Algorithms and Complexity

“... divide each difficulty at hand into as many pieces as
possible and as could be required to better solve them.”

René Descartes, Discourse on the Method

Classic results

Complexity of discrete bases computation
Complexity of wavelet series computation
Complexity of overcomplete expansions

Special topics
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Classic results...
... fast convolution

a[n] b[n] < A(X)B(X)

Example: {a[0],a[1]}"{b[0], b[1]}

10 0

1-11}"

00 1

Dy

0
0

0 0 _1 0
0 b, [01]

Reduction, pointwise multiplication, interpolation

A(X)

Modulo P;j(x)

Chinese Remainder
Theorem reconstruction
from residues

C(x)
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Classic results...
... Chinese Remainder Theorem

There is a one-to-one map between integers mod(N) and
their residues mod p, whenN = [P and (pi,pj) =1, 1#]

Reconstruction formula from residues a;, =a mod(p;):
N
a = Zai.Bi._
i Pi
where B; is the solution of

B; pNI =1 mod(p;)

which has always a solution since (pu,pi) = 1 (Bezout)
i
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Classic results...
... Convolution Theorem

Theorem: [Convolution Theorem]

e circular convolution: A(x)B(x)mod(xN—l)
factorization into roots of unity

x\_1 = H(X—W:\l)

reduction modulo (xN—l) IS equivalent to the
evaluation of A(x) and B(x) at roots of unity

INn matrix notation, this leads to the usual Fourier
transform factorization of circular convolution

c=B-a=F' A-F-a

therefore: efficient convolution requires efficient
Fourier transforms
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Classic results...
. fast Fourier transform

Fast Fourier transform
N-1

T X, Wn' k= 0..N-1
n=0
where Wy is the root of unity, and N is a power of 2
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Classic results...
... fast Fourier transform

Iterative procedure
* log,N-1 times
 N/2 multiplications each time
« order Nlog,N complexity
e this is the famous Cooley-Tukey FFT, for N = 2™

Other lengths
* prime factor: N is composite, coprime factors
 this leads to a true MD FFT

Rader’s algorithm: when Nis prime
It becomes a circular convolution N-1

Other famous transform: DCT
* DCT-N < permutation + FFT-N + post-rotations
« same complexity as a real-FFT + 3N/2 multiplications

These algorithms come in handy for fast STFT and FWT...
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Classic results...
. complexity of multirate signal processing

Compute at lowest possible rate

B(x)»— AX) ‘@—'CO(X)

'

Bo(x)
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B(x)* Ag (X)

@—' Co(x)

: O
B1(x)

Complexity remains bounded when iterating, since

L+L/2+L/M4+L/8+...<2L
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Classic results...
. complexity of multirate signal processing

Multirate implementation of narrow-band filters
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Ilteration of 1/3-band filter leads to 1/12-band filter, with
transition band 1/4 of original, and bounded complex
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Complexity of discrete bases computation

QMF filter
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since the polyphase matrix allows the factorization
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where H; are the polyphase components of H(z)
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Complexity of discrete bases computation...
. lattice forms

Linear phase lattice: section with symmetric matrices

laf - 11 1] |pOj |1 1
ol 1-1 |01 |1-1
« 1 or 2 multiplications per section

Orthogonal lattice: sections with rotation matrices
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« 2 or 3 multiplications per section
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Complexity of discrete bases computation...
... filter bank trees

Full tree: depth times complexity of first stage

Octave-band tree: 2times complexity of first stage

Parallelized versio
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Complexity of discrete bases computation...
... Fourier-domain computation
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Downsampling in Fourier transform domain

Consider
N-1
Y= Y X, W' k= 0..N-1
n=>0
as well as
N/Z—1 N
_ nk _
Zk -_ Z X2n'WN/2 k -_ O...E_l
n=>0

then one can show (discrete version of subsampling)
_ 1
Zi = (¥t Yieen 2)

This can be used to do multirate operations in the Fourier
domain, as in the previous algorithm

Complexity: Modulated filter banks

All filters derived from one prototype by modulation

H (z) = H(WY2)
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Example:

-3k

-k -2k
hk[n] = {h[O],WN h[l]awN h[2]9WN h[3]9}
H Hy
(O
2nk/N
Polyphase matrix has a particular form
Hy Hy H, _1 1 1_ _HO 0 0_
Ho WH, W2H,| = [tw w2 |0 H, 0
- - 2 -1
Ho W2H, WH,|  [tww | [0 0 Hy
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Complexity of discrete bases computation...
. modulated filter banks

Implementation: polyphase filters + FFT
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e this leads to efficient STFT

« other modulated banks (such as cosine)
have similar algorithms
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Complexity of wavelet series computation

/2 - C

fs/4 stage J

Total complexity: C+C/2+C/4+C/8+...<2C

Ilterated filters
I—1

i k . i—1 .
62 = [16(°) = 66" V@) = 6(22 )e' M)
.k:O -
Complexity: 2'L? or 2'L logL using FT
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Complexity of overcomplete expansions

STFT: use modulated filter banks

CWT: use ‘‘algorithme a trous”’

wavelet series

e o o o o o o
2+ = [ [ u
34
s!ale

multiple voices per octave:

= time

approximation to CWT

= time

y
scale

interpolate signal first

= time

1+

|
1

| |
1 T

Complexity - 17



Algorithme a trous

S RO

stage J

Move downsamplers to the end and skip downsampling
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Special topics in complexity...
. overlap save/add algorithm as filter bank
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Special topics in complexity...
... generalizations

Channel filters

Filter banks based on fast convolutions
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