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Preface to the Second Edition

First published in 1995, Wavelets and Subband Coding has, in our opinion, filled
a useful need in explaining a new view of signal processing based on flexible time-
frequency analysis and its applications. The book has been well received and used
by researchers and engineers alike. In addition, it was also used as a textbook for
graduate courses at several leading universities.

So what has changed drastically in the last 12 years? The field has matured,
the teaching of these techniques is more widespread, and publication practices have
evolved. Specifically, the World Wide Web, which was in its infancy a dozen years
ago, is now a major communications medium. Thus, in agreement with our origi-
nal publisher, Prentice-Hall, we now retain the copyright, and we have decided to
allow open access to the book online (protected under the by-nc-nd license from
Creative Commons). In addition, the solutions manual, prepared by S. G. Chang,
M. M. Goodwin, V. K Goyal and T. Kalker, is also available upon request for
teachers using the book.

We thus hope the book continues to play a useful role while getting a wider
distribution. Enjoy it!

Martin Vetterli Jelena Kovačević
Grandvaux New York City
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Preface

A central goal of signal processing is to describe real life signals, be it for com-
putation, compression, or understanding. In that context, transforms or linear ex-
pansions have always played a key role. Linear expansions are present in Fourier’s
original work and in Haar’s construction of the first wavelet, as well as in Gabor’s
work on time-frequency analysis. Today, transforms are central in fast algorithms
such as the FFT as well as in applications such as image and video compression.

Over the years, depending on open problems or specific applications, theoreti-
cians and practitioners have added more and more tools to the toolbox called signal
processing. Two of the newest additions have been wavelets and their discrete-
time cousins, filter banks or subband coding. From work in harmonic analysis and
mathematical physics, and from applications such as speech/image compression
and computer vision, various disciplines built up methods and tools with a similar
flavor, which can now be cast into the common framework of wavelets.

This unified view, as well as the number of applications where this framework
is useful, are motivations for writing this book. The unification has given a new
understanding and a fresh view of some classic signal processing problems. Another
motivation is that the subject is exciting and the results are cute!

The aim of the book is to present this unified view of wavelets and subband
coding. It will be done from a signal processing perspective, but with sufficient
background material such that people without signal processing knowledge will

xiii
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find it useful as well. The level is that of a first year graduate engineering book
(typically electrical engineering and computer sciences), but elementary Fourier
analysis and some knowledge of linear systems in discrete time are enough to follow
most of the book.

After the introduction (Chapter 1) and a review of the basics of vector spaces,
linear algebra, Fourier theory and signal processing (Chapter 2), the book covers
the five main topics in as many chapters. The discrete-time case, or filter banks,
is thoroughly developed in Chapter 3. This is the basis for most applications, as
well as for some of the wavelet constructions. The concept of wavelets is developed
in Chapter 4, both with direct approaches and based on filter banks. This chapter
describes wavelet series and their computation, as well as the construction of mod-
ified local Fourier transforms. Chapter 5 discusses continuous wavelet and local
Fourier transforms, which are used in signal analysis, while Chapter 6 addresses
efficient algorithms for filter banks and wavelet computations. Finally, Chapter 7
describes signal compression, where filter banks and wavelets play an important
role. Speech/audio, image and video compression using transforms, quantization
and entropy coding are discussed in detail. Throughout the book we give examples
to illustrate the concepts, and more technical parts are left to appendices.

This book evolved from class notes used at Columbia University and the Uni-
versity of California at Berkeley. Parts of the manuscript have also been used at the
University of Illinois at Urbana-Champaign and the University of Southern Cali-
fornia. The material was covered in a semester, but it would also be easy to carve
out a subset or skip some of the more mathematical subparts when developing a
curriculum. For example, Chapters 3, 4 and 7 can form a good core for a course in
Wavelets and Subband Coding. Homework problems are included in all chapters,
complemented with project suggestions in Chapter 7. Since there is a detailed re-
view chapter that makes the material as self-contained as possible, we think that
the book is useful for self-study as well.

The subjects covered in this book have recently been the focus of books, special
issues of journals, special conference proceedings, numerous articles and even new
journals! To us, the book by I. Daubechies [73] has been invaluable, and Chapters 4
and 5 have been substantially influenced by it. Like the standard book by Meyer
[194] and a recent book by Chui [49], it is a more mathematically oriented book
than the present text. Another, more recent, tutorial book by Meyer gives an
excellent overview of the history of the subject, its mathematical implications and
current applications [195]. On the engineering side, the book by Vaidyanathan
[308] is an excellent reference on filter banks, as is Malvar’s book [188] for lapped
orthogonal transforms and compression. Several other texts, including edited books,
have appeared on wavelets [27, 51, 251], as well as on subband coding [335] and
multiresolution signal decompositions [3]. Recent tutorials on wavelets can be found
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in [128, 140, 247, 281], and on filter banks in [305, 307].

From the above, it is obvious that there is no lack of literature, yet we hope
to provide a text with a broad coverage of theory and applications and a different
perspective based on signal processing. We enjoyed preparing this material, and
simply hope that the reader will find some pleasure in this exciting subject, and
share some of our enthusiasm!
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V. Goyal, C. Herley, T. Kalker, M. Khansari, M. Kobayashi, H. Malvar, P. Moulin,
A. Ortega, A. Park, J. Princen, K. Ramchandran, J. Shapiro and G. Strang, and
are acknowledged with many thanks.



xvi PREFACE

Coding experiments and associated figures were prepared by S. Levine (audio
compression) and J. Smith (image compression), with guidance from A. Ortega and
K. Ramchandran, and we thank them for their expert work. The images used in
the experiments were made available by the Independent Broadcasting Association
(UK).

The preparation of the manuscript relied on the help of many people. D. Heap is
thanked for his invaluable contributions in the overall process, and in preparing the
final version, and we thank C. Colbert, S. Elby, T. Judson, M. Karabatur, B. Lim,
S. McCanne and T. Sharp for help at various stages of the manuscript.

The first author would like to acknowledge, with many thanks, the fruitful
collaborations with current and former graduate students whose research has influ-
enced this text, in particular Z. Cvetković, M. Garrett, C. Herley, J. Hong, G. Karls-
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Wavelets, Filter Banks and Multiresolution
Signal Processing

“It is with logic that one proves;
it is with intuition that one invents.”

— Henri Poincaré

The topic of this book is very old and very new. Fourier series, or expansion of
periodic functions in terms of harmonic sines and cosines, date back to the early
part of the 19th century when Fourier proposed harmonic trigonometric series [100].
The first wavelet (the only example for a long time!) was found by Haar early in
this century [126]. But the construction of more general wavelets to form bases
for square-integrable functions was investigated in the 1980’s, along with efficient
algorithms to compute the expansion. At the same time, applications of these
techniques in signal processing have blossomed.

While linear expansions of functions are a classic subject, the recent construc-
tions contain interesting new features. For example, wavelets allow good resolution
in time and frequency, and should thus allow one to see “the forest and the trees.”
This feature is important for nonstationary signal analysis. While Fourier basis
functions are given in closed form, many wavelets can only be obtained through a
computational procedure (and even then, only at specific rational points). While
this might seem to be a drawback, it turns out that if one is interested in imple-
menting a signal expansion on real data, then a computational procedure is better
than a closed-form expression!

The recent surge of interest in the types of expansions discussed here is due
to the convergence of ideas from several different fields, and the recognition that
techniques developed independently in these fields could be cast into a common
framework.

1
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The name “wavelet” had been used before in the literature,1 but its current
meaning is due to J. Goupillaud, J. Morlet and A. Grossman [119, 125]. In the
context of geophysical signal processing they investigated an alternative to local
Fourier analysis based on a single prototype function, and its scales and shifts.
The modulation by complex exponentials in the Fourier transform is replaced by a
scaling operation, and the notion of scale2 replaces that of frequency. The simplicity
and elegance of the wavelet scheme was appealing and mathematicians started
studying wavelet analysis as an alternative to Fourier analysis. This led to the
discovery of wavelets which form orthonormal bases for square-integrable and other
function spaces by Meyer [194], Daubechies [71], Battle [21, 22], Lemarié [175],
and others. A formalization of such constructions by Mallat [180] and Meyer [194]
created a framework for wavelet expansions called multiresolution analysis, and
established links with methods used in other fields. Also, the wavelet construction
by Daubechies is closely connected to filter bank methods used in digital signal
processing as we shall see.

Of course, these achievements were preceded by a long-term evolution from the
1910 Haar wavelet (which, of course, was not called a wavelet back then) to work
using octave division of the Fourier spectrum (Littlewood-Paley) and results in
harmonic analysis (Calderon-Zygmund operators). Other constructions were not
recognized as leading to wavelets initially (for example, Stromberg’s work [283]).

Paralleling the advances in pure and applied mathematics were those in signal
processing, but in the context of discrete-time signals. Driven by applications such
as speech and image compression, a method called subband coding was proposed by
Croisier, Esteban, and Galand [69] using a special class of filters called quadrature
mirror filters (QMF) in the late 1970’s, and by Crochiere, Webber and Flanagan
[68]. This led to the study of perfect reconstruction filter banks, a problem solved
in the 1980’s by several people, including Smith and Barnwell [270, 271], Mintzer
[196], Vetterli [315], and Vaidyanathan [306].

In a particular configuration, namely when the filter bank has octave bands,
one obtains a discrete-time wavelet series. Such a configuration has been popular
in signal processing less for its mathematical properties than because an octave
band or logarithmic spectrum is more natural for certain applications such as audio
compression since it emulates the hearing process. Such an octave-band filter bank
can be used, under certain conditions, to generate wavelet bases, as shown by
Daubechies [71].

In computer vision, multiresolution techniques have been used for various prob-

1For example, for the impulse response of a layer in geophysical signal processing by Ricker
[237] and for a causal finite-energy function by Robinson [248].

2For a beautiful illustration of the notion of scale, and an argument for geometric spacing of
scale in natural imagery, see [197].
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lems, ranging from motion estimation to object recognition [249]. Images are suc-
cessively approximated starting from a coarse version and going to a fine-resolution
version. In particular, Burt and Adelson proposed such a scheme for image coding
in the early 1980’s [41], calling it pyramid coding.3 This method turns out to be
similar to subband coding. Moreover, the successive approximation view is similar
to the multiresolution framework used in the analysis of wavelet schemes.

In computer graphics, a method called successive refinement iteratively inter-
polates curves or surfaces, and the study of such interpolators is related to wavelet
constructions from filter banks [45, 92].

Finally, many computational procedures use the concept of successive approxi-
mation, sometimes alternating between fine and coarse resolutions. The multigrid
methods used for the solution of partial differential equations [39] are an example.

While these interconnections are now clarified, this has not always been the
case. In fact, maybe one of the biggest contributions of wavelets has been to bring
people from different fields together, and from that cross fertilization and exchange
of ideas and methods, progress has been achieved in various fields.

In what follows, we will take mostly a signal processing point of view of the
subject. Also, most applications discussed later are from signal processing.

1.1 SERIES EXPANSIONS OF SIGNALS

We are considering linear expansions of signals or functions. That is, given any sig-
nal x from some space S, where S can be finite-dimensional (for example, Rn, Cn) or
infinite-dimensional (for example, l2(Z), L2(R)), we want to find a set of elementary
signals {ϕi}i∈Z for that space so that we can write x as a linear combination

x =
∑

i

αi ϕi. (1.1.1)

The set {ϕi} is complete for the space S, if all signals x ∈ S can be expanded as in
(1.1.1). In that case, there will also exist a dual set {ϕ̃i}i∈Z such that the expansion
coefficients in (1.1.1) can be computed as

αi =
∑

n

ϕ̃i[n] x[n],

when x and ϕ̃i are real discrete-time sequences, and

αi =

∫

ϕ̃i(t) x(t) dt,

3The importance of the pyramid algorithm was not immediately recognized. One of the review-
ers of the original Burt and Adelson paper said, “I suspect that no one will ever use this algorithm
again.”
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FIGURE 1.1 fig1.1

ϕ1

ϕ0

e0

e1 e1 ϕ1= ~
ϕ1

e0 ϕ0=

ϕ1 e1

e0 ϕ0=

ϕ2 (c)(b)(a) ϕ0
~

Figure 1.1 Examples of possible sets of vectors for the expansion of R2. (a)
Orthonormal case. (b) Biorthogonal case. (c) Overcomplete case.

when they are real continuous-time functions. The above expressions are the inner
products of the ϕ̃i’s with the signal x, denoted by 〈ϕ̃i, x〉. An important particular
case is when the set {ϕi} is orthonormal and complete, since then we have an
orthonormal basis for S and the basis and its dual are the same, that is, ϕi = ϕ̃i.
Then

〈ϕi, ϕj〉 = δ[i − j],
where δ[i] equals 1 if i = 0, and 0 otherwise. If the set is complete and the vectors
ϕi are linearly independent but not orthonormal, then we have a biorthogonal basis,
and the basis and its dual satisfy

〈ϕi, ϕ̃j〉 = δ[i − j].

If the set is complete but redundant (the ϕi’s are not linearly independent), then we
do not have a basis but an overcomplete representation called a frame. To illustrate
these concepts, consider the following example.

Example 1.1 Set of Vectors for the Plane

We show in Figure 1.1 some possible sets of vectors for the expansion of the plane, or R
2.

The standard Euclidean basis is given by e0 and e1. In part (a), an orthonormal basis is
given by ϕ0 = [1, 1]T /

√
2 and ϕ1 = [1,−1]T /

√
2. The dual basis is identical, or ϕ̃i = ϕi. In

part (b), a biorthogonal basis is given, with ϕ0 = e0 and ϕ1 = [1, 1]T . The dual basis is now
ϕ̃0 = [1,−1]T and ϕ̃1 = [0, 1]T . Finally, in part (c), an overcomplete set is given, namely
ϕ0 = [1, 0]T , ϕ1 = [−1/2,

√
3/2]T and ϕ2 = [−1/2,−

√
3/2]T . Then, it can be verified that

a possible reconstruction basis is identical (up to a scale factor), namely, ϕ̃i = 2/3 ϕi (the
reconstruction basis is not unique). This set behaves as an orthonormal basis, even though
the vectors are linearly dependent.

The representation in (1.1.1) is a change of basis, or, conceptually, a change
of point of view. The obvious question is, what is a good basis {ϕi} for S? The
answer depends on the class of signals we want to represent, and on the choice
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of a criterion for quality. However, in general, a good basis is one that allows
compact representation or less complex processing. For example, the Karhunen-
Loève transform concentrates as much energy in as few coefficients as possible, and
is thus good for compression, while, for the implementation of convolution, the
Fourier basis is computationally more efficient than the standard basis.

We will be interested mostly in expansions with some structure, that is, expan-
sions where the various basis vectors are related to each other by some elementary
operations such as shifting in time, scaling, and modulation (which is shifting in
frequency). Because we are concerned with expansions for very high-dimensional
spaces (possibly infinite), bases without such structure are useless for complexity
reasons.

Historically, the Fourier series for periodic signals is the first example of a signal
expansion. The basis functions are harmonic sines and cosines. Is this a good set
of basis functions for signal processing? Besides its obvious limitation to periodic
signals, it has very useful properties, such as the convolution property which comes
from the fact that the basis functions are eigenfunctions of linear time-invariant
systems. The extension of the scheme to nonperiodic signals,4 by segmentation and
piecewise Fourier series expansion of each segment, suffers from artificial boundary
effects and poor convergence at these boundaries (due to the Gibbs phenomenon).

An attempt to create local Fourier bases is the Gabor transform or short-time
Fourier transform (STFT). A smooth window is applied to the signal centered
around t = nT0 (where T0 is some basic time step), and a Fourier expansion is
applied to the windowed signal. This leads to a time-frequency representation since
we get an approximate information about the frequency content of the signal around
the location nT0. Usually, frequency points spaced 2π/T0 apart are used and we
get a sampling of the time-frequency plane on a rectangular grid. The spectrogram
is related to such a time-frequency analysis. Note that the functions used in the
expansion are related to each other by shift in time and modulation, and that we
obtain a linear frequency analysis. While the STFT has proven useful in signal
analysis, there are no good orthonormal bases based on this construction. Also,
a logarithmic frequency scale, or constant relative bandwidth, is often preferable
to the linear frequency scale obtained with the STFT. For example, the human
auditory system uses constant relative bandwidth channels (critical bands), and
therefore, audio compression systems use a similar decomposition.

A popular alternative to the STFT is the wavelet transform. Using scales and
shifts of a prototype wavelet, a linear expansion of a signal is obtained. Because the
scales used are powers of an elementary scale factor (typically 2), the analysis uses
a constant relative bandwidth (or, the frequency axis is logarithmic). The sampling

4The Fourier transform of nonperiodic signals is also possible. It is an integral transform rather
than a series expansion and lacks any time locality.
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FIGURE 1.2 fig1.2

(a)

(b)

Figure 1.2 Musical notation and orthonormal wavelet bases. (a) The western
musical notation uses a logarithmic frequency scale with twelve halftones per
octave. In this example, notes are chosen as in an orthonormal wavelet basis,
with long low-pitched notes, and short high-pitched ones. (b) Corresponding
time-domain functions.

of the time-frequency plane is now very different from the rectangular grid used in
the STFT. Lower frequencies, where the bandwidth is narrow (that is, the basis
functions are stretched in time) are sampled with a large time step, while high
frequencies (which correspond to short basis functions) are sampled more often. In
Figure 1.2, we give an intuitive illustration of this time-frequency trade-off, and
relate it to musical notation which also uses a logarithmic frequency scale.5 What
is particularly interesting is that such a wavelet scheme allows good orthonormal
bases whereas the STFT does not.

In the discussions above, we implicitly assumed continuous-time signals. Of
course there are discrete-time equivalents to all these results. A local analysis
can be achieved using a block transform, where the sequence is segmented into
adjacent blocks ofN samples, and each block is individually transformed. As is to be
expected, such a scheme is plagued by boundary effects, also called blocking effects.
A more general expansion relies on filter banks, and can achieve both STFT-like
analysis (rectangular sampling of the time-frequency plane) or wavelet-like analysis
(constant relative bandwidth in frequency). Discrete-time expansions based on
filter banks are not arbitrary, rather they are structured expansions. Again, for
complexity reasons, it is useful to impose such a structure on the basis chosen
for the expansion. For example, filter banks correspond to basis sequences which
satisfy a block shift invariance property. Sometimes, a modulation constraint can
also be added, in particular in STFT-like discrete-time bases. Because we are in

5This is the standard western musical notation based on J.S. Bach’s “Well Tempered Piano”.
Thus one could argue that wavelets were actually invented by J.S. Bach!
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discrete time, scaling cannot be done exactly (unlike in continuous time), but an
approximate scaling property between basis functions holds for the discrete-time
wavelet series.

Interestingly, the relationship between continuous- and discrete-time bases runs
deeper than just these conceptual similarities. One of the most interesting con-
structions of wavelets is the one by Daubechies [71]. It relies on the iteration
of a discrete-time filter bank so that, under certain conditions, it converges to a
continuous-time wavelet basis. Furthermore, the multiresolution framework used
in the analysis of wavelet decompositions automatically associates a discrete-time
perfect reconstruction filter bank to any wavelet decomposition. Finally, the wave-
let series decomposition can be computed with a filter bank algorithm. Therefore,
especially in the wavelet type of a signal expansion, there is a very close interaction
between discrete and continuous time.

