, send only necessary info
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8 bits/pixel 0.5 bits/pixel

 LT: linear transform (KLT, WT, SBC, DCT, STFT)
« Q: quantization
« EC: entropy coding
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Linear transforms

Variation on a theme of KLT:
decorrelates data and efficiently packs energy into a small
number of coefficients

DCT, STFT

SBC, WT
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Quantization

Continuous amplitude set becomes discrete: digital signal

Usually, loss of information occurs only here
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Behavior: D(R) = C-5°2 where Dis MSE, Ris number of
bits and cis a constant dependent on distribution
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Quantization ...
. optimality conditions for scalar quantizers

Nearest neighbor condition
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Algorithm: Lloyd-Max
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Quantization
. vector quantization

Regular vector quantizer in two dimensions

kpB
.

Comparison of scalar and vector quantizers

1 1 1

0 1 0 1 0 1
two-dimensional scalar quantizer vector quantizer
probability density 2.0 bits/sample 1.5 bits/sample
function
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Quantization...
... predictive quantization

Quantize the differences instead of the samples themselves
e open-loop predictive quantization

XIn] :@f d[n] 0 ol dq[fﬂ? y[n],
tP(z) iy iy P(z)J
encoder decoder

 closed-loop predictive quantization: DPCM
X[n] ><?d[n] 5 Q_ldq[ﬂ% y[n]
XN : A J
\ Q" %L e
ydqin]
decoder

P(2)

encoder
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Quantization ...
... bit allocation

How to choose quantizers for various transform coefficients?

Fundamental trade-off; between rate R and distortion D

* rate-distortion theory

Minimize D given a budget R

« assume rate and distortion are additive
« use Lagrange multiplier
e we get a constant-slope solution

Adistortion

Adistortion

\

Adistortion

R1 "rate
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Entropy coding

Represents a sequence of symbols as a bit-stream

Example: Huffman coding

1 a p(a;) b 2 3 p(a;) b 3 g p(a;) b
0 0.40 0 0 0.40 0 0 0.40 0
1 020 | 10 1 020 | 10 3+4+5 | 0.25 11
2 015 | 10 2 015 | 10 1 020 | 10
3 010 | 11 4+5 | 0.15 11 2 015 | 10
4 0.10 | 1110 3 010 | 11
5 0.05 | 1111
0.4
4 3 p(a;) b; 0
0 0.40 0 0.2 -
142 0.35 10 0.35 1.0
- 0.15 : 0
3+4+5 | 0.25 11 1
0.1 0.6
5 g p(a;) b; 1
1+.45| 060 | 1 01 —— 0.25
0 0.40 0 0.05 1 0.15
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Transform coding and the KLT

Best linear approximation

Result: Given an orthonormal basis for a space S, {g,}
f = Z<fa gn> 'gn
n

the best linear approximation is given by the projection onto

a fixed subspace of size M
M -1

fu= > (f.gy 9,
n=0
The error is thus (MSE)

” All 2 ”
evm = -8 = 5 |(fon°
n=mM

Applications: Compression - 10



Transform coding and the KLT

Vector processes
.
X = [Xg Xqs oon Xy _1] E[X;] = 0

E[X-X'] = Ry
Consider linear approximation in a basis

M-1
Xm= Y (X9p-9, M<N
n=20

Then: N

Elem] = ¥ (Ry. 9y - 0,
n=mM

Result: For 0O<M<N-1, the expected error is minimized for
the basis {g,} where g, are the eigenvectors of Ry ordered
in order of decreasing eigenvalues.

This is the Karhunen-Loeve transform (KLT).

Proof: Eigenvector argument inductively
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Transform coding and the KLT

Jointly Gaussian vector process
« X is jointly Gaussian
e fine scalar quantization of transform coefficients
D(R) = ¢-o°- 2R

« optimal bit allocation between transform coefficients

Result: Among all orthogonal fixed transforms, the KLT
achieves lowest overall distortion in MSE sense.