It is to be noted that we have focused on STFT and wavelet type of expansions
mainly because they are now quite standard. However, there are many alternatives,
for example the wavelet packet expansion introduced by Coifman and coworkers
[62, 64], and generalizations thereof. The main ingredients remain the same: they
are structured bases in discrete or continuous time, and they permit different time
versus frequency resolution trade-offs. An easy way to interpret such expansions
is in terms of their time-frequency tiling: each basis function has a region in the
time-frequency plane where most of its energy is concentrated. Then, given a basis
and the expansion coefficients of a signal, one can draw a tiling where the shading
corresponds to the value of the expansion coefficient.6

Example 1.2 Different Time-Frequency Tilings

Figure 1.3 shows schematically different possible expansions of a very simple discrete-time
signal, namely a sine wave plus an impulse (see part (a)). It would be desirable to have
an expansion that captures both the isolated impulse (or Dirac in time) and the isolated
frequency component (or Dirac in frequency). The first two expansions, namely the identity
transform in part (b) and the discrete-time Fourier series7 in part (c), isolate the time and
frequency impulse, respectively, but not both. The local discrete-time Fourier series in part
(d) achieves a compromise, by locating both impulses to a certain degree. The discrete-time
wavelet series in part (e) achieves better localization of the time-domain impulse, without
sacrificing too much of the frequency localization. However, a high-frequency sinusoid would
not be well localized. This simple example indicates some of the trade-offs involved.

Note that the local Fourier transform and the wavelet transform can be used
for signal analysis purposes. In that case, the goal is not to obtain orthonormal
bases, but rather to characterize the signal from the transform. The local Fourier

6Such tiling diagrams were used by Gabor [102], and he called an elementary tile a “logon.”
7Discrete-time series expansions are often called discrete-time transforms, both in the Fourier

and in the wavelet case.
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Figure 1.3 Time-frequency tilings for a simple discrete-time signal [130]. (a)
Sine wave plus impulse. (b) Expansion onto the identity basis. (c) Discrete-
time Fourier series. (d) Local discrete-time Fourier series. (e) Discrete-time
wavelet series.

transform retains many of the characteristics of the usual Fourier transform with a
localization given by the window function, which is thus constant at all frequencies
(this phenomenon can be seen already in Figure 1.3(d)). The wavelet, on the
other hand, acts as a microscope, focusing on smaller time phenomenons as the
scale becomes small (see Figure 1.3(e) to see how the impulse gets better localized
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at high frequencies). This behavior permits a local characterization of functions,
which the Fourier transform does not.8

1.2 MULTIRESOLUTION CONCEPT

A slightly different expansion is obtained with multiresolution pyramids since the
expansion is actually redundant (the number of samples in the expansion is big-
ger than in the original signal). However, conceptually, it is intimately related to
subband and wavelet decompositions. The basic idea is successive approximation.
A signal is written as a coarse approximation (typically a lowpass, subsampled
version) plus a prediction error which is the difference between the original signal
and a prediction based on the coarse version. Reconstruction is immediate: simply
add back the prediction to the prediction error. The scheme can be iterated on the
coarse version. It can be shown that if the lowpass filter meets certain constraints of
orthogonality, then this scheme is identical to an oversampled discrete-time wavelet
series. Otherwise, the successive approximation approach is still at least concep-
tually identical to the wavelet decomposition since it performs a multiresolution
analysis of the signal.

A schematic diagram of a pyramid decomposition, with attached resulting im-
ages, is shown in Figure 1.4. After the encoding, we have a coarse resolution image
of half size, as well as an error image of full size (thus the redundancy). For appli-
cations, the decomposition into a coarse resolution which gives an approximate but
adequate version of the full image, plus a difference or detail image, is conceptually
very important.

Example 1.3 Multiresolution Image Database

Let us consider the following practical problem: Users want to access and retrieve electronic
images from an image database using a computer network with limited bandwidth. Because
the users have an approximate idea of which image they want, they will first browse through
some images before settling on a target image [214]. Given the limited bandwidth, browsing
is best done on coarse versions of the images which can be transmitted faster. Once an image
is chosen, the residual can be sent. Thus, the scheme shown in Figure 1.4 can be used, where
the coarse and residual images are further compressed to diminish the transmission time.

The above example is just one among many schemes where multiresolution de-
compositions are useful in communications problems. Others include transmission
over error-prone channels, where the coarse resolution can be better protected to
guarantee some minimum level of quality.

Multiresolution decompositions are also important for computer vision tasks
such as image segmentation or object recognition: the task is performed in a suc-

8For example, in [137], this mathematical microscope is used to analyze some famous lacunary
Fourier series that was proposed over a century ago.
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FIGURE 1.4 fig1.4
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Figure 1.4 Pyramid decomposition of an image where encoding is shown on the
left and decoding is shown on the right. The operators D and I correspond to
decimation and interpolation operators, respectively. For example, D produces
an N/2×N/2 image from an N ×N original, while I interpolates an N ×N
image based on an N/2×N/2 original.

cessive approximation manner, starting on the coarse version and then using this
result as an initial guess for the full task. However, this is a greedy approach which
is sometimes suboptimal. Figure 1.5 shows a famous counter-example, where a
multiresolution approach would be seriously misleading . . .

Interestingly, the multiresolution concept, besides being intuitive and useful in
practice, forms the basis of a mathematical framework for wavelets [181, 194]. As
in the pyramid example shown in Figure 1.4, one can decompose a function into a
coarse version plus a residual, and then iterate this to infinity. If properly done,
this can be used to analyze wavelet schemes and derive wavelet bases.

1.3 OVERVIEW OF THE BOOK

We start with a review of fundamentals in Chapter 2. This chapter should make
the book as self-contained as possible. It reviews Hilbert spaces at an elementary
but sufficient level, linear algebra (including matrix polynomials) and Fourier the-
ory, with material on sampling and discrete-time Fourier transforms in particular.
The review of continuous-time and discrete-time signal processing is followed by
a discussion of multirate signal processing, which is a topic central to later chap-
ters. Finally, a short introduction to time-frequency distributions discusses the
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Figure 1.5 Counter-example to multiresolution technique. The coarse approx-
imation is unrelated to the full-resolution image (Comet Photo AG).

local Fourier transform and the wavelet transform, and shows the uncertainty prin-
ciple. The appendix gives factorizations of unitary matrices, and reviews results on
convergence and regularity of functions.

Chapter 3 focuses on discrete-time bases and filter banks. This topic is impor-
tant for several later chapters as well as for applications. We start with two simple
expansions which will reappear throughout the book as a recurring theme: the Haar
and the sinc bases. They are limit cases of orthonormal expansions with good time
localization (Haar) and good frequency localization (sinc). This naturally leads to
an in-depth study of two-channel filter banks, including analytical tools for their
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analysis as well as design methods. The construction of orthonormal and linear
phase filter banks is described. Multichannel filter banks are developed next, first
through tree structures and then in the general case. Modulated filter banks, cor-
responding conceptually to a discrete-time local Fourier analysis, are addressed as
well. Next, pyramid schemes and overcomplete representations are explored. Such
schemes, while not critically sampled, have some other attractive features, such
as time invariance. Then, the multidimensional case is discussed both for simple
separable systems, as well as for general nonseparable ones. The latter systems
involve lattice sampling which is detailed in an appendix. Finally, filter banks for
telecommunications, namely transmultiplexers and adaptive subband filtering, are
presented briefly. The appendix details factorizations of orthonormal filter banks
(corresponding to paraunitary matrices).

Chapter 4 is devoted to the construction of bases for continuous-time signals,
in particular wavelets and local cosine bases. Again, the Haar and sinc cases play
illustrative roles as extremes of wavelet constructions. After an introduction to
series expansions, we develop multiresolution analysis as a framework for wavelet
constructions. This naturally leads to the classic wavelets of Meyer and Battle-
Lemarié or Stromberg. These are based on Fourier-domain analysis. This is followed
by Daubechies’ construction of wavelets from iterated filter banks. This is a time-
domain construction based on the iteration of a multirate filter. Study of the
iteration leads to the notion of regularity of the discrete-time filter. Then, the
wavelet series expansion is considered both in terms of properties and computation
of the expansion coefficients. Some generalizations of wavelet constructions are
considered next, first in one dimension (including biorthogonal and multichannel
wavelets) and then in multiple dimensions, where nonseparable wavelets are shown.
Finally, local cosine bases are derived and they can be seen as a real-valued local
Fourier transform.

Chapter 5 is concerned with continuous wavelet and Fourier transforms. Unlike
the series expansions in Chapters 3 and 4, these are very redundant representa-
tions useful for signal analysis. Both transforms are analyzed, inverses are derived,
and their main properties are given. These transforms can be sampled, that is,
scale/frequency and time shift can be discretized. This leads to redundant series
representations called frames. In particular, reconstruction or inversion is discussed,
and the case of wavelet and local Fourier frames is considered in some detail.

Chapter 6 treats algorithmic and computational aspects of series expansions.
First, a review of classic fast algorithms for signal processing is given since they
form the ingredients used in subsequent algorithms. The key role of the fast Fourier
transform (FFT) is pointed out. The complexity of computing filter banks, that is,
discrete-time expansions, is studied in detail. Important cases include the discrete-
time wavelet series or transform and modulated filter banks. The latter corresponds
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to a local discrete-time Fourier series or transform, and uses FFT’s for efficient com-
putation. These filter bank algorithms have direct applications in the computation
of wavelet series. Overcomplete expansions are considered next, in particular for
the computation of a sampled continuous wavelet transform. The chapter concludes
with a discussion of special topics related to efficient convolution algorithms and
also application of wavelet ideas to numerical algorithms.

The last chapter is devoted to one of the main applications of wavelets and
filter banks in signal processing, namely signal compression. The technique is often
called subband coding because signals are considered in spectral bands for com-
pression purposes. First comes a review of transform based compression, including
quantization and entropy coding. Then follow specific discussions of one-, two- and
three-dimensional signal compression methods based on transforms. Speech and
audio compression, where subband coding was first invented, is discussed. The
success of subband coding in current audio coding algorithms is shown on spe-
cific examples such as the MUSICAM standard. A thorough discussion of image
compression follows. While current standards such as JPEG are block transform
based, some innovative subband or wavelet schemes are very promising and are
described in detail. Video compression is considered next. Besides expansions,
motion estimation/compensation methods play a key role and are discussed. The
multiresolution feature inherent in pyramid and subband coding is pointed out as
an attractive feature for video compression, just as it is for image coding. The final
section discusses the interaction of source coding, particularly the multiresolution
type, and channel coding or transmission. This joint source-channel coding is key
to new applications of image and video compression, as in transmission over packet
networks. An appendix gives a brief review of statistical signal processing which
underlies coding methods.
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Fundamentals of Signal Decompositions

“A journey of a thousand miles
must begin with a single step.”

— Lao-Tzu, Tao Te Ching

The mathematical framework necessary for our later developments is established
in this chapter. While we review standard material, we also cover the broad spec-
trum from Hilbert spaces and Fourier theory to signal processing and time-frequency
distributions. Furthermore, the review is done from the point of view of the chap-
ters to come, namely, signal expansions. This chapter attempts to make the book
as self-contained as possible.

We tried to keep the level of formalism reasonable, and refer to standard texts for
many proofs. While this chapter may seem dry, basic mathematics is the foundation
on which the rest of the concepts are built, and therefore, some solid groundwork
is justified.

After defining notations, we discuss Hilbert spaces. In their finite-dimensional
form, Hilbert spaces are familiar to everyone. Their infinite-dimensional counter-
parts, in particular L2(R) and l2(Z), are derived, since they are fundamental to
signal processing in general and to our developments in particular. Linear opera-
tors on Hilbert spaces and (in finite dimensions) linear algebra are discussed briefly.
The key ideas of orthonormal bases, orthogonal projection and best approximation
are detailed, as well as general bases and overcomplete expansions, or, frames.

We then turn to a review of Fourier theory which starts with the Fourier trans-
form and series. The expansion of bandlimited signals and sampling naturally lead
to the discrete-time Fourier transform and series.

Next comes a brief review of continuous-time and discrete-time signal process-
ing, followed by a discussion of multirate discrete-time signal processing. It should

15
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be emphasized that this last topic is central to the rest of the book, but not often
treated in standard signal processing books.

Finally, we review time-frequency representations, in particular short-time Fourier
or Gabor expansions as well as the newer wavelet expansion. We also discuss the
uncertainty relation, which is a fundamental limit in linear time-frequency repre-
sentations. A bilinear expansion, the Wigner-Ville transform, is also introduced.

2.1 NOTATIONS

Let C, R, Z and N denote the sets of complex, real, integer and natural numbers,
respectively. Then, C

n, and R
n will be the sets of all n-tuples (x1, . . . , xn) of

complex and real numbers, respectively.
The superscript ∗ denotes complex conjugation, or, (a+ jb)∗ = (a− jb), where

the symbol j is used for the square root of −1 and a, b ∈ R. The subscript ∗ is used
to denote complex conjugation of the constants but not the complex variable, for
example, (az)∗ = a∗z where z is a complex variable. The superscript T denotes the
transposition of a vector or a matrix, while the superscript ∗ on a vector or matrix
denotes hermitian transpose, or transposition and complex conjugation. Re(z) and
Im(z) denote the real and imaginary parts of the complex number z.

We define the Nth root of unity as WN = e−j2π/N . It satisfies the following:

WN
N = 1, (2.1.1)

W kN+i
N = W i

N , with k, i in Z, (2.1.2)

N−1∑

k=0

W k·n
N =

{
N n = lN, l ∈ Z,
0 otherwise.

(2.1.3)

The last relation is often referred to as orthogonality of the roots of unity.
Often we deal with functions of a continuous variable, and a related sequence

indexed by an integer (typically, the latter is a sampled version of the former). To
avoid confusion, and in keeping with the tradition of the signal processing litera-
ture [211], we use parentheses around a continuous variable and brackets around a
discrete one, for example, f(t) and x[n], where

x[n] = f(nT ), n ∈ Z, T ∈ R.

In particular, δ(t) and δ[n] denote continuous-time and discrete-time Dirac func-
tions, which are very different indeed. The former is a generalized function (see
Section 2.4.4) while the latter is the sequence which is 1 for n = 0 and 0 otherwise
(the Dirac functions are also called delta or impulse functions).

In discrete-time signal processing, we will often encounter 2π-periodic functions
(namely, discrete-time Fourier transforms of sequences, see Section 2.4.6), and we
will write, for example, H(ejω) to make the periodicity explicit.
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2.2 HILBERT SPACES

Finite-dimensional vector spaces, as studied in linear algebra [106, 280], involve
vectors over R or C that are of finite dimension n. Such spaces are denoted by R

n

and C
n, respectively. Given a set of vectors, {vk}, in R

n or Cn, important questions
include:

(a) Does the set {vk} span the space R
n or Cn, that is, can every vector in R

n or
C
n be written as a linear combination of vectors from {vk}?

(b) Are the vectors linearly independent, that is, is it true that no vector from
{vk} can be written as a linear combination of the others?

(c) How can we find bases for the space to be spanned, in particular, orthonormal
bases?

(d) Given a subspace of R
n or C

n and a general vector, how can we find an
approximation in the least-squares sense, (see below) that lies in the subspace?

Two key notions used in addressing these questions include:

(a) The length, or norm,1 of a vector (we take R
n as an example),

‖x‖ =

(
n∑

i=1

x2i

)1/2

.

(b) The orthogonality of a vector with respect to another vector (or set of vectors),
for example,

〈x, y〉 = 0,

with an appropriately defined scalar product,

〈x, y〉 =
n∑

i=1

xiyi.

So far, we relied on the fact that the spaces were finite-dimensional. Now, the idea
is to generalize our familiar notion of a vector space to infinite dimensions. It is
necessary to restrict the vectors to have finite length or norm (even though they
are infinite-dimensional). This leads naturally to Hilbert spaces. For example, the
space of square-summable sequences, denoted by l2(Z), is the vector space “C∞”

1Unless otherwise specified, we will assume a squared norm.
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with a norm constraint. An example of a set of vectors spanning l2(Z) is the set
{δ[n− k]}, k ∈ Z. A further extension with respect to linear algebra is that vectors
can be generalized from n-tuples of real or complex values to include functions of
a continuous variable. The notions of norm and orthogonality can be extended to
functions using a suitable inner product between functions, which are thus viewed
as vectors. A classic example of such orthogonal vectors is the set of harmonic sine
and cosine functions, sin(nt) and cos(nt), n = 0, 1, . . . , on the interval [−π, π].

The classic questions from linear algebra apply here as well. In particular, the
question of completeness, that is, whether the span of the set of vectors {vk} covers
the whole space, becomes more involved than in the finite-dimensional case. The
norm plays a central role, since any vector in the space must be expressed by a
linear combination of vk’s such that the norm of the difference between the vector
and the linear combination of vk’s is zero. For l2(Z), {δ[n − k]}, k ∈ Z, constitute
a complete set which is actually an orthonormal basis. For the space of square-
integrable functions over the interval [−π, π], denoted by L2([−π, π]), the harmonic
sines and cosines are complete since they form the basis used in the Fourier series
expansion.

If only a subset of the complete set of vectors {vk} is used, one is interested in
the best approximation of a general element of the space by an element from the
subspace spanned by the vectors in the subset. This question has a particularly
easy answer when the set {vk} is orthonormal and the goal is least-squares approx-
imation (that is, the norm of the difference is minimized). Because the geometry
of Hilbert spaces is similar to Euclidean geometry, the solution is the orthogonal
projection onto the approximation subspace, since this minimizes the distance or
approximation error.

In the following, we formally introduce vector spaces and in particular Hilbert
spaces. We discuss orthogonal and general bases and their properties. We often use
the finite-dimensional case for intuition and examples. The treatment is not very
detailed, but sufficient for the remainder of the book. For a thorough treatment,
we refer the reader to [113].

2.2.1 Vector Spaces and Inner Products

Let us start with a formal definition of a vector space.

DEFINITION 2.1

A vector space over the set of complex or real numbers, C or R, is a set of
vectors, E, together with addition and scalar multiplication, which, for general
x, y in E, and α, β in C or R, satisfy the following:

(a) Commutativity: x+ y = y + x.
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(b) Associativity: (x+ y) + z = x+ (y + z), (αβ)x = α(βx).

(c) Distributivity: α(x+ y) = αx+ αy, (α+ β)x = αx+ βx.

(d) Additive identity: there exists 0 in E, such that x + 0 = x, for all x in
E.

(e) Additive inverse: for all x in E, there exists a (−x) in E, such that
x+ (−x) = 0.

(f) Multiplicative identity: 1 · x = x for all x in E.

Often, x, y in E will be n-tuples or sequences, and then we define

x+ y = (x1, x2, . . .) + (y1, y2, . . .) = (x1 + y1, x2 + y2, . . .)

αx = α(x1, x2, . . .) = (αx1, αx2, . . .).

While the scalars are from C or R, the vectors can be arbitrary, and apart from
n-tuples and infinite sequences, we could also take functions over the real line.

A subset M of E is a subspace of E if

(a) For all x and y in M , x+ y is in M .

(b) For all x in M and α in C or R, αx is in M .

Given S ⊂ E, the span of S is the subspace of E consisting of all linear combinations
of vectors in S, for example, in finite dimensions,

span(S) =

{
n∑

i=1

αixi | αi ∈ C or R, xi ∈ S
}

.

Vectors x1, . . . , xn are called linearly independent, if
∑n

i=1 αixi = 0 is true only
if αi = 0, for all i. Otherwise, these vectors are linearly dependent. If there
are infinitely many vectors x1, x2, . . ., they are linearly independent if for each k,
x1, x2, . . . , xk are linearly independent.

A subset {x1, . . . , xn} of a vector space E is called a basis for E, when E =
span(x1, . . . , xn) and x1, . . . , xn are linearly independent. Then, we say that E has
dimension n. E is infinite-dimensional if it contains an infinite linearly independent
set of vectors. As an example, the space of infinite sequences is spanned by the
infinite set {δ[n− k]}k∈Z. Since they are linearly independent, the space is infinite-
dimensional.

Next, we equip the vector space with an inner product that is a complex function
fundamental for defining norms and orthogonality.
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DEFINITION 2.2

An inner product on a vector space E over C (or R), is a comple-valued
function 〈·, ·〉, defined on E × E with the following properties:

(a) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉.

(b) 〈x, αy〉 = α〈x, y〉.

(c) 〈x, y〉∗ = 〈y, x〉.

(d) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x ≡ 0.