Proof: Determinant inequality (see [GG92])

Coding gain: Given variances of transform coefficients
1/N-Yo? :
BEYY * 2.0 _ arith_mean

Duit 2,1/N - geom_mean

(HGi)
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Transform coding and the KLT

Geometric intuition: principal axes of distribution

Theorem: [Waterpouring] As first approximation, this is quan-
tizing uniformly all coefficients above threshold

[ Y
\ /TN N
\/ N——

> N

This can be used to show D(R), assuming vector coding
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Transform coding and the KLT

The optimality of KLT is usually invoked as the basis
for practical transform coding:

Assume process is first-order Markov with correlation p

= O

1

2
R, = o -|P
X 2

2
Y
p ...
p 1

©

then the DCT is a close approximation to the KLT for p close
to 1 and/or large block sizes

0100101001

bits/pixel 0.5 bits/pixel
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Speech compression

Good production model is available
« vocal cords produce excitation: pulse/noise-like
 vocal tract, mouth and lips act as a filter

LPC: find an inverse filter, then examine residual
e for voiced/unvoiced Ismall number of coefficients

Good results

« speech at 64 kbits/sec | 2.4 kbits/sec
(sampled at 8 kHz)

 high-quality speech: sampled at 14 kHz
(similar to audio, more emphasis on perception)
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Audio compression

A kHz
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Audio compression

Generic perceptual coder

input )
. P filter bank eennctcr)oir)]/q_ )
Ki ?
| spectrat— [IA2H0
analysis :  calculation
—
Examples

e MUSICAM: known as MPEG-I, 32-band uniform FB
e PAC: intended for DAB, cosine-modulated FB
 Dolby: in NTSC multichannel, cosine-modulated FB
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Audio compression

Architecture

12 - —
24 kHz|8-channel ———
0 - 24 kHz 2-channel LOT 5
filter bank
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12 kHz |8-channel ——
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Frequency A
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Audio compression
... MUSICAM

32-channel modulated filter bank

Frequency response of 32 subbands

0
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-40+
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magnitude response

Quantization based on psychoacoustics
A A

,fﬂmﬁwmm,

line spectrum and masking guantization noise
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Image compression

.. JPEG
3 x 8 blocks DCT-based encoder
Entropy
> DCT encoder il
_ Source Quantizer Entropy Compressed
image data table coder table image data
specification specification
DG AC(0.1) AC(0,7) A
EOB
v
— - - 63 - -
AC(7,0) ACL7) zig-zag scanning of 8x8 DCT coefficients
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Next image coding standard... JPEG 2000

All the best coders based on wavelets

o 24 full proposals and a few partial ones
18 used wavelets, 4 used DCT and 5 used others
top 75% are wavelet-based
top 5 use advanced wavelet oriented quantization
systems requirements ask for multiresolution

Final JPEG 2000 is wavelet based
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Image compression
... pyramid scheme

coarse

MR encoder

residual

SCRERE

MR decoder
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Image compression ...
... pyramid scheme

One-step pyramid coding

X X

c QC c

€ ) (A

S
X o H—Qqt= - %
X4 X4

encoder decoder
Advantages

* robustness
« decimation and interpolation operators: arbitrary

Drawbacks
* not critically sampled
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Pyramid scheme ...
... quantization noise analysis

Source of quantization noise limited to the last quantizer

X

e @

. - Q X
X »{5 dy [ X,
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Subband coding of images

— Hy @7

-G —

horizontal

vertical
AT

> f; LL LH HL HH

One can introduce perceptual criteria
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Subband coding of images...
... typical subband outputs

162 | 162 | 161 | 159 | 162 | 161 | 158 | 159

162 | 162 | 161 | 159 | 162 | 161 | 158 | 159

162 | 162 | 160 | 159 | 162 | 160 | 158 | 159

162 | 160 | 159 | 159 | 158 | 159 | 156 | 154
162 | 160 |161.5 | 158.5

161.5 |159.25[159.75(156.75

o !*2’ LL

-05]1 025] 0.75 | -0.75
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Subband coding of images...
... how to compress?

fine quantization

162 | 160 |161.5| 158.5

161.5 [159.25|159.75|156.75

L
0 255
I
[
[
! A
0 0 0 0
-05]1 025 | 0.75 | -0.75
L
-128 128

coarse quantization
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Image coding using quincunx sampling

Nonseparable, data reduction by 2

®o
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Successive approximation source coding

Theoretical foundation [Equitz & Cover]

e certain sources can be refined without loss
(but not all...)