Note that (b) and (c) imply 〈ax, y〉 = a∗〈x, y〉. From (a) and (b), it is clear
that the inner product is linear. Note that we choose the definition of the inner
product which takes the complex conjugate of the first vector (follows from (b)).
For illustration, the standard inner product for complex-valued functions over R

and sequences over Z are

〈f, g〉 =

∫ ∞

−∞
f∗(t) g(t)dt,

and

〈x, y〉 =
∞∑

n=−∞
x∗[n] y[n],

respectively (if they exist). The norm of a vector is defined from the inner product
as

‖x‖ =
√

〈x, x〉, (2.2.1)

and the distance between two vectors x and y is simply the norm of their difference
‖x− y‖. Note that other norms can be defined (see (2.2.16)), but since we will only
use the usual Euclidean or square norm as defined in (2.2.1), we use the symbol
‖ . ‖ without a particular subscript.

The following hold for inner products over a vector space:

(a) Cauchy-Schwarz inequality

|〈x, y〉| ≤ ‖x‖ ‖y‖, (2.2.2)

with equality if and only if x = αy.

(b) Triangle inequality
‖x+ y‖ ≤ ‖x‖ + ‖y‖,

with equality if and only if x = αy, where α is a positive real constant.
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(c) Parallelogram law

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

Finally, the inner product can be used to define orthogonality of two vectors x and
y, that is, vectors x and y are orthogonal if and only if

〈x, y〉 = 0.

If two vectors are orthogonal, which is denoted by x ⊥ y, then they satisfy the
Pythagorean theorem,

‖x+ y‖2 = ‖x‖2 + ‖y‖2,
since ‖x+ y‖2 = 〈x+ y, x+ y〉 = ‖x‖2 + 〈x, y〉+ 〈y, x〉+ ‖y‖2.

A vector x is said to be orthogonal to a set of vectors S = {yi} if 〈x, yi〉 = 0 for
all i. We denote this by x ⊥ S. More generally, two subspaces S1 and S2 are called
orthogonal if all vectors in S1 are orthogonal to all of the vectors in S2, and this is
written S1 ⊥ S2. A set of vectors {x1, x2, . . .} is called orthogonal if xi ⊥ xj when
i 6= j. If the vectors are normalized to have unit norm, we have an orthonormal
system, which therefore satisfies

〈xi, xj〉 = δ[i − j].

Vectors in an orthonormal system are linearly independent, since
∑
αixi = 0 implies

0 = 〈xj ,
∑
αixi〉 =

∑
αi〈xj , xi〉 = αj . An orthonormal system in a vector space E

is an orthonormal basis if it spans E.

2.2.2 Complete Inner Product Spaces

A vector space equipped with an inner product is called an inner product space.
One more notion is needed in order to obtain a Hilbert space, completeness. To
this end, we consider sequences of vectors {xn} in E, which are said to converge to
x in E if ‖xn − x‖ → 0 as n → ∞. A sequence of vectors {xn} is called a Cauchy
sequence, if ‖xn − xm‖ → 0, when n, m → ∞. If every Cauchy sequence in E,
converges to a vector in E, then E is called complete. This leads to the following
definition:

DEFINITION 2.3

A complete inner product space is called a Hilbert space.

We are particularly interested in those Hilbert spaces which are separable because a
Hilbert space contains a countable orthonormal basis if and only if it is separable.
Since all Hilbert spaces with which we are going to deal are separable, we implicitly
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assume that this property is satisfied (refer to [113] for details on separability).
Note that a closed subspace of a separable Hilbert space is separable, that is, it also
contains a countable orthonormal basis.

Given a Hilbert space E and a subspace S, we call the orthogonal complement
of S in E, denoted S⊥, the set {x ∈ E | x ⊥ S}. Assume further that S is closed,
that is, it contains all limits of sequences of vectors in S. Then, given a vector y in
E, there exists a unique v in S and a unique w in S⊥ such that y = v+w. We can
thus write

E = S ⊕ S⊥,

or, E is the direct sum of the subspace and its orthogonal complement.
Let us consider a few examples of Hilbert spaces.

Complex/Real Spaces The complex space C
n is the set of all n-tuples x =

(x1, . . . , xn), with finite xi in C. The inner product is defined as

〈x, y〉 =
n∑

i=1

x∗i yi,

and the norm is

‖x‖ =
√

〈x, x〉 =

√
√
√
√

n∑

i=1

|xi|2.

The above holds for the real space R
n as well (note that then y∗i = yi). For

example, vectors ei = (0, . . . , 0, 1, 0, . . . , 0), where 1 is in the ith position, form
an orthonormal basis both for R

n and C
n. Note that these are the usual spaces

considered in linear algebra.

Space of Square-Summable Sequences In discrete-time signal processing we
will be dealing almost exclusively with sequences x[n] having finite square sum or
finite energy,2 where x[n] is, in general, complex-valued and n belongs to Z. Such
a sequence x[n] is a vector in the Hilbert space l2(Z). The inner product is

〈x, y〉 =
∞∑

n=−∞
x[n]∗y[n],

and the norm is

‖x‖ =
√

〈x, x〉 =

√
∑

n∈Z
|x[n]|2.

2In physical systems, the sum or integral of a squared function often corresponds to energy.
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Thus, l2(Z) is the space of all sequences such that ‖x‖ < ∞. This is obviously an
infinite-dimensional space, and a possible orthonormal basis is {δ[n − k]}k∈Z.

For the completeness of l2(Z), one has to show that if xn[k] is a sequence of
vectors in l2(Z) such that ‖xn − xm‖ → 0 as n, m → ∞ (that is, a Cauchy
sequence), then there exists a limit x in l2(Z) such that ‖xn − x‖ → 0. The proof
can be found, for example, in [113].

Space of Square-Integrable Functions A function f(t) defined on R is said to
be in the Hilbert space L2(R), if |f(t)|2 is integrable,3 that is, if

√
∫

t∈R
|f(t)|2dt < ∞.

The inner product on L2(R) is given by

〈f, g〉 =

∫

t∈R
f(t)∗g(t)dt,

and the norm is

‖f‖ =
√

〈f, f〉 =

√
∫

t∈R
|f(t)|2dt.

This space is infinite-dimensional (for example, e−t
2
, te−t

2
, t2e−t

2
. . . are linearly

independent).

2.2.3 Orthonormal Bases

Among all possible bases in a Hilbert space, orthonormal bases play a very impor-
tant role. We start by recalling the standard linear algebra procedure which can be
used to orthogonalize an arbitrary basis.

Gram-Schmidt Orthogonalization Given a set of linearly independent vectors
{xi} in E, we can construct an orthonormal set {yi} with the same span as {xi} as
follows: Start with

y1 =
x1
‖x1‖

.

Then, recursively set

yk =
xk − vk
‖xk − vk‖

, k = 2, 3, . . .

3Actually, |f |2 has to be Lebesgue integrable.
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where

vk =

k−1∑

i=1

〈yi, xk〉yi.

As will be seen shortly, the vector vk is the orthogonal projection of xk onto the
subspace spanned by the previous orthogonalized vectors and this is subtracted
from xk, followed by normalization.

A standard example of such an orthogonalization procedure is the Legendre
polynomials over the interval [−1, 1]. Start with xk(t) = tk, k = 0, 1, . . . and apply
the Gram-Schmidt procedure to get yk(t), of degree k, norm 1 and orthogonal to
yi(t), i < k (see Problem 2.1).

Bessel’s Inequality If we have an orthonormal system of vectors {xk} in E, then
for every y in E the following inequality, known as Bessel’s inequality, holds:

‖y‖2 ≥
∑

k

|〈xk, y〉|2.

If we have an orthonormal system that is complete in E, then we have an orthonor-
mal basis for E, and Bessel’s relation becomes an equality, often called Parseval’s
equality (see Theorem 2.4).

Orthonormal Bases For a set of vectors S = {xi} to be an orthonormal basis,
we first have to check that the set of vectors S is orthonormal and then that
it is complete, that is, that every vector from the space to be represented can
be expressed as a linear combination of the vectors from S. In other words, an
orthonormal system {xi} is called an orthonormal basis for E, if for every y in E,

y =
∑

k

αkxk. (2.2.3)

The coefficients αk of the expansion are called the Fourier coefficients of y (with
respect to {xi}) and are given by

αk = 〈xk, y〉. (2.2.4)

This can be shown by using the continuity of the inner product (that is, if xn → x,
and yn → y, then 〈xn, yn〉 → 〈x, y〉) as well as the orthogonality of the xk’s. Given
that y is expressed as (2.2.3), we can write

〈xk, y〉 = lim
n→∞

〈xk,
n∑

i=0

αixi〉 = αk,
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where we used the linearity of the inner product.

In finite dimensions (that is, Rn or C
n), having an orthonormal set of size n

is sufficient to have an orthonormal basis. As expected, this is more delicate in
infinite dimensions (that is, it is not sufficient to have an infinite orthonormal set).
The following theorem gives several equivalent statements which permit us to check
if an orthonormal system is also a basis:

THEOREM 2.4

Given an orthonormal system {x1, x2, . . .} in E, the following are equivalent:

(a) The set of vectors {x1, x2, . . .} is an orthonormal basis for E.

(b) If 〈xi, y〉 = 0 for i = 1, 2, . . ., then y = 0.

(c) span({xi}) is dense in E, that is, every vector in E is a limit of a sequence
of vectors in span({xi}).

(d) For every y in E,

‖y‖2 =
∑

i

|〈xi, y〉|2, (2.2.5)

which is called Parseval’s equality.

(e) For every y1 and y2 in E,

〈y1, y2〉 =
∑

i

〈xi, y1〉∗〈xi, y2〉, (2.2.6)

which is often called the generalized Parseval’s equality.

For a proof, see [113].

Orthogonal Projection and Least-Squares Approximation Often, a vector from
a Hilbert space E has to be approximated by a vector lying in a (closed) subspace S.
We assume that E is separable, thus, S contains an orthonormal basis {x1, x2, . . .}.
Then, the orthogonal projection of y ∈ E onto S is given by

ŷ =
∑

i

〈xi, y〉xi.

Note that the difference d = y − ŷ satisfies

d ⊥ S
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FIGURE 2.1 fignew2.2.1
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ŷ

x1

Figure 2.1 Orthogonal projection onto a subspace. Here, y ∈ R3 and ŷ is its
projection onto the span of {x1, x2}. Note that y− ŷ is orthogonal to the span
{x1, x2}.

ŷ x1 y,〈 〉=

x2 y,〈 〉

x1

x2

y

fignew2.2.2FIGURE 2.2

x2
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ŷ x1 y,〈 〉=

x̃2 y,〈 〉

x̃1 y,〈 〉 x1

(a) (b)

Figure 2.2 Expansion in orthogonal and biorthogonal bases. (a) Orthogonal
case: The successive approximation property holds. (b) Biorthogonal case:
The first approximation cannot be used in the full expansion.

and, in particular, d ⊥ ŷ, as well as
‖y‖2 = ‖ŷ‖2 + ‖d‖2.

This is shown pictorially in Figure 2.1. An important property of such an approxi-
mation is that it is best in the least-squares sense, that is,

min ‖y − x‖
for x in S is attained for x =

∑

i αixi with

αi = 〈xi, y〉,
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that is, the Fourier coefficients. An immediate consequence of this result is the
successive approximation property of orthogonal expansions. Call ŷ(k) the best
approximation of y on the subspace spanned by {x1, x2, . . . , xk} and given by the
coefficients {α1, α2, . . . , αk} where αi = 〈xi, y〉. Then, the approximation ŷ(k+1) is
given by

ŷ(k+1) = ŷ(k) + 〈xk+1, y〉xk+1,

that is, the previous approximation plus the projection along the added vector xk+1.
While this is obvious, it is worth pointing out that this successive approximation
property does not hold for nonorthogonal bases. When calculating the approxima-
tion ŷ(k+1), one cannot simply add one term to the previous approximation, but has
to recalculate the whole approximation (see Figure 2.2). For a further discussion
of projection operators, see Appendix 2.A.

2.2.4 General Bases

While orthonormal bases are very convenient, the more general case of nonorthog-
onal or biorthogonal bases is important as well. In particular, biorthogonal bases
will be constructed in Chapters 3 and 4. A system {xi, x̃i} constitutes a pair of
biorthogonal bases of a Hilbert space E if and only if [56, 73]

(a) For all i, j in Z

〈xi, x̃j〉 = δ[i − j]. (2.2.7)

(b) There exist strictly positive constants A, B, Ã, B̃ such that, for all y in E

A ‖y‖2 ≤
∑

k

|〈xk, y〉|2 ≤ B ‖y‖2, (2.2.8)

Ã ‖y‖2 ≤
∑

k

|〈x̃k, y〉|2 ≤ B̃ ‖y‖2. (2.2.9)

Compare these inequalities with (2.2.5) in the orthonormal case. Bases which satisfy
(2.2.8) or (2.2.9) are called Riesz bases [73]. Then, the signal expansion formula
becomes

y =
∑

k

〈xk, y〉 x̃k =
∑

k

〈x̃k, y〉 xk. (2.2.10)

It is clear why the term biorthogonal is used, since to the (nonorthogonal) basis
{xi} corresponds a dual basis {x̃i} which satisfies the biorthogonality constraint
(2.2.7). If the basis {xi} is orthogonal, then it is its own dual, and the expansion
formula (2.2.10) becomes the usual orthogonal expansion given by (2.2.3–2.2.4).
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Equivalences similar to Theorem 2.4 hold in the biorthogonal case as well, and
we give the Parseval’s relations which become

‖y‖2 =
∑

i

〈xi, y〉∗〈x̃i, y〉, (2.2.11)

and

〈y1, y2〉 =
∑

i

〈xi, y1〉∗〈x̃i, y2〉, (2.2.12)

=
∑

i

〈x̃i, y1〉∗〈xi, y2〉. (2.2.13)

For a proof, see [213] and Problem 2.8.

2.2.5 Overcomplete Expansions

So far, we have considered signal expansion onto bases, that is, the vectors used
in the expansion were linearly independent. However, one can also write signals in
terms of a linear combination of an overcomplete set of vectors, where the vectors
are not independent anymore. A more detailed treatment of such overcomplete sets
of vectors, called frames, can be found in Chapter 5 and in [73, 89]. We will only
discuss a few basic notions here.

A family of functions {xk} in a Hilbert space H is called a frame if there exist
two constants A > 0, B <∞, such that for all y in H

A ‖y‖2 ≤
∑

k

|〈xk, y〉|2 ≤ B ‖y‖2.

A, B are called frame bounds, and when they are equal, we call the frame tight. In
a tight frame we have

∑

k

|〈xk, y〉|2 = A ‖y‖2,

and the signal can be expanded as follows:

y = A−1
∑

k

〈xk, y〉xk. (2.2.14)

While this last equation resembles the expansion formula in the case of an or-
thonormal basis, a frame does not constitute an orthonormal basis in general. In
particular, the vectors may be linearly dependent and thus not form a basis. If all
the vectors in a tight frame have unit norm, then the constant A gives the redun-
dancy ratio (for example, A = 2 means there are twice as many vectors as needed
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to cover the space). Note that if A = B = 1, and ‖xk‖ = 1 for all k, then {xk}
constitutes an orthonormal basis.

Because of the linear dependence which exists among the vectors used in the
expansion, the expansion is not unique anymore. Consider the set {x1, x2, . . .}
where

∑

i βixi = 0 (where not all βi’s are zero) because of linear dependence. If y
can be written as

y =
∑

i

αixi, (2.2.15)

then one can add βi to each αi without changing the validity of the expansion
(2.2.15). The expansion (2.2.14) is unique in the sense that it minimizes the norm
of the expansion among all valid expansions. Similarly, for general frames, there
exists a unique dual frame which is discussed in Section 5.3.2 (in the tight frame
case, the frame and its dual are equal).

This concludes for now our brief introduction of signal expansions. Later, more
specific expansions will be discussed, such as Fourier and wavelet expansions. The
fundamental properties seen above will reappear in more specialized forms (for
example, Parseval’s equality).

While we have only discussed Hilbert spaces, there are of course many other
spaces of functions which are of interest. For example, Lp(R) spaces are those
containing functions f for which |f |p is integrable [113]. The norm on these spaces
is defined as

‖f‖p = (

∫ ∞

−∞
|f(t)|pdt)1/p, (2.2.16)

which for p = 2 is the usual L2 norm.4 Two Lp spaces which will be useful later
are L1(R), the space of functions f(t) satisfying

∫∞
−∞ |f(t)|dt <∞, and L∞(R), the

space of functions f(t) such that sup |f(t)| < ∞. Their discrete-time equivalents
are l1(Z) (space of sequences x[n] such that

∑

n |x[n]| < ∞) and l∞(Z) (space of
sequences x[n] such that sup |x[n]| < ∞). Associated with these spaces are the
corresponding norms. However, many of the intuitive geometric interpretations we
have seen so far for L2(R) and l2(Z) do not hold in these spaces (see Problem 2.3).
Recall that in the following, since we use mostly L2 and l2, we use ‖ . ‖ to mean
‖ . ‖2.

2.3 ELEMENTS OF L INEAR ALGEBRA

The finite-dimensional cases of Hilbert spaces, namely R
n and C

n, are very impor-
tant, and linear operators on such spaces are studied in linear algebra. Many good
reference texts exist on the subject, see [106, 280]. Good reviews can also be found

4For p 6= 2, the norm ‖ . ‖p cannot be derived from an inner product as in Definition 2.2.
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in [150] and [308]. We give only a brief account here, focusing on basic concepts
and topics which are needed later, such as polynomial matrices.

2.3.1 Basic Definitions and Properties

We can view matrices as representations of bounded linear operators (see Ap-
pendix 2.A). The familiar system of equations

A11x1 + · · · + A1nxn = y1,
...

...
...

...
Am1x1 + · · · + Amnxn = ym,

can be compactly represented as

Ax = y. (2.3.1)

Therefore, any finite matrix, or a rectangular (m rows and n columns) array of
numbers, can be interpreted as an operator A

A =





A11 · · · A1m
...

. . .
...

Am1 · · · Amn



 .

An m × 1 matrix is called a column vector, while a 1 × n matrix is a row vector.
As seen in (2.3.1), we write matrices as bold capital letters, and column vectors
as lower-case bold letters. A row vector would then be written as vT , where T

denotes transposition (interchange of rows and columns, that is, if A has elements
Aij , A

T has elements Aji). If the entries are complex, one often uses hermitian
transposition, which is complex conjugation followed by usual transposition, and is
denoted by a superscript *.

When m = n, the matrix is called square, otherwise it is called rectangular. A
1×1 matrix is called scalar. We denote by 0 the null matrix (all elements are zero)
and by I the identity (Aii = 1, and 0 otherwise). The identity matrix is a special
case of a diagonal matrix. The antidiagonal matrix J has all the elements on the
other diagonal equal to 1, while the rest are 0, that is, Aij = 1, for j = n + 1 − i,
and Aij = 0 otherwise. A lower (or upper) triangular matrix is a square matrix
with all of its elements above (or below) the main diagonal equal to zero.

Beside addition/subtraction of same-size matrices (by adding/subtracting the
corresponding elements), one can multiply matrices A and B with sizes m×n and
n× p respectively, yielding a matrix C whose elements are given by

Cij =

n∑

k=1

AikBkj.
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Note that the matrix product is not commutative in general, that is, A B 6= B A.5

It can be shown that (A B)T = BT AT .

The inner product of two (column) vectors from R
N is 〈v1,v2〉 = vT1 · v2, and if

the vectors are from C
n, then 〈v1,v2〉 = v∗

1 · v2. The outer product of two vectors
from R

n and R
m is an n×m matrix given by v1 · vT2 .