Practice of source coding: many schemes can be seen as
successive approximation

 pyramid coding
« wavelet and subband coding
* tree-structured vector quantization

Standard coding schemes are not successively refinable
(at least not efficiently)

« JPEG
- MPEG

The most successful current image compression schemes
are refinable (lucky coincidence?)

 for example, wavelet compression using EZW

Applications: Compression - 29



Embedded wavelet hierarchical image coder (EZW)
[Shapiro]

Most state-of-the-art image coders based on this

DWT

— LT
(Tt

zero
[ Q | trees | C >

Features
* bits are ordered in importance
decoder can cease decoding at any point
DWT: compact MR representation of significant data

e zerotrees predict insignificance across scales
if a parent is insignificant, so are all his children

* bit-plane encoding: looks at most significant bits
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Embedded wavelet hierarchical image coder ...
. Zzerotrees

Data structure

« analogous to zig-zag
scanning and EOB in DCT

 define a tree of zero

/ symbols starting at the

/ - root

- e significant

f : high-frequency energy

: unlikely if there is little

g S low-frequency energy at
the same spatial location

« if there is an edge,
there is probably an edge in all higher bands
(slow decay)

« if there is no edge = zerotree
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Embedded wavelet hierarchical image coder...
... dependence across scales

Key insight - dependence across scales
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Embedded wavelet hierarchical image coder ...
.. extension

Consider splitting in time, not only frequency

e jointly split in frequency and time
using double-tree algorithm

T
AT

L
_W




Embedded wavelet hierarchical image coder ...
... lessons to be learned

The world is not Gaussian!

« decorrelation does not mean independence
position coding is key
self-similarity across scales
most gain from zerotrees or structure across scales
prediction of position of features

Strong interactions
» transform/quantization/entropy coding interact!

* in particular, matching quantization and entropy
coding gains a lot

Embedded bitstreams make great systems
e progressive transmission
e unequal error protection
 browsing

Applications: Compression - 34



Universal compression

Problem
« compression of an unknown source (from a class)
e compression of a time-varying source

Goal
« perform as well as if the source statistics
or the variation of the statistics were known
Application
« deep space photographic compression
* nonstationary sources (e.g. mixed documents)
» flexible and robust compression

Method
 learn the statistics on the fly from the data
« backward and/or forward adaptation

Examples
* lossless compression (Lempel-Ziv, arithmetic coding ...)
 lossy compression (universal transform coding, VQ)
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Universal transform coding

[Goyal, Zhuang, Vetterli]

Goal: adaptive KLT
 will learn statistics on the fly
o will track time-varying sources
« can be backward adaptive or forward adaptive

Problems
« can it be done in a backward manner? (yes!)
« performance (speed, accuracy)
e convergence

Results
« LMS type algorithm for backward adaptation
 proof of convergence in certain cases (Gaussian)

« speed of tracking unsatisfactory
for “‘real’” nonstationary images
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What is a ‘‘good’ basis?

Quality?
e norms Ly, Ly, Ljuf
e approximation in mean, minimax
 ‘‘perceptual sense”
« some derived ‘“‘quality’” (e.g. detection)

Harmonic analysis
e convergence properties, function classes

Approximation theory
« speed of convergence, properties of approx. fct, ...

Information theory
* rate-distortion
 [imit behavior

Signal processing
« computational complexity
e« operational R(D)
 ‘‘real” signals
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Best basis for Lena?

Easy
e first vector is =============
e other vectors: orthogonal

Expansion
* single nonzero component

What is wrong with this picture?
« complexity of the model

» problem has just been shifted to
describing the transform...

Yet, there is something to be learned
 adapting the transform can help

Goal: universal compression schemes
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Adaptive best bases

Question
given a signal you have never seen before, what is the
“best’” transform to code it?
Fourier versus wavelet bases
* linear versus octave-band frequency scale
» different trade-offs

Wavelet packets
o arbitrary but fixed time/frequency resolution
e algorithm to find the best wavelet packet
 ‘‘nonstationary’ case
« adapt tiling with time:
binary time-segmentation or arbitrary segmentation

e computational procedures:
tree pruning and dynamic programming

 adaptive transform
not linear: T[a+Db] not equal to T[a]+ T[b]

« operator is unitary T T = |: energy conservation
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Adaptive best bases

What is a ‘““good’ transform?

 packing property
thresholding: keep first or largest m coefficients
rate of decay

» classes of signals
statistical description: classic framework
smoothness classes [Donoho, DeVore-Jawerth-Lucie]

 quantization of inner products, entropy coding, R(D)

Classes of transforms
« T unitary NxN, O[N?] parameters...
* side information
« fast computation of expansion

Cost function which allows finding the best basis is
« additive over disjoint sets (R,D), independence
* basic step: T, is better than Ty if

Cost(T,[x]) <Cost(T,[X])
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Adaptive best bases

What is an “optimal’ tiling?

e choose criterion:
best approximation? (minimum distortion)
least information? (minimum rate)

e pbest in a rate-distortion sense:
minimize J = D+ AR: two-sided cost

« search over A such that budget is met

Operational R(d) jdistortion
e easily computed ¢
« “‘close’ to real performance \x
X
Resource allocation among NS
competing units i
jpdistortion 1 jpdistortion 2
D, D>
Ry ™rate 1 R, Srate 2
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Wavelet packets