To define the notion of a determinant, we first need to define a minor. A minor
M ij is a submatrix of the matrix A obtained by deleting its ith row and jth column.
More generally, a minor can be any submatrix of the matrix A obtained by deleting
some of its rows and columns. Then the determinant of an n × n matrix can be
defined recursively as

det(A) =
n∑

i=1

Aij(−1)i+j det(M ij)

where j is fixed and belongs to {1, . . . , n}. The cofactor Cij is (−1)i+j det(M ij).
A square matrix is said to be singular if det(A) = 0. The product of two matrices
is nonsingular only if both matrices are nonsingular. Some properties of interest
include the following:

(a) If C = A B, then det(C) = det(A) det(B).

(b) If B is obtained by interchanging two rows/columns of A, then det(B) =
− det(A).

(c) det(AT ) = det(A).

(d) For an n× n matrix A, det(cA) = cn det(A).

(e) The determinant of a triangular, and in particular, of a diagonal matrix is the
product of the elements on the main diagonal.

An important interpretation of the determinant is that it corresponds to the volume
of the parallelepiped obtained when taking the column vectors of the matrix as its
edges (one can take the row vectors as well, leading to a different parallelepiped,
but the volume remains the same). Thus, a zero determinant indicates linear de-
pendence of the row and column vectors of the matrix, since the parallelepiped is
not of full dimension.

The rank of a matrix is the size of its largest nonsingular minor (possibly the
matrix itself). In a rectangular m×n matrix, the column rank equals the row rank,
that is, the number of linearly independent rows equals the number of linearly

5When there is possible confusion, we will denote a matrix product by A ·B; otherwise we will
simply write AB.
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independent columns. In other words, the dimension of span(columns) is equal to
the dimension of span(rows). For an n×n matrix to be nonsingular, its rank should
equal n. Also rank(AB) ≤ min(rank(A), rank(B)).

For a square nonsingular matrix A, the inverse matrix A−1 can be computed
using Cramer’s formula

A−1 =
adjugate(A)

det(A)
,

where the elements of adjugate(A) are (adjugate(A))ji = cofactor of Aji = Cji.
For a square matrix, AA−1 = A−1A = I. Also, (AB)−1 = B−1A−1. Note that
Cramer’s formula is not actually used to compute the inverse in practice; rather, it
serves as a tool in proofs.

For an m × n rectangular matrix A, an n × m matrix L is its left inverse if
LA = I. Similarly, an n ×m matrix R is a right inverse of A if AR = I. These
inverses are not unique and may not even exist. However, if the matrix A is square
and has full rank, then its right inverse equals its left inverse, and we can apply
Cramer’s formula to find that inverse.

The Kronecker product of two matrices is defined as (we show a 2 × 2 matrix
as an example)

[
a b
c d

]

⊗M =

[
aM bM
cM dM

]

, (2.3.2)

where a, b, c and d are scalars and M is a matrix (neither matrix need be square).
See Problem 2.19 for an application of Kronecker products. The Kronecker product
has the following useful property with respect to the usual matrix product [32]:

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (2.3.3)

where all the matrix products have to be well-defined.

2.3.2 Linear Systems of Equations and Least Squares

Going back to the equation A x = y, one can say that the system has a unique
solution provided A is nonsingular, and this solution is given by x = A−1 y. Note
that one would rarely compute the inverse matrix in order to solve a linear system
of equations; rather Gaussian elimination would be used, since it is much more
efficient. In the following, the column space of A denotes the linear span of the
columns of A, and similarly, the row space is the linear span of the rows of A.

Let us give an interpretation of solving the problem Ax = y. The product Ax

constitutes a linear combination of the columns of A weighted by the entries of x.
Thus, if y belongs to the column space of A, also called the range of A, there will
be a solution. If the columns are linearly independent, the solution is unique, if
they are not, there are infinitely many solutions. The null space of A is spanned
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by the vectors orthogonal to the row space, or Av = 0. If A is of size m× n (the
system of equations has m equations in n unknowns), then the dimension of the
range (which equals the rank ρ) plus the dimension of the null space is equal to
m. A similar relation holds for row spaces (which are column spaces of AT ) and
the sum is then equal to n. If y is not in the range of A there is no exact solution
and only approximations are possible, such as the orthogonal projection of y onto
the span of the columns of A, which results in a least-squares solution. Then, the
error between y and its projection ŷ (see Figure 2.1) is orthogonal to the column
space of A. That is, any linear combination of the columns of A, for example Aα,
is orthogonal to y − ŷ = y −Ax̂ where x̂ is the least-squares solution. Thus

(Aα)T (y −Ax̂) = 0

or

ATAx̂ = ATy,

which are called the normal equations of the least-squares problem. If the columns
of A are linearly independent, then ATA is invertible. The unique least-squares
solution is

x̂ = (ATA)−1ATy (2.3.4)

(recall that A is either rectangular or rank deficient, and does not have a proper
inverse) and the orthogonal projection ŷ is equal to

ŷ = A(ATA)−1ATy. (2.3.5)

Note that the matrix P = A(ATA)−1AT satisfies P 2 = P and is symmetric
P = P T , thus satisfying the condition for an orthogonal projection operator (see
Appendix 2.A). Also, it can be verified that the partial derivatives of the squared
error with respect to the components of x̂ are zero for the above choice (see Prob-
lem 2.6).

2.3.3 Eigenvectors and Eigenvalues

The characteristic polynomial for a matrix A is D(x) = det(xI −A), whose roots
are called eigenvalues λi. In particular, a vector p 6= 0 for which

Ap = λp,

is an eigenvector associated with the eigenvalue λ. If a matrix of size n × n has
n linearly independent eigenvectors, then it can be diagonalized, that is, it can be
written as

A = TΛT−1,
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where Λ is a diagonal matrix containing the eigenvalues of A along the diagonal
and T contains its eigenvectors as its columns. An important case is when A

is symmetric or, in the complex case, hermitian symmetric, A∗ = A. Then, the
eigenvalues are real, and a full set of orthogonal eigenvectors exists. Taking them as
columns of a matrix U after normalizing them to have unit norm so that U∗ ·U = I,
we can write a hermitian symmetric matrix as

A = UΛU∗.

This result constitutes the spectral theorem for hermitian matrices. Hermitian
symmetric matrices commute with their hermitian transpose. More generally, a
matrix N that commutes with its hermitian transpose is called normal, that is, it
satisfies N∗N = NN∗. Normal matrices are exactly those that have a complete
set of orthogonal eigenvectors.

The importance of eigenvectors in the study of linear operators comes from the
following fact: Assuming a full set of eigenvectors, a vector x can be written as a
linear combination of eigenvectors x =

∑
αivi. Then,

Ax = A

(
∑

i

αivi

)

=
∑

i

αi(Avi) =
∑

i

αiλivi.

The concept of eigenvectors generalizes to eigenfunctions for continuous operators,
which are functions fω(t) such that Afω(t) = λ(ω)fω(t). A classic example is the
complex sinusoid, which is an eigenfunction of the convolution operator, as will be
shown in Section 2.4.

2.3.4 Unitary Matrices

We just explained an instance of a square unitary matrix, that is, an m×m matrix
U which satisfies

U∗U = UU∗ = I, (2.3.6)

or, its inverse is its (hermitian) transpose. When the matrix has real entries, it is
often called orthogonal or orthonormal, and sometimes, a scale factor is allowed on
the left of (2.3.6). Rectangular unitary matrices are also possible, that is, an m×n
matrix U with m < n is unitary if

‖Ux‖ = ‖x‖, ∀x ∈ C
n,

as well as

〈Ux,Uy〉 = 〈x,y〉, ∀x,y ∈ C
n,
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which are the usual Parseval’s relations. Then it follows that

UU∗ = I,

where I is of size m ×m (and the product does not commute). Unitary matrices
have eigenvalues of unit modulus and a complete set of orthogonal eigenvectors.
Note that a unitary matrix performs a rotation, thus, the l2 norm is preserved.

When a square m × m matrix A has full rank its columns (or rows) form a
basis for R

m and we recall that the Gram-Schmidt orthogonalization procedure
can be used to get an orthogonal basis. Gathering the steps of the Gram-Schmidt
procedure into a matrix form, we can write A as

A = QR,

where the columns of Q form the orthonormal basis and R is upper triangular.
Unitary matrices form an important but restricted class of matrices, which can

be parametrized in various forms. For example, an n × n real orthogonal matrix
has n(n − 1)/2 degrees of freedom (up to a permutation of its rows or columns
and a sign change in each vector). If we want to find an orthonormal basis for Rn,
start with an arbitrary vector and normalize it to have unit norm. This gives n− 1
degrees of freedom. Next, choose a norm-1 vector in the orthogonal complement
with respect to the first vector, which is of dimension n − 1, giving another n − 2
degrees of freedom. Iterate until the nth vector is chosen, which is unique up to a
sign. We have

∑n−1
i=0 i = n(n − 1)/2 degrees of freedom. These degrees of freedom

can be used in various parametrizations, based either on planar or Givens rotations
or, on Householder building blocks (see Appendix 2.B).

2.3.5 Special Matrices

A (right) circulant matrix is a matrix where each row is obtained by a (right)
circular shift of the previous row, or

C =







c0 c1 · · · cn−1

cn−1 c0 c1 · · · cn−2
...

...
c1 c2 · · · c0






.

A Toeplitz matrix is a matrix whose (i, j)th entry depends only on the value of i− j
and thus it is constant along the diagonals, or

T =









t0 t1 t2 · · · tn−1

t−1 t0 t1 · · · tn−2

t−2 t−1 t0 · · · tn−3
...

...
...

. . .
...

t−n+1 t−n+2 t−n+3 · · · t0









.
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Sometimes, the elements ti are matrices themselves, in which case the matrix is
called block Toeplitz. Another important matrix is the DFT (Discrete Fourier
Transform) matrix. The (i, k)th element of the DFT matrix of size n × n is
W ik
n = e−j2πik/n. The DFT matrix diagonalizes circulant matrices, that is, its

columns and rows are the eigenvectors of circulant matrices (see Section 2.4.8 and
Problem 2.18).

A real symmetric matrix A is called positive definite if all its eigenvalues are
greater than 0. Equivalently, for all nonzero vectors x, the following is satisfied:

xTAx > 0.

Finally, for a positive definite matrix A, there exists a nonsingular matrix W such
that

A = W TW ,

where W is intuitively a “square root” of A. One possible way to choose such a
square root is to diagonalize A as A = QΛQT and then, since all the eigenvalues
are positive, choose W T = Q

√
Λ (the square root is applied on each eigenvalue in

the diagonal matrix Λ). The above discussion carries over to hermitian symmetric
matrices by using hermitian transposes.

2.3.6 Polynomial Matrices

Since a fair amount of the results given in Chapter 3 will make use of polynomial
matrices, we will present a brief overview of this subject. For more details, the
reader is referred to [106], while self-contained presentations on polynomial matrices
can be found in [150, 308].

A polynomial matrix (or a matrix polynomial) is a matrix whose entries are
polynomials. The fact that the above two names can be used interchangeably is
due to the following forms of a polynomial matrix H(x):

H(x) =





∑
aix

i · · ·
∑
bix

i

...
. . .

...
∑
cix

i · · · ∑
dix

i



 =
∑

i

H i x
i,

that is, it can be written either as a matrix containing polynomials as its entries,
or a polynomial having matrices as its coefficients.

The question of the rank in polynomial matrices is more subtle. For example,
the matrix (

a+ bx 3(a+ bx)
c+ dx λ(c+ dx)

)

,

with λ = 3, always has rank less than 2, since the two columns are proportional
to each other. On the other hand, if λ = 2, then the matrix would have the rank
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less than 2 only if x = −a/b or x = −c/d. This leads to the notion of normal rank.
First, note that H(x) is nonsingular only if det(H(x)) is different from 0 for some
x. Then, the normal rank of H(x) is the largest of the orders of minors that have
a determinant not identically zero. In the above example, for λ = 3, the normal
rank is 1, while for λ = 2, the normal rank is 2.

An important class of polynomial matrices are unimodular matrices, whose de-
terminant is not a function of x. An example is the following matrix:

H(x) =

(
1 + x x
2 + x 1 + x

)

,

whose determinant is equal to 1. There are several useful properties pertaining
to unimodular matrices. For example, the product of two unimodular matrices
is again unimodular. The inverse of a unimodular matrix is unimodular as well.
Also, one can prove that a polynomial matrix H(x) is unimodular, if and only if
its inverse is a polynomial matrix. All these facts can be proven using properties
of determinants (see, for example, [308]).

The extension of the concept of unitary matrices to polynomial matrices leads
to paraunitary matrices [308] as studied in circuit theory. In fact, these matrices
are unitary on the unit circle or the imaginary axis, depending if they correspond
to discrete-time or continuous-time linear operators (z-transforms or Laplace trans-
forms). Consider the discrete-time case and x = ejω. Then, a square matrix U(x)
is unitary on the unit circle if

[U(ejω)]∗U(ejω) = U(ejω)[U (ejω)]∗ = I.

Extending this beyond the unit circle leads to

[U (x−1)]TU(x) = U(x)[U (x−1)]T = I, (2.3.7)

since (ejω)∗ = e−jω. If the coefficients of the polynomials are complex, the coeffi-
cients need to be conjugated in (2.3.7), which is usually written [U ∗(x−1)]T . This
will be studied in Chapter 3.

As a generalization of polynomial matrices, one can consider the case of rational
matrices. In that case, each entry is a ratio of two polynomials. As will be shown
in Chapter 3, polynomial matrices in z correspond to finite impulse response (FIR)
discrete-time filters, while rational matrices can be associated with infinite impulse
response (IIR) filters. Unimodular and unitary matrices can be defined in the
rational case, as in the polynomial case.

2.4 FOURIER THEORY AND SAMPLING

This section reviews the Fourier transform and its variations when signals have
particular properties (such as periodicity). Sampling, which establishes the link be-
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tween continuous- and discrete-time signal processing, is discussed in detail. Then,
discrete versions of the Fourier transform are examined. The recurring theme is
that complex exponentials form an orthonormal basis on which many classes of
signals can be expanded. Also, such complex exponentials are eigenfunctions of
convolution operators, leading to convolution theorems. The material in this sec-
tion can be found in many sources, and we refer to [37, 91, 108, 215, 326] for details
and proofs.

2.4.1 Signal Expansions and Nomenclature

Let us start by discussing some naming conventions. First, the signal to be ex-
panded is either continuous or discrete in time. Then, the expansion involves an
integral (a transform) or a summation (a series). This leads to four possible com-
binations of continuous/discrete time and integral/series expansions. Note that in
the integral case, strictly speaking, we do not have an expansion, but a transform.
We use lower case and capital letters for the signal and its expansion (or transform)
and denote by ψω and ψi a continuous and discrete set of basis functions. In gen-
eral, there is a basis {ψ} and its dual {ψ̃}, which are equal in the orthogonal case.
Thus, we have

(a) Continuous-time integral expansion, or transform

x(t) =

∫

Xωψω(t)dω with Xω = 〈ψ̃ω(t), x(t)〉.

(b) Continuous-time series expansion

x(t) =
∑

i

Xiψi(t) with Xi = 〈ψ̃i(t), x(t)〉.

(c) Discrete-time integral expansion

x[n] =

∫

Xωψω[n]dω with Xω = 〈ψ̃ω[n], x[n]〉.

(d) Discrete-time series expansion

x[n] =
∑

i

Xiψi[n] with Xi = 〈ψ̃i[n], x[n]〉.

In the classic Fourier cases, this leads to
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(a) The continuous-time Fourier transform (CTFT), often simply called the Fourier
transform.

(b) The continuous-time Fourier series (CTFS), or simply Fourier series.

(c) The discrete-time Fourier transform (DTFT).

(d) The discrete-time Fourier series (DTFS).

In all the Fourier cases, {ψ} = {ψ̃}. The above transforms and series will be
discussed in this section. Later, more general expansions will be introduced, in par-
ticular, series expansions of discrete-time signals using filter banks in Chapter 3,
series expansions of continuous-time signals using wavelets in Chapter 4, and in-
tegral expansions of continuous-time signals using wavelets and short-time Fourier
bases in Chapter 5.

2.4.2 Fourier Transform

Given an absolutely integrable function f(t), its Fourier transform is defined by

F (ω) =

∫ ∞

−∞
f(t)e−jωtdt = 〈ejωt, f(t)〉, (2.4.1)

which is called the Fourier analysis formula. The inverse Fourier transform is given
by

f(t) =
1

2π

∫ ∞

−∞
F (ω)ejωtdω, (2.4.2)

or, the Fourier synthesis formula. Note that ejωt is not in L2(R), and that the set
{ejωt} is not countable. The exact conditions under which (2.4.2) is the inverse
of (2.4.1) depend on the behavior of f(t) and are discussed in standard texts on
Fourier theory [46, 326]. For example, the inversion is exact if f(t) is continuous
(or if f(t) is defined as (f(t+) + f(t−))/2 at a point of discontinuity).6

When f(t) is square-integrable, then the formulas above hold in the L2 sense
(see Appendix 2.C), that is, calling f̂(t) the result of the analysis followed by the
synthesis formula,

‖f(t)− f̂(t)‖ = 0.

Assuming that the Fourier transform and its inverse exist, we will denote by

f(t) ←→ F (ω)

6We assume that f(t) is of bounded variation. That is, for f(t) defined on a closed interval [a, b],
there exists a constant A such that

∑N
n=1 |f(tn) − f(tn−1)| < A for any finite set {ti} satisfying

a ≤ t0 < t1 < . . . < tN ≤ b. Roughly speaking, the graph of f(t) cannot oscillate over an infinite
distance as t goes over a finite interval.
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a Fourier transform pair. The Fourier transform satisfies a number of properties,
some of which we briefly review below. For proofs, see [215].

Linearity Since the Fourier transform is an inner product (see (2.4.1)), it follows
immediately from the linearity of the inner product that

αf(t) + βg(t) ←→ αF (ω) + βG(ω).

Symmetry If F (ω) is the Fourier transform of f(t), then

F (t) ←→ 2πf(−ω), (2.4.3)

which indicates the essential symmetry of the Fourier analysis and synthesis formu-
las.

Shifting A shift in time by t0 results in multiplication by a phase factor in the
Fourier domain,

f(t− t0) ←→ e−jωt0F (ω). (2.4.4)

Conversely, a shift in frequency results in a phase factor, or modulation by a complex
exponential, in the time domain,

ejω0tf(t) ←→ F (ω − ω0).

Scaling Scaling in time results in inverse scaling in frequency as given by the
following transform pair (a is a real constant):

f(at) ←→ 1

|a|F
(ω

a

)

. (2.4.5)

Differentiation/Integration Derivatives in time lead to multiplication by (jω) in
frequency,

∂nf(t)

∂tn
←→ (jω)nF (ω), (2.4.6)

if the transform actually exists. Conversely, if F (0) = 0, we have

∫ t

−∞
f(τ)dτ ←→ F (ω)

jω
.

Differentiation in frequency leads to

(−jt)nf(t) ←→ ∂nF (ω)

∂ωn
.
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Moments Calling mn the nth moment of f(t),

mn =

∫ ∞

−∞
tnf(t)dt, n = 0, 1, 2, . . . , (2.4.7)

the moment theorem of the Fourier transform states that

(−j)nmn =
∂nF (ω)

∂ωn
|ω=0, n = 0, 1, 2, . . . . (2.4.8)

Convolution The convolution of two functions f(t) and g(t) is given by

h(t) =

∫ ∞

−∞
f(τ)g(t− τ)dτ, (2.4.9)

and is denoted h(t) = f(t) ∗ g(t) = g(t) ∗ f(t) since (2.4.9) is symmetric in f(t)
and g(t). Denoting by F (ω) and G(ω) the Fourier transforms of f(t) and g(t),
respectively, the convolution theorem states that

f(t) ∗ g(t) ←→ F (ω) G(ω).