[Coifman&Wickerhauser]

Among all possible trees, find the best one
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Wavelet packets ...
. adding rate-distortion

[Ramchandran & Vetterli]

Previous scheme: uses entropy as the “goodness” criterion

Extension: for a given bit rate budget,
choose the best basis together with the optimal quantizer

Best basis search: using rate-distortion criteria

A
child 1 Del
A ~—_
Rcl
D parent
A
Rp > : D
child 2 c
RCZ

For quality A, prune if
(De1+ Do) +A(Rgy +Rep) > (D + ARY)
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Wavelet packets

Criterion for search: entropy
Cut signal into pieces and find best basis for each one

Contains STFT- and wavelet-like schemes as special cases

STFT wavelet

| o l—o—
o i o
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Wavelet packets...
. adoptively

Splitting the signal in frequency works, how about time?

M Question:
|AQQ”QAU1__ | | [N ~——] What is the “best”
| YYD segmentation of a sig-
— B nal

S — TOGETHER with the

o | best wavelet packet in
each segment?

This has to be done jointly!
(not segmentation followed by WP)

Two problems to solve

 find time-varying orthogonal filter banks
boundary filters
wavelets on the interval

e find algorithms to search for the ““best’” basis
double-tree algorithm

Applications: Compression - 45



Wavelet packets ...
... double-tree algorithm

e start with binary segmentation in time

Bl e ] el e Bl e o Bl e T e T e D

 for a given A, find best WP over each segment
e populate a binary tree, prune tree

[
| !

A

e iterate over A using bisection
. complexity: O[N(logN)?]
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Video compression

Key problems
* motion models

i v

&
&

- X
transform-domain view

perceptual point of view
progressive and interlaced scanning

vertica!
e

compatibility

Applications: Compression - 47



Motion-compensated video coding

Hybrid motion-compensated predictive DCT coder

+ Entro
I > > —*> DCT - . ' > codin%y >
Motion
estimation

IDCT
_|_
_|_
Motion
compensation
motion vectors ?

Part of several standard coding algorithms (e.g. H.263)
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Multiresolution coding of HDTV
[Uz,Vetterli,LeGall]

Goal: develop a high-quality coding method with
 signhal decomposition for compression

compatible subchannels

tight control over coding error

easy joint source/channel coding

robustness to channel errors

easy random access for digital storage

These point toward
e multiresolution scheme

 pyramid coding
allow for better filters (compatible subchannels)
allow for inclusion of motion-based techniques
guantization error easily controlled
oversampling overhead: 14%
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Multiresolution coding of HDTV
. spatio-temporal pyramid

o &
_Nuy N

Transmitted:
lowest resolution (1/64) + difference signals + MV
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Multiresolution coding of HDTV
. interpolation step

¢ spatial ¢
interpolation

temporal

"1l 1=
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Quincunx sampling for HDTV

[Vetterli,Kovacevic,LeGall]

Nonseparable filtering/sampling

vertical vertical vertical

. b ot o
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vertical

Quincunx sampling for HDTV
... progressive to interlaced
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3D subband coding of packet video

[Karlsson & Vetterli]

¢

horizontal /

horizontal vertical 3
vertical | o— 11
T| 10
temporal B - _._®_ ; >4 6 »
? 11
_ —.—®——.—®— 8 5 . P
— ® ——o— 7
——oe—° vy
——e— O—>3 O—r— o— 4
——e— 3
— ® 2
- —e—1

Separable filtering/sampling
« channel 1: DPCM, highest priority

e channels 2-11: PCM,

lower priority

®p
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MPEG

Versions
e MPEG-I: bit rate 1 Mbit/sec
s MPEG-II: bit rate 5-10 Mbit/sec
s MPEG-IV: currently being developed

Uses hybrid motion-compensated predictive DCT
e segments the sequence into group of blocks (GOP)

ss 9

\&/
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Conclusion on compression

Audio coding
» standards include wavelets/filter banks

* more sophisticated coders use
state-of-the-art time-frequency tiling

Image compression
« JPEG 2000 includes wavelets
e interesting new nonlinear approximation schemes

Video compression

* motion residual coding does include transforms
as well as more sophisticated, wavelet like ideas

Thus, compression is probably the area where filter banks
and wavelets have had the most visible impact

The ideas developed in compression (e.g. EZW) have lead
to results in approximation theory
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