This result is fundamental, and we will prove it for f(t) and g(t) being in L1(R).
Taking the Fourier transform of f(t) ∗ g(t),

∫ ∞

−∞

[∫ ∞

−∞
f(τ)g(t− τ)dτ

]

e−jωtdt,

changing the order of integration (which is allowed when f(t) and g(t) are in L1(R);
see Fubini’s theorem in [73, 250]) and using the shift property, we get

∫ ∞

−∞
f(τ)

[∫ ∞

−∞
g(t− τ)e−jωtdt

]

dτ =

∫ ∞

−∞
f(τ)e−jωτG(ω)dτ = F (ω) G(ω).

The result holds as well when f(t) and g(t) are square-integrable, but requires a
different proof [108].

An alternative view of the convolution theorem is to identify the complex ex-
ponentials ejωt as the eigenfunctions of the convolution operator, since

∫ ∞

−∞
ejω(t−τ)g(τ)dτ = ejωt

∫ ∞

−∞
e−jωτg(τ)dτ = ejωtG(ω).

The associated eigenvalue G(ω) is simply the Fourier transform of the impulse
response g(τ) at frequency ω.
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By symmetry, the product of time-domain functions leads to the convolution of
their Fourier transforms,

f(t) g(t) ←→ 1

2π
F (ω) ∗G(ω). (2.4.10)

This is known as the modulation theorem of the Fourier transform.
As an application of both the convolution theorem and the derivative property,

consider taking the derivative of a convolution,

h′(t) =
∂[f(t) ∗ g(t)]

dt
.

The Fourier transform of h′(t), following (2.4.6), is equal to

jω (F (ω)G(ω)) = (jωF (ω)) G(ω) = F (ω) (jωG(ω)) ,

that is,
h′(t) = f ′(t) ∗ g(t) = f(t) ∗ g′(t).

This is useful when convolving a signal with a filter which is known to be the
derivative of a given function such as a Gaussian, since one can think of the result
as being the convolution of the derivative of the signal with a Gaussian.

Parseval’s Formula Because the Fourier transform is an orthogonal transform,
it satisfies an energy conservation relation known as Parseval’s formula. See also
Section 2.2.3 where we proved Parseval’s formula for orthonormal bases. Here, we
need a different proof because the Fourier transform does not correspond to an
orthonormal basis expansion (first, exponentials are not in L2(R) and also the com-
plex exponentials are uncountable, whereas we considered countable orthonormal
bases [113]). The general form of Parseval’s formula for the Fourier transform is
given by ∫ ∞

−∞
f∗(t) g(t) dt =

1

2π

∫ ∞

−∞
F ∗(ω) G(ω) dω, (2.4.11)

which reduces, when g(t) = f(t), to
∫ ∞

−∞
|f(t)|2 dt =

1

2π

∫ ∞

−∞
|F (ω)|2 dω. (2.4.12)

Note that the factor 1/2π comes from our definition of the Fourier transform (2.4.1–
2.4.2). A symmetric definition, with a factor 1/

√
2π in both the analysis and

synthesis formulas (see, for example, [73]), would remove the scale factor in (2.4.12).
The proof of (2.4.11) uses the fact that

f∗(t) ←→ F ∗(−ω)
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and the frequency-domain convolution relation (2.4.10). That is, since f∗(t) · g(t)
has Fourier transform (1/2π)(F ∗(−ω) ∗G(ω)), we have

∫ ∞

−∞
f∗(t) g(t) e−jωt dt =

1

2π

∫ ∞

−∞
F ∗(−Ω) G(ω − Ω) dΩ,

where (2.4.11) follows by setting ω = 0.

2.4.3 Fourier Series

A periodic function f(t) with period T ,

f(t+ T ) = f(t),

can be expressed as a linear combination of complex exponentials with frequencies
nω0 where ω0 = 2π/T . In other words,

f(t) =

∞∑

k=−∞
F [k]ejkω0t, (2.4.13)

with

F [k] =
1

T

∫ T/2

−T/2
f(t) e−jkω0t dt. (2.4.14)

If f(t) is continuous, then the series converges uniformly to f(t). If a period of
f(t) is square-integrable but not necessarily continuous, then the series converges
to f(t) in the L2 sense; that is, calling f̂N (t) the truncated series with k going from
−N to N , the error ‖f(t) − f̂N (t)‖ goes to zero as N → ∞. At points of discon-
tinuity, the infinite sum (2.4.13) equals the average (f(t+) + f(t−))/2. However,
convergence is not uniform anymore but plagued by the Gibbs phenomenon. That
is, f̂N (t) will overshoot or undershoot near the point of discontinuity. The amount
of over/undershooting is independent of the number of terms N used in the approx-
imation. Only the width diminishes as N is increased.7 For further discussions on
the convergence of Fourier series, see Appendix 2.C and [46, 326].

Of course, underlying the Fourier series construction is the fact that the set of
functions used in the expansion (2.4.13) is a complete orthonormal system for the
interval [−T/2, T/2] (up to a scale factor). That is, defining ϕk(t) = (1/

√
T ) ejkω0t

for t in [−T/2, T/2] and k in Z, we can verify that

〈ϕk(t), ϕl(t)〉[−T
2
,T
2
] = δ[k − l].

7Again, we consider nonpathological functions (that is, of bounded variation).
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When k = l, the inner product equals 1. If k 6= l, we have

1

T

∫ T/2

−T/2
ej

2π
T
(l−k)tdt =

1

π(l − k) sin(π(l − k)) = 0.

That the set {ϕk} is complete is shown in [326] and means that there exists no
periodic function f(t) with L2 norm greater than zero that has all its Fourier series
coefficients equal to zero. Actually, there is equivalence between norms, as shown
below.

Parseval’s Relation With the Fourier series coefficients as defined in (2.4.14),
and the inner product of periodic functions taken over one period, we have

〈f(t), g(t)〉[−T
2
,T
2
] = T 〈F [k], G[k]〉,

where the factor T is due to the normalization chosen in (2.4.13–2.4.14). In partic-
ular, for g(t) = f(t),

‖f(t)‖2
[−T

2
,T
2
]
= T‖F [k]‖2.

This is an example of Theorem 2.4, up to the scaling factor T .

Best Approximation Property While the following result is true in a more gen-
eral setting (see Section 2.2.3), it is sufficiently important to be restated for Fourier
series, namely

∥
∥
∥
∥
∥
f(t)−

N∑

k=−N
〈ϕk, f〉ϕk(t)

∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥
f(t)−

N∑

k=−N
akϕk(t)

∥
∥
∥
∥
∥
,

where {ak} is an arbitrary set of coefficients. That is, the Fourier series coefficients
are the best ones for an approximation in the span of {ϕk(t)}, k = −N, . . . ,N .
Moreover, ifN is increased, new coefficients are added without affecting the previous
ones.

Fourier series, beside their obvious use for characterizing periodic signals, are
useful for problems of finite size through periodization. The immediate concern,
however, is the introduction of a discontinuity at the boundary, since periodization
of a continuous signal on an interval results, in general, in a discontinuous periodic
signal.

Fourier series can be related to the Fourier transform seen earlier by using
sequences of Dirac functions which are also used in sampling. We will turn our
attention to these functions next.
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2.4.4 Dirac Function, Impulse Trains and Poisson Sum Formul a

The Dirac function [215], which is a generalized function or distribution, is defined
as a limit of rectangular functions. For example, if

δε(t) =

{
1/ε 0 ≤ t < ε,
0 otherwise,

(2.4.15)

then δ(t) = limε→0 δε(t). More generally, one can use any smooth function ψ(t)
with integral 1 and define [278]

δ(t) = lim
ǫ→0

1

ǫ
ψ

(
t

ǫ

)

.

Any operation involving a Dirac function requires a limiting operation. Since we are
reviewing standard results, and for notational convenience, we will skip the limiting
process. However, let us emphasize that Dirac functions have to be handled with
care in order to get meaningful results. When in doubt, it is best to go back to the
definition and the limiting process. For details see, for example, [215]. It follows
from (2.4.15) that

∫ ∞

−∞
δ(t) dt = 1, (2.4.16)

as well as8

∫ ∞

−∞
f(t− t0) δ(t) dt =

∫ ∞

−∞
f(t) δ(t− t0) dt = f(t0). (2.4.17)

Actually, the preceding two relations can be used as an alternative definition of
the Dirac function. That is, the Dirac function is a linear operator over a class of
functions satisfying (2.4.16–2.4.17). From the above, it follows that

f(t) ∗ δ(t − t0) = f(t− t0). (2.4.18)

One more standard relation useful for the Dirac function is [215]

f(t) δ(t) = f(0) δ(t).

The Fourier transform of δ(t− t0) is, from (2.4.1) and (2.4.17), equal to

δ(t− t0) ←→ e−jωt0 .

Using the symmetry property (2.4.3) and the previous results, we see that

ejω0t ←→ 2πδ(ω − ω0). (2.4.19)

8Note that this holds only for points of continuity.
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According to the above and using the modulation theorem (2.4.10), f(t) ejω0t has
Fourier transform F (ω − ω0).

Next, we introduce the train of Dirac functions spaced T > 0 apart, denoted
sT (t) and given by

sT (t) =
∞∑

n=−∞
δ(t− nT ). (2.4.20)

Before getting its Fourier transform, we derive the Poisson sum formula. Note that,
given a function f(t) and using (2.4.18),

∫ ∞

−∞
f(τ) sT (t− τ) dτ =

∞∑

n=−∞
f(t− nT ). (2.4.21)

Call the above T -periodic function f0(t). Further assume that f(t) is sufficiently
smooth and decaying rapidly such that the above series converges uniformly to
f0(t). We can then expand f0(t) into a uniformly convergent Fourier series

f0(t) =
∞∑

k=−∞

[

1

T

∫ T/2

−T/2
f0(τ)e

−j2πkτ/T dτ

]

ej2πkt/T .

Consider the Fourier series coefficient in the above formula, using the expression
for f0(t) in (2.4.21)

∫ T/2

−T/2
f0(τ)e

−j2πkτ/T dτ =
∞∑

n=−∞

∫ (2n+1)T/2

(2n−1)T/2
f(τ) e−j2πkτ/T dτ

= F

(
2πk

T

)

.

This leads to the Poisson sum formula.

THEOREM 2.5 Poisson Sum Formula

For a function f(t) with sufficient smoothness and decay,

∞∑

n=−∞
f(t− nT ) =

1

T

∞∑

k=−∞
F

(
2πk

T

)

ej2πkt/T . (2.4.22)

In particular, taking T = 1 and t = 0,

∞∑

n=−∞
f(n) =

∞∑

k=−∞
F (2πk).
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One can use the Poisson formula to derive the Fourier transform of the impulse
train sT (t) in (2.4.20). It can be shown that

ST (ω) =
2π

T

∞∑

k=−∞
δ(ω − 2πk

T
). (2.4.23)

We have explained that sampling the spectrum and periodizing the time-domain
function are equivalent. We will see the dual situation, when sampling the time-
domain function leads to a periodized spectrum. This is also an immediate appli-
cation of the Poisson formula.

2.4.5 Sampling

The process of sampling is central to discrete-time signal processing, since it pro-
vides the link with the continuous-time domain. Call fT (t) the sampled version of
f(t), obtained as

fT (t) = f(t) sT (t) =

∞∑

n=−∞
f(nT ) δ(t− nT ). (2.4.24)

Using the modulation theorem of the Fourier transform (2.4.10) and the transform
of sT (t) given in (2.4.23), we get

FT (ω) = F (ω) ∗ 1

T

∞∑

k=−∞
δ

(

ω − k2π
T

)

=
1

T

∞∑

k=−∞
F

(

ω − k2π
T

)

, (2.4.25)

where we used (2.4.18). Thus, FT (ω) is periodic with period 2π/T , and is obtained
by overlapping copies of F (ω) at every multiple of 2π/T . Another way to prove
(2.4.25) is to use the Poisson formula. Taking the Fourier transform of (2.4.24)
results in

FT (ω) =

∞∑

n=−∞
f(nT ) e−jnTω,

since fT (t) is a weighted sequence of Dirac functions with weights f(nT ) and shifts
of nT . To use the Poisson formula, consider the function gΩ(t) = f(t) e−jtΩ, which
has Fourier transform GΩ(ω) = F (ω + Ω) according to (2.4.19). Now, applying
(2.4.22) to gΩ(t), we find

∞∑

n=−∞
gΩ(nT ) =

1

T

∞∑

k=−∞
GΩ

(
2πk

T

)
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or changing Ω to ω and switching the sign of k,

∞∑

n=−∞
f(nT ) e−jnTω =

1

T

∞∑

k=−∞
F

(

ω − k2π
T

)

, (2.4.26)

which is the desired result (2.4.25).
Equation (2.4.25) leads immediately to the famous sampling theorem of Whit-

taker, Kotelnikov and Shannon. If the sampling frequency ωs = 2π/Ts is larger
than 2ωm (where F (ω) is bandlimited9 to ωm), then we can extract one instance
of the spectrum without overlap. If this were not true, then, for example for k = 0
and k = 1, F (ω) and F (ω − 2π/T ) would overlap and reconstruction would not be
possible.

THEOREM 2.6 Sampling Theorem

If f(t) is continuous and bandlimited to ωm, then f(t) is uniquely defined
by its samples taken at twice ωm or f(nπ/ωm). The minimum sampling
frequency is ωs = 2ωm and T = π/ωm is the maximum sampling period.
Then f(t) can be recovered by the interpolation formula

f(t) =
∞∑

n=−∞
f(nT ) sincT (t− nT ), (2.4.27)

where

sincT (t) =
sin (πt/T )

πt/T
.

Note that sincT (nT ) = δ[n], that is, it has the interpolation property since it is 1
at the origin but 0 at nonzero multiples of T . It follows immediately that (2.4.27)
holds at the sampling instants t = nT .

PROOF

The proof that (2.4.27) is valid for all t goes as follows: Consider the sampled version of
f(t), fT (t), consisting of weighted Dirac functions (2.4.24). We showed that its Fourier
transform is given by (2.4.25). The sampling frequency ωs equals 2ωm, where ωm is the
bandlimiting frequency of F (ω). Thus, F (ω−kωs) and F (ω− lωs) do not overlap for k 6= l.
To recover F (ω), it suffices to keep the term with k = 0 in (2.4.25) and normalize it by
T . This is accomplished with a function that has a Fourier transform which is equal to T
from −ωm to ωm and 0 elsewhere. This is called an ideal lowpass filter. Its time-domain
impulse response, denoted sincT (t) where T = π/ωm, is equal to (taking the inverse Fourier
transform)

sincT (t) =
1

2π

∫ ωm

−ωm

T e−jωtdω =
T

2πjt

[

ejπt/T − e−jπt/T
]

=
sin(πt/T )

πt/T
. (2.4.28)

9We will say that a function f(t) is bandlimited to ωm if its Fourier transform F (ω) = 0 for
|ω| ≥ ωm.
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Convolving fT (t) with sincT (t) filters out the repeated spectrums (terms with k 6= 0 in
(2.4.25)) and recovers f(t), as is clear in frequency domain. Because fT (t) is a sequence
of Dirac functions of weights f(nT ), the convolution results in a weighted sum of shifted
impulse responses,

[ ∞
∑

n=−∞
f(nT )δ(t− nT )

]

∗ sincT (t) =
∞
∑

n=−∞
f(nT ) sincT (t− nT ),

proving (2.4.27)

An alternative interpretation of the sampling theorem is as a series expansion on
an orthonormal basis for bandlimited signals. Define

ϕn,T (t) =
1√
T

sincT (t− nT ), (2.4.29)

whose Fourier transform magnitude is
√
T from −ωm to ωm, and 0 otherwise. One

can verify that ϕn,T (t) form an orthonormal set using Parseval’s relation. The
Fourier transform of (2.4.29) is (from (2.4.28) and the shift property (2.4.4))

Φn,T (ω) ←→
{ √

π/ωm e−jωnπ/ωm −ωm ≤ ω ≤ ωm,
0 otherwise,

where T = π/ωm. From (2.4.11), we find

〈ϕn,T , ϕk,T 〉 =
1

2ωm

∫ ωm

−ωm
ejω(n−k)π/ωm dω = δ[n − k].

Now, assume a bandlimited signal f(t) and consider the inner product 〈ϕn,T , f〉.
Again using Parseval’s relation,

〈ϕn,T , f〉 =

√
T

2π

∫ ωm

−ωm
ejωnT F (ω) dω =

√
Tf(nT ),

because the integral is recognized as the inverse Fourier transform of F (ω) at t =
nT (the bounds [−ωm, ωm] do not alter the computation of F (ω) because it is
bandlimited to ωm). Therefore, another way to write the interpolation formula
(2.4.27) is

f(t) =
∞∑

n=−∞
〈ϕn,T , f〉 ϕn,T (t) (2.4.30)

(the only change is that we normalized the sinc basis functions to have unit norm).
What happens if f(t) is not bandlimited? Because {ϕn,T } is an orthogonal set,

the interpolation formula (2.4.30) represents the orthogonal projection of the input
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signal onto the subspace of bandlimited signals. Another way to write the inner
product in (2.4.30) is

〈ϕn,T , f〉 =

∫ ∞

−∞
ϕ0,T (τ − nT ) f(τ) dτ = ϕ0,T (−t) ∗ f(t)|t=nT ,

which equals ϕ0,T (t)∗f(t) since ϕ0,T (t) is real and symmetric in t. That is, the inner
products, or coefficients, in the interpolation formula are simply the outputs of an
ideal lowpass filter with cutoff π/T sampled at multiples of T . This is the usual
view of the sampling theorem as a bandlimiting convolution followed by sampling
and reinterpolation.

To conclude this section, we will demonstrate a fact that will be used in Chap-
ter 4. It states that the following can be seen as a Fourier transform pair:

〈f(t), f(t+ n)〉 = δ[n] ←→
∑

k∈Z
|F (ω + 2kπ)|2 = 1. (2.4.31)

The left side of the equation is simply the deterministic autocorrelation10 of f(t)
evaluated at integers, that is, sampled autocorrelation. If we denote the auto-
correlation of f(t) as p(τ) = 〈f(t), f(t + τ)〉, then the left side of (2.4.31) is
p1(τ) = p(τ)s1(τ), where s1(τ) is as defined in (2.4.20) with T = 1. The Fourier
transform of p1(τ) is (apply (2.4.25))

P1(ω) =
∑

k∈Z
P (ω − 2kπ).

Since the Fourier transform of p(t) is P (ω) = |F (ω)|2, we get that the Fourier
transform of the right side of (2.4.31) is the left side of (2.4.31).

2.4.6 Discrete-Time Fourier Transform

Given a sequence {f [n]}n∈Z, its discrete-time Fourier transform (DTFT) is defined
by

F (ejω) =

∞∑

n=−∞
f [n] e−jωn, (2.4.32)

which is 2π-periodic. Its inverse is given by

f [n] =
1

2π

∫ π

−π
F (ejω) ejωn dω. (2.4.33)

A sufficient condition for the convergence of (2.4.32) is that the sequence f [n] be
absolutely summable. Then, convergence is uniform to a continuous function of ω

10The deterministic autocorrelation of a real function f(t) is f(t) ∗ f(−t) =
∫

f(τ ) f(τ + t) dτ .
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[211]. If the sequence is square-summable, then we have mean square convergence of
the series in (2.4.32) (that is, the energy of the error goes to zero as the summation
limits go to infinity). By using distributions, one can define discrete-time transforms
of more general sequences as well, for example [211]

ejω0n ←→ 2π
∞∑

k=−∞
δ(ω − ω0 + 2πk).

Comparing (2.4.32–2.4.33) with the equivalent expressions for Fourier series (2.4.13–
2.4.14), one can see that they are duals of each other (within scale factors). Fur-
thermore, if the sequence f [n] is obtained by sampling a continuous-time function
f(t) at instants nT ,

f [n] = f(nT ), (2.4.34)

then the discrete-time Fourier transform is related to the Fourier transform of f(t).
Denoting the latter by Fc(ω), the Fourier transform of its sampled version is equal
to (see (2.4.26))

FT (ω) =
∞∑

n=−∞
f(nT ) e−jnTω =

1

T

∞∑

k=−∞
Fc

(

ω − k2π
T

)

. (2.4.35)

Now consider (2.4.32) at ωT and use (2.4.34), thus

F (ejωT ) =

∞∑

n=−∞
f(nT ) e−jnωT

and, using (2.4.35),

F (ejωT ) =
1

T

∞∑

k=−∞
Fc

(

ω − k2π
T

)

. (2.4.36)

Because of these close relationships with the Fourier transform and Fourier series,
it follows that all properties seen earlier carry over and we will only repeat two of
the most important ones (for others, see [211]).

Convolution Given two sequences f [n] and g[n] and their discrete-time Fourier
transforms F (ejω) and G(ejω), then

f [n] ∗ g[n] =
∞∑

l=−∞
f [n− l] g[l] =

∞∑

l=−∞
f [l] g[n − l] ←→ F (ejω) G(ejω).
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Parseval’s Equality With the same notations as above, we have

∞∑

n=−∞
f∗[n] g[n] =

1

2π

∫ π

−π
F ∗(ejω) G(ejω) dω, (2.4.37)

and in particular, when g[n] = f [n],

∞∑

n=−∞
|f [n]|2 =

1

2π

∫ π

−π
|F (ejω)|2 dω.

2.4.7 Discrete-Time Fourier Series

If a discrete-time sequence is periodic with period N , that is, f [n] = f [n + lN ],
l ∈ Z, then its discrete-time Fourier series representation is given by

F [k] =

N−1∑

n=0

f [n] W nk
N , k ∈ Z, (2.4.38)

f [n] =
1

N

N−1∑

k=0

F [k] W−nk
N , n ∈ Z, (2.4.39)

where WN is the Nth root of unity. That this is an analysis-synthesis pair is easily
verified by using the orthogonality of the roots of unity (see (2.1.3)). Again, all the
familiar properties of Fourier transforms hold, taking periodicity into account. For
example, convolution is now periodic convolution, that is,

f [n] ∗ g[n] =
N−1∑

l=0

f [n− l] g[l] =
N−1∑

l=0

f0[(n − l) mod N ] g0[l], (2.4.40)

where f0[·] and g0[·] are equal to one period of f [·] and g[·] respectively. That is,
f0[n] = f [n], n = 0, . . . , N − 1, and 0 otherwise, and similarly for g0[n]. Then, the
convolution property is given by

f [n] ∗ g[n] = f0[n] ∗p g0[n] ←→ F [k] G[k], (2.4.41)

where ∗p denotes periodic convolution. Parseval’s formula then follows as

N−1∑

n=0

f∗[n] g[n] =
1

N

N−1∑

k=0

F ∗[k] G[k].
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Just as the Fourier series coefficients were related to the Fourier transform of one
period (see (2.4.14)), the coefficients of the discrete-time Fourier series can be ob-
tained from the discrete-time Fourier transform of one period. If we call F0(e

jω)
the discrete-time Fourier transform of f0[n], (2.4.32) and (2.4.38) imply that

F0(e
jω) =

∞∑

n=−∞
f0[n] e

−jωn =

N−1∑

n=0

f [n] e−jωn,

leading to
F [k] = F0(e

jω)|ω=k2π/N .
The sampling of F0(e

jω) simply repeats copies of f0[n] at integer multiples of N ,
and thus we have

f [n] =

∞∑

l=−∞
f0[n− lN ] =

1

N

N−1∑

k=0

F [k] ejnk2π/N =
1

N

N−1∑

k=0

F0

[

ejk2π/N
]

ejnk2π/N ,

(2.4.42)
which is the discrete-time version of the Poisson sum formula. It actually holds
for f0[·] with support larger than 0, . . . , N − 1, as long as the first sum in (2.4.42)
converges. For n = 0, (2.4.42) yields

∞∑

l=−∞
f0[lN ] =

1

N

N−1∑

k=0

F0

[

ejk2π/N
]

.

2.4.8 Discrete Fourier Transform

The importance of the discrete-time Fourier transform of a finite-length sequence
(which can be one period of a periodic sequence) leads to the definition of the
discrete Fourier transform (DFT). This transform is very important for computa-
tional reasons, since it can be implemented using the fast Fourier transform (FFT)
algorithm (see Chapter 6). The DFT is defined as

F [k] =

N−1∑

n=0

f [n] W nk
N , (2.4.43)

and its inverse as

f [n] =
1

N

N−1∑

k=0

F [k] W−nk
N , (2.4.44)

where WN = e−j2π/N . These are the same formulas as (2.4.38–2.4.39), except that
f [n] and F [k] are not defined for n, k 6∈ {0, . . . , N−1}. Recall that the discrete-time
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Fourier transform of a finite-length sequence can be sampled at ω = 2π/N (which
periodizes the sequence). Therefore, it is useful to think of the DFT as the transform
of one period of a periodic signal, or a sampling of the DTFT of a finite-length signal.
In both cases, there is an underlying periodic signal. Therefore, all properties are
with respect to this inherent periodicity. For example, the convolution property of
the DFT leads to periodic convolution (see (2.4.40)). Because of the finite-length
signals involved, the DFT is a mapping on C

N and can thus be best represented as
a matrix-vector product. Calling F the Fourier matrix with entries

Fn,k = W nk
N , n, k = 0, . . . , N − 1,

then its inverse is equal to (following (2.4.44))

F−1 =
1

N
F ∗. (2.4.45)

Given a sequence {f [0], f [1], . . . , f [N − 1]}, we can define a circular convolution
matrix C with a first line equal to {f [0], f [N − 1], . . . , f [1]} and each subsequent
line being a right circular shift of the previous one. Then, circular convolution of
{f [n]} with a sequence {g[n]} can be written as

f ∗p g = Cg = F−1ΛFg,

according to the convolution property (2.4.40–2.4.41), where Λ is a diagonal matrix
with F [k] on its diagonal. Conversely, this means that C is diagonalized by F

or that the complex exponential sequences {ej(2π/N)nk} = W−nk
N are eigenvectors

of the convolution matrix C, with eigenvalues F [k]. Note that the time reversal
associated with convolution is taken into account in the definition of the circulant
matrix C.

Using matrix notation, Parseval’s formula for the DFT follows easily. Call f̂
the Fourier transform of the vector f = ( f [0] f [1] · · · f [N − 1] )T , that is

f̂ = Ff ,

and a similar definition for ĝ as the Fourier transform of g. Then

f̂
∗
ĝ = (Ff)∗(Fg) = f∗F ∗Fg = Nf∗g,

where we used (2.4.45), that is, the fact that F ∗ is the inverse of F up to a scale
factor of N .

Other properties of the DFT follow from their counterparts for the discrete-time
Fourier transform, bearing in mind the underlying circular structure implied by the
discrete-time Fourier series (for example, a shift is a circular shift).
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Figure 2.3 Fourier transforms with various combinations of continu-
ous/discrete time and frequency variables (see also Table 2.1). (a) Continuous-
time Fourier transform. (b) Continuous-time Fourier series (note that the
frequency-domain function is discrete in frequency, appearing at multiples of
2π/T , with weights F [k]). (c) Discrete-time Fourier transform (note that the
time-domain function is discrete in time, appearing at multiples of 2π/ωs, with
weights f [n]). (d) Discrete-time Fourier series.

2.4.9 Summary of Various Flavors of Fourier Transforms

Between the Fourier transform, where both time and frequency variables are con-
tinuous, and the discrete-time Fourier series (DTFS), where both variables are
discrete, there are a number of intermediate cases.

First, in Table 2.1 and Figure 2.3, we compare the Fourier transform, Fourier
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FIGURE 2.4 fig2.3.2
Figure 2.4 Fourier transform with length and bandwidth restrictions on the
signal (see also Table 2.2). (a) Fourier transform of bandlimited signals, where
the time-domain signal can be sampled. Note that the function in frequency
domain has support on (−ωs/2, ωs/2). (b) Fourier transform of finite-length
signals, where the frequency-domain signal can be sampled. (c) Fourier series
of bandlimited periodic signals (it has a finite number of Fourier components).
(d) Discrete-time Fourier transform of finite-length sequences.

series, discrete-time Fourier transform and discrete-time Fourier series. The table
shows four combinations of continuous versus discrete variables in time and fre-
quency. As defined in Section 2.4.1, we use a short-hand CT or DT for continuous-
versus discrete-time variable, and we call it a Fourier transform or series if the
synthesis formula involves an integral or a summation.

Then, in Table 2.2 and Figure 2.4, we consider the same transforms but when
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the signal satisfies some additional restrictions, that is, when it is limited either in
time or in frequency. In that case, the continuous function (of time or frequency)
can be sampled without loss of information.

2.5 SIGNAL PROCESSING

This section briefly covers some fundamental notions of continuous and discrete-
time signal processing. Our focus is on linear time-invariant or periodically time-
varying systems. For these, weighted complex exponentials play a special role,
leading to the Laplace and z-transform as useful generalizations of the continu-
ous and discrete-time Fourier transforms. Within this class of systems, we are
particularly interested in those having finite-complexity realizations or finite-order
differential/difference equations. These will have rational Laplace or z-transforms,
which we assume in what follows. For further details, see [211, 212]. We also discuss
the basics of multirate signal processing which is at the heart of the material on
discrete-time bases in Chapter 3. More material on multirate signal processing can
be found in [67, 308].

2.5.1 Continuous-Time Signal Processing

Signal processing, which is based on Fourier theory, is concerned with actually
implementing algorithms. So, for example, the study of filter structures and their
associated properties is central to the subject.

The Laplace Transform An extension of the Fourier transform to the complex
plane (instead of just the frequency axis) is the following:

F (s) =

∫ ∞

−∞
f(t)e−st dt,

where s = σ + jω. This is equivalent, for a given σ, to the Fourier transform of
f(t)·e−σt, that is, the transform of an exponentially weighted signal. Now, the above
transform does not in general converge for all s, that is, associated with it is a region
of convergence (ROC). The ROC has the following important properties [212]: The
ROC is made up of strips in the complex plane parallel to the jω-axis. If the jω-axis
is contained in the ROC, then the Fourier transform converges. Note that if the
Laplace transform is rational, then the ROC cannot contain any poles. If a signal
is right-sided (that is, zero for t < T0) or left-sided (zero for t > T1), then the ROC
is right- or left-sided, respectively, in the sense that it extends from some vertical
line (corresponding to the limit value of Re(s) up to where the Laplace transform
converges) all the way to Re(s) becoming plus or minus infinity. It follows that a
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finite-length signal has the whole complex plane as its ROC (assuming it converges
anywhere), since it is both left- and right-sided and connected.

If a signal is two-sided, that is, neither left- nor right-sided, then its ROC is the
intersection of the ROC’s of its left- and right-sided parts. This ROC is therefore
either empty or of the form of a vertical strip.

Given a Laplace transform (such as a rational expression), different ROC’s lead
to different time-domain signals. Let us illustrate this with an example.

Example 2.1

Assume F (s) = 1/((s + 1)(s + 2)). The ROC {Re(s) < −2} corresponds to a left-sided
signal

f(t) = −(e−t − e−2t) u(−t).
The ROC {Re(s) > −1} corresponds to a right-sided signal

f(t) = (e−t − e−2t) u(t).

Finally, the ROC {−2 < Re(s) < −1} corresponds to a two-sided signal

f(t) = −e−t u(−t)− e−2t u(t).

Note that only the right-sided signal would also have a Fourier transform (since its ROC
includes the jω-axis).

For the inversion of the Laplace transform, recall its relation to the Fourier
transform of an exponentially weighted signal. Then, it can be shown that its
inverse is

f(t) =
1

2πj

∫ σ+j∞

σ−j∞
F (s) est ds,

where σ is chosen inside the ROC. We will denote a Laplace transform pair by

f(t) ←→ F (s), s ∈ ROC.

For a review of Laplace transform properties, see [212]. Next, we will concentrate
on filtering only.

Linear Time-Invariant Systems The convolution theorem of the Laplace trans-
form follows immediately from the fact that exponentials are eigenfunctions of the
convolution operator. For, if f(t) = h(t) ∗ g(t) and h(t) = est, then

f(t) =

∫

h(t−τ) g(τ) dτ =

∫

es(t−τ) g(τ) dτ = est
∫

e−sτ g(τ) dτ = est G(s).

The eigenvalue attached to est is the Laplace transform of g(t) at s. Thus,

f(t) = h(t) ∗ g(t) ←→ F (s) = H(s) G(s),
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with an ROC containing the intersection of the ROC’s of H(s) and G(s).
The differentiation property of the Laplace transform says that

∂f(t)

∂t
←→ s F (s),

with ROC containing the ROC of F (s). Then, it follows that linear constant-
coefficient differential equations can be characterized by a Laplace transform called
the transfer function H(s). Linear, time-invariant differential equations, given by

N∑

k=0

ak
∂ky(t)

∂tk
=

M∑

k=0

bk
∂kx(t)

∂tk
, (2.5.1)

lead, after taking the Laplace transform, to the following ratio:

H(s) =
Y (s)

X(s)
=

∑M
k=0 bks

k

∑N
k=0 aks

k
,

that is, the input and the output are related by a convolution with a filter having
impulse response h(t), where h(t) is the inverse Laplace transform of H(s).

To take this inverse Laplace transform, we need to specify the ROC. Typically,
we look for a causal solution, where we solve the differential equation forward
in time. Then, the ROC extends to the right of the vertical line which passes
through the rightmost pole. Stability11 of the filter corresponding to the transfer
function requires that the ROC include the jω-axis. This leads to the well-known
requirement that a causal system with rational transfer function is stable if and
only if all the poles are in the left half-plane (the real part of the pole location is
smaller than zero). In the above discussion, we have assumed initial rest conditions,
that is, the homogeneous solution of differential Equation (2.5.1) is zero (otherwise,
the system is neither linear nor time-invariant).

Example 2.2 Butterworth Filters

Among various classes of continuous-time filters we will briefly describe the Butterworth
filters, both because they are simple and because they will reappear later as useful filters in
the context of wavelets. The magnitude squared of the Fourier transform of an Nth-order
Butterworth filter is given by

|HN (jω)|2 =
1

1 + (jω/jωc)
2N
, (2.5.2)

where ωc is a parameter which will specify the cutoff frequency beyond which sinusoids are
substantially attenuated. Thus, ωc defines the bandwidth of the lowpass Butterworth filter.

11Stability of a filter means that a bounded input produces a bounded output.
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Since |HN (jω)|2 = H(jω)H∗(jω) = H(jω)H(−jω) when the filter is real, and noting that
(2.5.2) is the Laplace transform for s = jω, we get

H(s) H(−s) =
1

1 + (s/jωc)
2N
. (2.5.3)

The poles of H(s)H(−s) are thus at (−1)1/2N (jωc), or

|sk| = ωc, arg[sk] =
π(2k + 1)

2N
+
π

2
,

and k = 0, . . . , 2N − 1. The poles thus lie on a circle, and they appear in pairs at ±sk.
To get a stable and causal filter, one simply chooses the N poles which lie on the left-hand
side half-circle. Since pole locations specify the filter only up to a scale factor, set s = 0
in (2.5.3) which leads to H(0) = 1. For example, a second-order Butterworth filter has the
following Laplace transform:

H2(s) =
ω2
c

(s+ ωcejπ/4)(s+ ωce−jπ/4)
. (2.5.4)

One can find its “physical” implementation by going back, through the inverse Laplace
transform, to the equivalent linear constant-coefficient differential equation. See also Ex-
ample 3.6 in Chapter 3, for discrete-time Butterworth filters.

2.5.2 Discrete-Time Signal Processing

Just as the Laplace transform was a generalization of the Fourier transform, the
z-transform will be introduced as a generalization of the discrete-time Fourier trans-
form [149]. Again, it will be most useful for the study of difference equations (the
discrete-time equivalent of differential equations) and the associated discrete-time
filters.

The z-Transform The forward z-transform is defined as

F (z) =

∞∑

n=−∞
f [n] z−n, (2.5.5)

where z ∈ C. On the unit circle z = ejω, this is the discrete-time Fourier transform
(2.4.32), and for z = ρejω, it is the discrete-time Fourier transform of the sequence
f [n] · ρn. Similarly to the Laplace transform, there is a region of convergence
(ROC) associated with the z-transform F (z), namely a region of the complex plane
where F (z) converges. Consider the case where the z-transform is rational and
the sequence is bounded in amplitude. The ROC does not contain any pole. If the
sequence is right-sided (left-sided), the ROC extends outward (inward) from a circle
with the radius corresponding to the modulus of the outermost (innermost) pole. If
the sequence is two-sided, the ROC is a ring. The discrete-time Fourier transform
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converges absolutely if and only if the ROC contains the unit circle. From the
above discussion, it is clear that the unit circle in the z-plane of the z-transform
and the jω-axis in the s-plane of the Laplace transform play equivalent roles.

Also, just as in the Laplace transform, a given z-transform corresponds to dif-
ferent signals, depending on the ROC attached to it.

The inverse z-transform involves contour integration in the ROC and Cauchy’s
integral theorem [211]. If the contour of integration is the unit circle, the inver-
sion formula reduces to the discrete-time Fourier transform inversion (2.4.33). On
circles centered at the origin but of radius ρ different from 1, one can think of for-
ward and inverse z-transforms as the Fourier analysis and synthesis of a sequence
f ′[n] = ρnf [n]. Thus, convergence properties are as for the Fourier transform of the
exponentially weighted sequence. In the ROC, we can write formally a z-transform
pair as

f [n] ←→ F (z), z ∈ ROC.

When z-transforms are rational functions, the inversion is best done by partial frac-
tion expansion followed by term-wise inversion. Then, the z-trans-
form pairs,

anu[n] ←→ 1

1− az−1
|z| > |a|, (2.5.6)

and

−anu[−n− 1] ←→ 1

1− az−1
|z| < |a|, (2.5.7)

are useful, where u[n] is the unit-step function (u[n] = 1, n ≥ 0, and 0 otherwise).
The above transforms follow from the definition (2.5.5) and the sum of geometric
series, and they are a good example of identical z-transforms with different ROC’s
corresponding to different signals.

As a simple example, consider the sequence

f [n] = a|n|

which, following (2.5.6–2.5.7), has a z-transform

F (z) =
1

1− az−1
− 1

1− 1/az−1
, ROC |a| < |z| <

∣
∣
∣
∣

1

a

∣
∣
∣
∣
,

that is, a nonempty ROC only if |a| < 1. For more z-transform properties, see
[211].
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Convolutions, Difference Equations and Discrete-Time Fil ters Just as in con-
tinuous time, complex exponentials are eigenfunctions of the convolution operator.
That is, if f [n] = h[n] ∗ g[n] and h[n] = zn, z ∈ C, then

f [n] =
∑

k

h[n− k] g[k] =
∑

k

z(n−k)g[k] = zn
∑

k

z−kg[k] = znG(z).

The z-transform G(z) is thus the eigenvalue of the convolution operator for that
particular value of z. The convolution theorem follows as

f [n] = h[n] ∗ g[n] ←→ F (z) = H(z) G(z),

with an ROC containing the intersection of the ROC’s of H(z) and G(z). Convo-
lution with a time-reversed filter can be expressed as an inner product,

f [n] =
∑

k

x[k] h[n − k] =
∑

k

x[k] h̃[k − n] = 〈x[k], h̃[k − n]〉,

where “ ˜ ” denotes time reversal, h̃[n] = h[−n].
It is easy to verify that the “delay by one” operator, that is, a discrete-time

filter with impulse response δ[n − 1] has a z-transform z−1. That is why z−1 is
often called a delay, or z−1 is used in block diagrams to denote a delay. Then, given
x[n] with the z-transform X(z), x[n− k] has a z-transform

x[n− k] ←→ z−kX(z).

Thus, a linear constant-coefficient difference equation can be analyzed with the
z-transform, leading to the notion of a transfer function. We assume initial rest
conditions in the following, that is, all delay operators are set to zero initially. Then,
the homogeneous solution to the difference equation is zero. Assume a linear, time-
invariant difference equation given by

N∑

k=0

aky[n− k] =

M∑

k=0

bk x[n− k], (2.5.8)

and taking its z-transform using the delay property, we get the transfer function as
the ratio of the output and input z-transforms,

H(z) =
Y (z)

X(z)
=

∑M
k=0 bkz

−1

∑N
k=0 akz

−1
.

The output is related to the input by a convolution with a discrete-time filter having
as impulse response h[n], the inverse z-transform of H(z). Again, the ROC depends
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on whether we wish a causal12 or an anticausal solution, and the system is stable
if and only if the ROC includes the unit circle. This leads to the conclusion that
a causal system with rational transfer function is stable if and only if all poles are
inside the unit circle (their modulus is smaller than one).

Note, however, that a system with poles inside and outside the unit circle can
still correspond to a stable system (but not a causal one). Simply gather poles inside
the unit circle into a causal impulse response, while poles outside correspond to an
anticausal impulse response, and thus, the stable impulse response is two-sided.

From a transfer function given by a z-transform it is always possible to get a
difference equation and thus a possible hardware implementation. However, many
different realizations have the same transfer function and depending on the ap-
plication, certain realizations will be vastly superior to others (for example, in
finite-precision implementation). Let us just mention that the most obvious im-
plementation which realizes the difference equation (2.5.8), called the direct-form
implementation is poor as far as coefficient quantization is concerned. A better
solution is obtained by factoring H(z) into single and/or complex conjugate roots
and implementing a cascade of such factors. For a detailed discussion of numerical
behavior of filter structures see [211].

Autocorrelation and Spectral Factorization An important concept which we
will use later in the book, is that of deterministic autocorrelation (autocorrelation
in the statistical sense will be discussed in Chapter 7, Appendix 7.A). We will say
that

p[m] = 〈h[n], h[n +m]〉,
is the deterministic autocorrelation (or, simply autocorrelation from now on) of the
sequence h[n]. In Fourier domain, we have that

P (ejω) =
∞∑

n=−∞
p[n] e−jωn =

∞∑

n=−∞

∞∑

k=−∞
h∗[k] h[k + n] e−jωn,

= H∗(ejω) H(ejω) = |H(ejω)|2,

that is, P (ejω) is a nonnegative function on the unit circle. In other words, the
following is a Fourier-transform pair:

p[m] = 〈h[n], h[n +m]〉 ←→ P (ejω) = |H(ejω)|2.

Similarly, in z-domain, the following is a transform pair:

p[m] = 〈h[n], h[n +m]〉 ←→ P (z) = H(z) H∗(1/z)

12A discrete-time sequence x[n] is said to be causal if x[n] = 0 for n < 0.
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(recall that the subscript * implies conjugation of the coefficients but not of z).
Note that from the above, it is obvious that if zk is a zero of P (z), so is 1/z∗k (that
also means that zeros on the unit circle are of even multiplicity). When h[n] is
real, and zk is a zero of H(z), then z∗k, 1/zk, 1/z

∗
k are zeros as well (they are not

necessarily different).
Suppose now that we are given an autocorrelation function P (z) and we want

to find H(z). Here, H(z) is called a spectral factor of P (z) and the technique of
extracting it, spectral factorization. These spectral factors are not unique, and are
obtained by assigning one zero out of each zero pair to H(z) (we assume here that
p[m] is FIR, otherwise allpass functions (2.5.10) can be involved). The choice of
which zeros to assign toH(z) leads to different spectral factors. To obtain a spectral
factor, first factor P (z) into its zeros as follows:

P (z) = α

Nu∏

i=1

((1 − z1i z−1) (1− z1i z))
N∏

i=1

(1− z2i z−1)
N∏

i=1

(1− z∗2i z),

where the first product contains the zeros on the unit circle, and thus |z1i | = 1,
and the last two contain pairs of zeros inside/outside the unit circle, respectively.
In that case, |z2i | < 1. To obtain various H(z), one has to take one zero out of
each zero pair on the unit circle, as well as one of two zeros inside/outside the
unit circle. Note that all these solutions have the same magnitude response but
different phase behavior. An important case is the minimum phase solution which
is the one, among all causal spectral factors, that has the smallest phase term. To
get a minimum phase solution, we will consistently choose the zeros inside the unit
circle. Thus, H(z) would be of the form

H(z) =
√
α

Nu∏

i=1

(1− z1i z−1)
N∏

i=1

(1− z2i z−1).

Examples of Discrete-Time Filters Discrete-time filters come in two major
classes. The first class consists of infinite impulse response (IIR) filters, which
correspond to difference equations where the present output depends on past out-
puts (that is, N ≥ 1 in (2.5.8)). IIR filters often depend on a finite number of past
outputs (N < ∞) in which case the transfer function is a ratio of polynomials in
z−1. Often, by abuse of language, we will call an IIR filter a filter with a rational
transfer function. The second class corresponds to nonrecursive, or finite impulse
response (FIR) filters, where the output only depends on the inputs (or N = 0 in
(2.5.8)). The z-transform is thus a polynomial in z−1. An important class of FIR
filters are those which have symmetric or antisymmetric impulse responses because
this leads to a linear phase behavior of their Fourier transform. Consider causal
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FIR filters of length L. When the impulse response is symmetric, one can write

H(ejω) = e−jω(L−1)/2 A(ω),

where L is the length of the filter, and A(ω) is a real function of ω. Thus, the phase
is a linear function of ω. Similarly, when the impulse response is antisymmetric,
one can write

H(ejω) = je−jω(L−1)/2 B(ω),

where B(ω) is a real function of ω. Here, the phase is an affine function of ω (but
usually called linear phase).

One way to design discrete-time filters is by transformation of an analog filter.
For example, one can sample the impulse response of the analog filter if its magni-
tude frequency response is close enough to being bandlimited. Another approach
consists of mapping the s-plane of the Laplace transform into the z-plane. From
our previous discussion of the relationship between the two planes, it is clear that
the jω-axis should map into the unit circle and the left half-plane should become
the inside of the unit circle in order to preserve stability. Such a mapping is given
by the bilinear transformation [211]

B(z) = β
1− z−1

1 + z−1
.

Then, the discrete-time filter Hd is obtained from a continuous-time filter Hc by
setting

Hd(z) = Hc(B(z)).

Considering what happens on the jω-axis and the unit circle, it can be verified that
the bilinear transform warps the frequency axis as ω = 2arctan(ωc/β), where ω
and ωc are the discrete and continuous frequency variables, respectively.

As an example, the discrete-time Butterworth filter has a magnitude frequency
response equal to

|H(ejω)|2 =
1

1 + (tan(ω/2)/ tan(ω0/2))
2N
. (2.5.9)

This squared magnitude is flat at the origin, in the sense that its first 2N − 1
derivatives are zero at ω = 0. Note that since we have a closed-form factorization of
the continuous-time Butterworth filter (see (2.5.4)), it is best to apply the bilinear
transform to the factored form rather than factoring (2.5.9) in order to obtain
H(ejω) in its cascade form.

Instead of the above indirect construction, one can design discrete-time filters
directly. This leads to better designs at a given complexity of the filter or, con-
versely, to lower-complexity filters for a given filtering performance.
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In the particular case of FIR linear phase filters (that is, a finite-length sym-
metric or antisymmetric impulse response), a powerful design method called the
Parks-McClellan algorithm [211] leads to optimal filters in the minimax sense (the
maximum deviation from the desired Fourier transform magnitude is minimized).
The resulting approximation of the desired frequency response becomes equiripple
both in the passband and stopband (the approximation error is evenly spread out).
It is thus very different from a monotonically decreasing approximation as achieved
by a Butterworth filter.

Finally, we discuss the allpass filter, which is an example of what could be called
a unitary filter. An allpass filter has the property that

|Hap(e
jω)| = 1, (2.5.10)

for all ω. Calling y[n] the output of the allpass when x[n] is input, we have

‖y‖2 =
1

2π
‖Y (ejω)‖2 =

1

2π
‖Hap(e

jω) X(ejω)‖2 =
1

2π
‖X(ejω)‖2 = ‖x‖2,

which means it conserves the energy of the signal it filters. An elementary single-
pole/zero allpass filter is of the following form (see also Appendix 3.A in Chapter
3):

Hap(z) =
z−1 − a∗
1− az−1

. (2.5.11)

Writing the pole location as a = ρejθ, the zero is at 1/a∗ = (1/ρ)ejθ. A general
allpass filter is made up of elementary sections as in (2.5.11)

Hap(z) =
N∏

i=1

z−1 − a∗i
1− ai z−1

=
P̃ (z)

P (z)
, (2.5.12)

where P̃ (z) = z−NP∗(z−1) is the time-reversed and coefficient-conjugated version
of P (z) (recall that the subscript ∗ stands for conjugation of the coefficients of the
polynomial, but not of z). On the unit circle,

Hap(e
jω) = e−jωN

P ∗(ejω)
P (ejω)

,

and property (2.5.10) follows easily. That all rational functions satisfying (2.5.10)
can be factored as in (2.5.12) is shown in [308].

2.5.3 Multirate Discrete-Time Signal Processing

As implied by its name, multirate signal processing deals with discrete-time se-
quences taken at different rates. While one can always go back to an underlying
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continuous-time signal and resample it at a different rate, most often, the rate
changes are being done in the discrete-time domain. We review some of the key
results. For further details, see [67] and [308].

Sampling Rate Changes Downsampling or subsampling13 a sequence x[n] by an
integer factor N results in a sequence y[n] given by

y[n] = x[nN ],

that is, all samples with indexes modulo N different from zero are discarded. In
the Fourier domain, we get

Y (ejω) =
1

N

N−1∑

k=0

X
(

ej(ω−2πk)/N
)

, (2.5.13)

that is, the spectrum is stretched by N , and (N − 1) aliased versions at multiples
of 2π are added. They are called aliased because they are copies of the original
spectrum (up to a stretch) but shifted in frequency. That is, low-frequency com-
ponents will be replicated at the aliasing frequencies ωi = 2πi/N , as will high
frequencies (with an appropriate shift). Thus, some high-frequency sinusoid might
have a low-frequency alias. Note that the aliased components are nonharmonically
related to the original frequency component; a fact that can be very disturbing in
applications such as audio. Sometimes, it is useful to extend the above relation to
the z-transform domain;

Y (z) =
1

N

N−1∑

k=0

X
(

W k
N z1/N

)

, (2.5.14)

where WN = e−j2π/N as usual. To prove (2.5.14), consider first a signal x′[n] which
equals x[n] at multiples of N , and 0 elsewhere. If x[n] has z-transform X(z), then
X ′(z) equals

X ′(z) =
1

N

N−1∑

k=0

X(W k
N z) (2.5.15)

as can be shown by using the orthogonality of the roots of unity (2.1.3). To obtain
y[n] from x′[n], one has to drop the extra zeros between the nonzero terms or
contract the signal by a factor of N . This is obtained by substituting z1/N for z in
(2.5.15), leading to (2.5.14). Note that (2.5.15) contains the signal X as well as its

13Sometimes, the term decimation is used even though it historically stands for “keep 9 out of
10” in reference to a Roman practice of killing every tenth soldier of a defeated army.
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X(e j(ω−2π)/3)/3 X(e j(ω−4π)/3)/3

Y(e jω)

1/3

5/9

FIGURE 2.5 fig2.4.1

(b)

Figure 2.5 Downsampling by 3 in the frequency domain. (a) Original spec-
trum (we assume a real spectrum for simplicity). (b) The three stretched
replicas and the sum Y (ejω).

N − 1 modulated versions (on the unit circle, X(W k
Nz) = X(ej(ω−k2π/N))). This

is the reason why in Chapter 3, we will call the analysis dealing with X(W k
N z),

modulation-domain analysis.

An alternative proof of (2.5.13) (which is (2.5.14) on the unit circle) consists
of going back to the underlying continuous-time signal and resampling with an
N -times larger sampling period. This is considered in Problem 2.10.

By way of an example, we show the case N = 3 in Figure 2.5. It is obvious
that in order to avoid aliasing, downsampling by N should be preceded by an ideal
lowpass filter with cutoff frequency π/N (see Figure 2.6(a)). Its impulse response
h[n] is given by

h[n] =
1

2π

∫ π/N

−π/N
ejωn dω =

sinπn/N

πn
. (2.5.16)
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FIGURE 2.6

LP: π/N

LP: π/M M

LP: min(π/M, π/N)  N M

(a)

fig2.4.2

(b)

(c)

 N

Figure 2.6 Sampling rate changes. (a) Downsampling by N preceded by ideal
lowpass filtering with cutoff frequency π/N . (b) Upsampling by M followed
by interpolation with an ideal lowpass filter with cutoff frequency π/M . (c)
Sampling rate change by a rational factor M/N , with an interpolation filter in
between. The cutoff frequency is the lesser of π/M and π/N .

The converse of downsampling is upsampling by an integer M . That is, to obtain a
new sequence, one simply inserts M − 1 zeros between consecutive samples of the
input sequence, or

y[n] =

{
x[n/M ] n = kM, k ∈ Z

0 otherwise.

In Fourier domain, this amounts to

Y (ejω) = X(ejMω), (2.5.17)

and similarly, in z-transform domain

Y (z) = X(zM ). (2.5.18)

Due to upsampling, the spectrum contracts by M . Besides the “base spectrum”
at multiples of 2π, there are spectral images in between which are due to the
interleaving of zeros in the upsampling. To get rid of these spectral images, a
perfect interpolator or a lowpass filter with cutoff frequency π/M has to be used,
as shown in Figure 2.6(b). Its impulse response is as given in (2.5.16), but with a
different scale factor,

h[n] =
sinπn/M

πn/M
.

It is easy to see that h[nM ] = δ[n]. Therefore, calling u[n] the result of the in-
terpolation, or u[n] = y[n] ∗ h[n], it follows that u[nM ] = x[n]. Thus, u[n] is a
perfect interpolation of x[n] in the sense that the missing samples have been filled
in without disturbing the original ones.
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A rational sampling rate change by M/N is obtained by cascading upsampling
and downsampling with an interpolation filter in the middle, as shown in Figure
2.6(c). The interpolation filter is the cascade of the ideal lowpass for the upsampling
and for the downsampling, that is, the narrower of the two in the ideal filter case.

Finally, we demonstrate a fact that will be extensively used in Chapter 3. It
can be seen as an application of downsampling followed by upsampling to the de-
terministic autocorrelation of g[n]. This is the discrete-time equivalent of (2.4.31).
We want to show that the following holds:

〈g[n], g[n +Nl]〉 = δ[l] ←→
N−1∑

k=0

G(W k
Nz) G(W

−k
N z−1) = N. (2.5.19)

The left side of the above equation is simply the autocorrelation of g[n] evaluated
at every Nth index m = Nl. If we denote the autocorrelation of g[n] as p[n], then
the left side of (2.5.19) is p′[n] = p[Nn]. The z-transform of p′[n] is (apply (2.5.14))

P ′(z) =
1

N

N−1∑

k=0

P (W k
N z1/N ).

Replace now z1/N by z and since the z-transform of p[n] is P (z) = G(z)G(z−1), we
get that the z-transform of the left side of (2.5.19) is the right side of (2.5.19).

Multirate Identities

Commutativity of Sampling Rate Changes Upsampling by M and downsampling by
N commute if and only if M and N are coprime.

The relation is shown pictorially in Figure 2.7(a). Using (2.5.14) and (2.5.18)
for down and upsampling in z-domain, we find that upsampling by M followed by
downsampling by N leads to

Yu/d(z) =

N−1∑

k=0

X(W k
N zM/N ),

while the reverse order leads to

Yd/u(z) =
N−1∑

k=0

X(W kM
N zM/N ).

For the two expressions to be equal, kM mod N has to be a permutation, that is,
kM mod N = l has to have a unique solution for all l ∈ {0, . . . , N−1}. IfM and N
have a common factor L > 1, then M =M ′ L and N = N ′ L. Note that (kM mod
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FIGURE 2.7 fignew2.5.3

(a)

H(z)(b)  N

 M  N  N  M

(M,N) coprime

H(zN)  N

H(z)  N H(zN) N(c)

Figure 2.7 Multirate identities. (a) Commutativity of up and downsampling.
(b) Interchange of downsampling and filtering. (c) Interchange of filtering and
upsampling.

N) mod L is zero, or kM mod N is a multiple of L and thus not a permutation.
If M and N are coprime, then Bezout’s identity [209] guarantees that there exist
two integers m and n such that mM + nN = 1. It follows that mM mod N = 1
thus, k = ml mod N is the desired solution to the equation k M mod N = l. This
property has an interesting generalization in multiple dimensions (see for example
[152]).

Interchange of Filtering and Downsampling Downsampling by N followed by filtering
with a filter having z-transform H(z) is equivalent to filtering with the upsampled
filter H(zN ) before the downsampling.

Using (2.5.14), it follows that downsampling the filtered signal with the z-
transform X(z)H(zN ) results in

N−1∑

k=0

X(WK
N z1/N ) H

(

(W k
N z1/N )N

)

= H(z)
N−1∑

k=0

X(W k
N z1/N ),

which is equal to filtering a downsampled version of X(z).

Interchange of Filtering and Upsampling Filtering with a filter having the z-transform
H(z), followed by upsampling byN , is equivalent to upsampling followed by filtering
with H(zN ).

Using (2.5.18), it is immediate that both systems lead to an output with z-
transform X(zN )H(zN ) when the input is X(z).

In short, the last two properties simply say that filtering in the downsampled
domain can always be realized by filtering in the upsampled domain, but then with
the upsampled filter (down and upsampled stand for low versus high sampling rate
domain). The last two relations are shown in Figures 2.7(b) and (c).
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Figure 2.8 Polyphase transform (forward and inverse transforms for the case
N = 3 are shown).

Polyphase Transform Recall that in a time-invariant system, if input x[n] pro-
duces output y[n], then input x[n +m] will produce output y[n +m]. In a time-
varying system this is not true. However, there exist periodically time-varying
systems for which if input x[n] produces output y[n], then x[n + Nm] produces
output y[n+mN ]. These systems are periodically time-varying with period N . For
example, a downsampler by N followed by an upsampler by N is such a system. A
downsampler alone is also periodically time-varying, but with a time-scale change.
Then, if x[n] produces y[n], x[n+mN ] produces y[n+m] (note that x[n] and y[n]
do not live on the same time-scale). Such periodically time-varying systems can
be analyzed with a simple but useful transform where a sequence is mapped into
N sequences with each being a shifted and downsampled version of the original
sequence. Obviously, the original sequence can be recovered by simply interleaving
the subsequences. Such a transform is called a polyphase transform of size N since
each subsequence has a different phase and there are N of them. The simplest
example is the case N = 2, where a sequence is subdivided into samples of even
and odd indexes, respectively. In general, we define the size-N polyphase transform
of a sequence x[n] as a vector of sequences (x0[n] x1[n] · · · xN−1[n] )

T , where

xi[n] = x[nN + i].

These are called signal polyphase components. In z-transform domain, we can write
X(z) as the sum of shifted and upsampled polyphase components. That is,

X(z) =
N−1∑

i=0

z−iXi(z
N ), (2.5.20)

where

Xi(z) =

∞∑

n=−∞
x[nN + i] z−n. (2.5.21)
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Figure 2.8 shows the signal polyphase transform and its inverse (for the case N = 3).
Because the forward shift requires advance operators which are noncausal, a causal
version would produce a total delay of N − 1 samples between forward and inverse
polyphase transform. Such a causal version is obtained by multiplying the noncausal
forward polyphase transform by z−N+1.

Later we will need to express the output of filtering with H followed by down-
sampling in terms of the polyphase components of the input signal. That is, we
need the 0th polyphase component of H(z)X(z). This is easiest if we define a
polyphase decomposition of the filter to have the reverse phase of the one used for
the signal, or

H(z) =
N−1∑

i=0

ziHi(z
N ), (2.5.22)

with

Hi(z) =
∞∑

n=−∞
h[Nn − i]z−n, i = 0, . . . , N − 1. (2.5.23)

Then the product H(z)X(z) after downsampling by N becomes

Y (z) =

N−1∑

i=0

Hi(z) Xi(z).

The same operation (filtering by h[n] followed by downsampling by N) can be
expressed in matrix notation as







...
y[0]
y[1]
...








=









...
...

...
...

· · · h[L− 1] · · · h[L−N ] h[L−N − 1] · · ·
· · · 0 · · · 0 h[L− 1] · · ·

...
...

...
...
















...
x[0]
x[1]
...







,

where L is the filter length, and the matrix operator will be denoted by H. Simi-
larly, upsampling by N followed by filtering by g[n] can be expressed as








...
x[0]
x[1]
...








=














...
...

· · · g[0] 0 · · ·
· · · ...

... · · ·
· · · g[N − 1] 0 · · ·
· · · g[N ] g[0] · · ·

...
...





















...
y[0]
y[1]
...







.

Here the matrix operator is denoted byG. Note that if h[n] = g[−n], thenH = GT ,
a fact that will be important when analyzing orthonormal filter banks in Chapter 3.
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2.6 TIME-FREQUENCY REPRESENTATIONS

While the Fourier transform and its variations are very useful mathematical tools,
practical applications require basic modifications. These modifications aim at “lo-
calizing” the analysis, so that it is not necessary to have the signal over (−∞,∞)
to perform the transform (as required with the Fourier integral) and so that local
effects (transients) can be captured with some accuracy. The classic example is the
short-time Fourier [204], or Gabor transform14 [102], which uses windowed complex
exponentials and their translates as expansion functions. We therefore discuss the
localization properties of basis functions and derive the uncertainty principle which
gives a lower bound on the joint time and frequency resolutions. We then review the
short-time Fourier transform and its associated energy distribution called the spec-
trogram and introduce the wavelet transform. Block transforms are also discussed.
Finally, an example of a bilinear expansion, namely the Wigner-Ville distribution,
is also discussed.

2.6.1 Frequency, Scale and Resolution

When calculating a signal expansion, a primary concern is the localization of a
given basis function in time and frequency. For example, in the Fourier transform,
the functions used in the analysis are infinitely sharp in their frequency localization
(they exist at one precise frequency) but have no time localization because of their
infinite extent.

There are various ways to define the localization of a particular basis function,
but they are all related to the “spread” of the function in time and frequency. For
example, one can define intervals It and Iω which contain 90% of the energy of
the time- and frequency-domain functions, respectively, and are centered around
the center of gravity of |f(t)|2 and |F (ω)|2 (see Figure 2.9). This defines what we
call a tile in the time-frequency domain, as shown in Figure 2.9. For simplicity, we
assumed a complex basis function. A real basis function would be represented by
two mirror tiles at positive and negative frequencies.

Consider now elementary operations on a basis function and their effects on the
tile. Obviously, a shift in time by τ results in shifting of the tile by τ . Similarly,
modulation by ejω0t shifts the tile by ω0 in frequency (vertically). This is shown
in Figure 2.10(a). Finally, scaling by a, or f ′(t) = f(at), results in I ′t = (1/a)It
and I ′ω = aIω, following the scaling property of the Fourier transform (2.4.5). That
is, both the shape and localization of the tile have been affected, as shown in

14Gabor’s original paper proposed synthesis of signals using complex sinusoids windowed by a
Gaussian, and is thus a synthesis rather than an analysis tool. However, it is closely related to the
short-time Fourier transform, and we call Gabor transform a short-time Fourier transform using a
Gaussian window.
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| f (t)|2

|F (ω)|2

fig2.5.1FIGURE 2.10Figure 2.9 Tile in the time-frequency plane as an approximation of the time-
frequency localization of f(t). Intervals It and Iω contain 90% of the energy
of the time- and frequency-domain functions, respectively.
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Figure 2.10 Elementary operations on a basis function f and effect on the
time-frequency tile. (a) Shift in time by τ producing f ′ and modulation by ω0

producing f ′′. (b) Scaling f ′(t) = f(at) (a = 1/3 is shown).

Figure 2.10(b). Note that all elementary operations conserve the surface of the
time-frequency tile. In the scaling case, resolution in frequency was traded for
resolution in time.

Since scaling is a fundamental operation used in the wavelet transform, we need
to define it properly. While frequency has a natural ordering, the notion of scale
is defined differently by different authors. The analysis functions for the wavelet
transform will be defined as

ψa,b(t) =
1√
a
ψ

(
t− b
a

)

, a ∈ R
+



78 CHAPTER 2

where the function ψ(t) is usually a bandpass filter. Thus, large a’s (a ≫ 1)
correspond to long basis functions, and will identify long-term trends in the signal
to be analyzed. Small a’s (0 < a < 1) lead to short basis functions, which will follow
short-term behavior of the signal. This leads to the following: Scale is proportional
to the duration of the basis functions used in the signal expansion.

Because of this, and assuming that a basis function is a bandpass filter as in
wavelet analysis, high-frequency basis functions are obtained by going to small
scales, and therefore, scale is loosely related to inverse frequency. This is only
a qualitative statement, since scaling and modulation are fundamentally different
operations as was seen in Figure 2.10. The discussed scale is similar to those in
geographical maps, where large means a coarse, global view, and small corresponds
to a fine, detailed view.

Scale changes can be inverted if the function is continuous-time. In discrete
time, the situation is more complicated. From the discussion of multirate signal
processing in Section 2.5.3, we can see that upsampling (that is, a stretching of the
sequence) can be undone by downsampling by the same factor, and this with no
loss of information if done properly. Downsampling (or contraction of a sequence)
involves loss of information in general, since either a bandlimitation precedes the
downsampling, or aliasing occurs. This naturally leads to the notion of resolution of
a signal. We will thus say that the resolution of a finite-length signal is the minimum
number of samples required to represent it. It is thus related to the information
content of the signal. For infinite-length signals having finite energy and sufficient
decay, one can define the length as the essential support (for example, where 99%
of the energy is).

In continuous time, scaling does not change the resolution, since a scale change
affects both the sampling rate and the length of the signal, thus keeping the number
of samples constant. In discrete time, upsampling followed by interpolation does
not affect the resolution, since the interpolated samples are redundant. Downsam-
pling by N decreases the resolution by N , and cannot be undone. Figure 2.11 shows
the interplay of scale and resolution on simple discrete-time examples. Note that
the notion of resolution is central to multiresolution analysis developed in Chap-
ters 3 and 4. There, the key idea is to split a signal into several lower-resolution
components, from which the original, full-resolution signal can be recovered.

2.6.2 Uncertainty Principle

As indicated in the discussion of scaling in the previous section, sharpness of the
time analysis can be traded off for sharpness in frequency, and vice versa. But
there is no way to get arbitrarily sharp analysis in both domains simultaneously, as
shown below [37, 102, 215]. Note that the sharpness is also called resolution in time
and frequency (but is different from the resolution discussed just above, which was
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FIGURE 2.12
Figure 2.11 Scale and resolution in discrete-time sequences. (a) Lowpass
filtering reduces the resolution. (b) Upsampling and interpolation change the
scale but not the resolution. (c) Lowpass filtering and downsampling increase
scale and reduces resolution.

related to information content). Consider a unit energy signal f(t) with Fourier
transform F (ω) centered around the origin in time as well as in frequency, that is,
satisfying

∫
t|f(t)|2 dt = 0 and

∫
ω|F (ω)|2 dω = 0 (this can always be obtained by

appropriate translation and modulation). Define the time width ∆t of f(t) by

∆2
t =

∫ ∞

−∞
t2|f(t)|2dt, (2.6.1)

and its frequency width ∆ω by

∆2
ω =

∫ ∞

−∞
ω2|F (ω)|2dω.

THEOREM 2.7 Uncertainty Principle

If f(t) vanishes faster than 1/
√
t as t→ ±∞, then

∆2
t ∆2

ω ≥
π

2
, (2.6.2)

where equality holds only for Gaussian signals

f(t) =

√
α

π
e−αt

2
. (2.6.3)

PROOF

Consider the integral of t f(t) f ′(t). Using Cauchy-Schwarz inequality (2.2.2),

∣

∣

∣

∣

∫

R

tf(t) f ′(t) dt

∣

∣

∣

∣

2

≤
∫

R

|tf(t)|2dt
∫

R

|f ′(t)|2 dt. (2.6.4)
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The first integral on the right side is equal to ∆2
t . Because f ′(t) has Fourier trans-

form jωF (ω), and using Parseval’s formula, we find that the second integral is equal
to (1/(2π))∆2

ω. Thus, the integral on the left side of (2.6.4) is bounded from above by
(1/(2π))∆2

t∆
2
ω. Using integration by parts, and noting that f(t)f ′(t) = (1/2)(∂f2(t))/(∂t),

∫

R

tf(t) f ′(t) dt =
1

2

∫

R

t
∂f2(t)

∂t
dt =

1

2
t f2(t)

∣

∣

∞
−∞ −

1

2

∫

R

f2(t) dt.

By assumption, the limit of tf2(t) is zero at infinity, and, because the function is of unit
norm, the above equals −1/2. Replacing this into (2.6.4), we obtain

1

4
≤ 1

2π
∆2
t ∆2

ω,

or (2.6.2). To find a function that meets the lower bound note that Cauchy-Schwarz in-
equality is an equality when the two functions involved are equal within a multiplicative
factor, that is, from (2.6.4),

f ′(t) = ktf(t).

Thus, f(t) is of the form

f(t) = cekt
2/2 (2.6.5)

and (2.6.3) follows for k = −2α and c =
√

α/π.

The uncertainty principle is fundamental since it sets a bound on the maximum
joint sharpness or resolution in time and frequency of any linear transform. It is
easy to check that scaling does not change the time-bandwidth product, it only
exchanges one resolution for the other, similarly to what was shown in Figure 2.10.

Example 2.3 Prolate Spheroidal Wave Functions

A related problem is that of finding bandlimited functions which are maximally concentrated
around the origin in time (recall that there exist no functions that are both bandlimited
and of finite duration). That is, find a function f(t) of unit norm and bandlimited to ω0

(F (ω) = 0, |ω| > ω0) such that, for a given T ∈ (0,∞)

α =

∫ T

−T
|f(t)|2 dt

is maximized. It can be shown [216, 268] that the solution f(t) is the eigenfunction with
the largest eigenvalue satisfying

∫ T

−T
f(τ )

sinω0(t− τ )
π(t− τ ) dτ = λf(t). (2.6.6)

An interpretation of the above formula is the following. If T → ∞, then we have the
usual convolution with an ideal lowpass filter, and thus, any bandlimited function is an
eigenfunction with eigenvalue 1. For finite T , because of the truncation, the eigenvalues will
be strictly smaller than one. Actually, it turns out that the eigenvalues belong to (0, 1) and
are all different, or

1 > λ0 > λ1 > · · · > λn → 0, n→∞.
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Call fn(t) the eigenfunction of (2.6.6) with eigenvalue λn. Then (i) each fn(t) is unique (up
to a scale factor), (ii) fn(t) and fm(t) are orthogonal for n 6= m, and (iii) with proper nor-
malization the set {fn(t)} forms an orthonormal basis for functions bandlimited to (−ω0, ω0)
[216]. These functions are called prolate spheroidal wave functions. Note that while (2.6.6)
seems to depend on both T and ω0, the solution depends only on the product T · ω0.

2.6.3 Short-Time Fourier Transform

To achieve a “local” Fourier transform, one can define a windowed Fourier trans-
form. The signal is first multiplied by a window function w(t−τ) and then the usual
Fourier transform is taken. This results in a two-indexed transform, STFTf (ω, τ),
given by

STFTf (ω, τ) =

∫ ∞

−∞
w∗(t− τ) f(t)e−jωt dt.

That is, one measures the similarity between the signal and shifts and modulates
of an elementary window, or

STFTf (ω, τ) = 〈gω,τ (t), f(t)〉,

where
gω,τ (t) = w(t− τ)ejωt.

Thus, each elementary function used in the expansion has the same time and fre-
quency resolution, simply a different location in the time-frequency plane. It is
thus natural to discretize the STFT on a rectangular grid (mω0, nτ0). If the win-
dow function is a lowpass filter with a cutoff frequency of ωb, or a bandwidth of
2ωb, then ω0 is chosen smaller than 2ωb and τ0 smaller than π/ωb in order to get an
adequate sampling. Typically, the STFT is actually oversampled. A more detailed
discussion of the sampling of the STFT is given in Section 5.2, where the inversion
formula is also given. A real-valued version of the STFT, using cosine modulation
and an appropriate window, leads to orthonormal bases, which are discussed in
Section 4.8.

Examples of STFT basis functions and the tiling of the time-frequency plane
are given in Figures 2.12(a) and (b). To achieve good time-frequency resolution, a
Gaussian window (see (2.6.5)) can be used, as originally proposed by Gabor [102].
Thus, the STFT is often called Gabor transform as well.

The spectrogram is the energy distribution associated with the STFT, that is,

S(ω, τ) = |STFT (ω, τ)|2. (2.6.7)

Because the STFT can be thought of as a bank of filters with impulse responses
gω,τ (−t) = w(−t− τ) e−jωτ , the spectrogram is the magnitude squared of the filter
outputs.
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Figure 2.12 The short-time Fourier and wavelet transforms. (a) Modulates
and shifts of a Gaussian window used in the expansion. (b) Tiling of the time-
frequency plane. (c) Shifts and scales of the prototype bandpass wavelet. (d)
Tiling of the time-frequency plane.

2.6.4 Wavelet Transform

Instead of shifts and modulates of a prototype function, one can choose shifts and
scales, and obtain a constant relative bandwidth analysis known as the wavelet
transform. To achieve this, take a real bandpass filter with impulse response ψ(t)
and zero mean ∫ ∞

−∞
ψ(t) dt = Ψ(0) = 0.

Then, define the continuous wavelet transform as

CWTf (a, b) =
1√
a

∫

R

ψ∗
(
t− b
a

)

f(t) dt, (2.6.8)

where a ∈ R
+ and b ∈ R. That is, we measure the similarity between the signal

f(t) and shifts and scales of an elementary function, since

CWTf(a, b) = 〈ψa,b(t), f(t)〉,



2.6. TIME-FREQUENCY REPRESENTATIONS 83

where

ψa,b(t) =
1√
a
ψ

(
t− b
a

)

and the factor 1/
√
a is used to conserve the norm. Now, the functions used in

the expansion have changing time-frequency tiles because of the scaling. For small
a (a < 1), ψa,b(t) will be short and of high frequency, while for large a (a > 1),
ψa,b(t) will be long and of low frequency. Thus, a natural discretization will use
large time steps for large a, and conversely, choose fine time steps for small a. The
discretization of (a, b) is then of the form (an0 , a

n
0 · τ0), and leads to functions for the

expansion as shown in Figure 2.12(c). The resulting tiling of the time-frequency
plane is shown in Figure 2.12(d) (the case a = 2 is shown). Special choices for
ψ(t) and the discretization lead to orthonormal bases or wavelet series as studied
in Chapter 4, while the overcomplete, continuous wavelet transform in (2.6.8) is
discussed in Section 5.1.

2.6.5 Block Transforms

An easy way to obtain a time-frequency representation is to slice the signal into
nonoverlapping adjacent blocks and expand each block independently. For example,
this can be done using a window function on the signal which is the indicator
function of the interval [nT, (n+1)T ), periodizing each windowed signal with period
T and applying an expansion such as the Fourier series on each periodized signal (see
Section 4.1.2). Of course, the arbitrary segmentation at points nT creates artificial
boundary problems. Yet, such transforms are used due to their simplicity. For
example, in discrete time, block transforms such as the Karhunen-Loève transform
(see Section 7.1.1) and its approximations are quite popular.

2.6.6 Wigner-Ville Distribution

An alternative to linear expansions of signals are bilinear expansions, of which the
Wigner-Ville distribution is the most well-known [53, 59, 135].

Bilinear or quadratic time-frequency representations are motivated by the idea
of an “instantaneous power spectrum”, of which the spectrogram (see (2.6.7)) is
a possible example. In addition, the time-frequency distribution TFDf (ω, τ) of
a signal f(t) with Fourier transform F (ω) should satisfy the following marginal
properties: Its integral along τ given ω should equal |F (ω)|2, and its integral along
ω given τ should equal |f(τ)|2. Also, time-frequency shift invariance is desirable,
that is, if g(t) = f(t− τ0)ejω0t, then

TFDg(ω, τ) = TDFf (ω − ω0, τ − τ0).
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The Wigner-Ville distribution satisfies the above requirements, as well as several
other desirable ones [135]. It is defined, for a signal f(t), as

WDf (ω, τ) =

∫ ∞

−∞
f (τ + t/2) f∗ (τ − t/2) e−jωt dt. (2.6.9)

A related distribution is the ambiguity function [216], which is dual to (2.6.9)
through a two-dimensional Fourier transform.

The attractive feature of time-frequency distributions such as the Wigner-Ville
distribution above is the possible improved time-frequency resolution. For signals
with a single time-frequency component (such as a linear chirp signal), the Wigner-
Ville distribution gives a very clear and concentrated energy ridge in the time-
frequency plane.

However, the increased resolution for single component signals comes at a price
for multicomponent signals, with the appearance of cross terms or interferences. If
there are N components in the signal, there will be N signal terms and one cross
term for each pair of components, that is,

(N
2

)
or N(N − 1)/2 cross terms. While

these interferences can be smoothed, this smoothing will come at the price of some
resolution loss. In any case, the interference patterns make it difficult to visually
interpret quadratic time-frequency distributions of complex signals.
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APPENDIX 2.A B OUNDED L INEAR OPERATORS ON HILBERT SPACES

DEFINITION 2.8

An operator A which maps one Hilbert space H1 into another Hilbert space
H2 (which may be the same) is called a linear operator if for all x, y in H1

and α in C

(a) A(x+ y) = Ax+Ay.

(b) A(αx) = αAx.

The norm of A, denoted by ‖A‖, is given by

‖A‖ = sup
‖x‖=1

‖Ax‖.

A linear operator A : H1 → H2 is called bounded if

sup
‖x‖≤1

‖Ax‖ < ∞.

An important property of bounded linear operators is that they are continuous,
that is, if xn → x then Axn → Ax. An example of a bounded operator is the
multiplication operator in l2(Z), defined as

Ax[n] = m[n] x[n],

where m[n] ∈ l∞(Z). Because

‖Ax‖2 =
∑

n

(m[n])2 (x[n])2 ≤ max(m[n])2 ‖x‖2,

the operator is bounded. A bounded linear operator A : H1 → H2 is called invertible
if there exists a bounded linear operator A−1 : H2 → H1 such that

A−1Ax = x, for every x in H1,

AA−1y = y, for every y in H2.

The operator A−1 is called the inverse of A. An important result is the following:
Suppose A is a bounded linear operator mapping H onto itself, and ‖A‖ < 1. Then
I −A is invertible, and for every y in H,

(I −A)−1y =

∞∑

k=0

Aky. (2.A.1)
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Note that although the above expansion has the same form for a scalar as well
as an operator, one should not forget the distinction between the two. Another
important notion is that of an adjoint operator.15 It can be shown that for every x
in H1 and y in H2, there exists a unique y∗ from H1, such that

〈Ax, y〉H2 = 〈x, y∗〉H1 = 〈x,A∗y〉H1 . (2.A.2)

The operator A∗ : H2 → H1 defined by A∗y = y∗, is the adjoint of A. Note that A∗

is also linear and bounded, and that ‖A‖ = ‖A∗‖. If H2 = H1 and A = A∗, then A
is called a self-adjoint or hermitian operator.

Finally, an important type of operators are projection operators. Given a closed
subspace S of a Hilbert space E, an operator P is called an orthogonal projection
onto S if

P (v + w) = v for all v ∈ S and w ∈ S⊥.

It can be shown that an operator is an orthogonal projection if and only if P 2 = P
and P is self-adjoint.

Let us now show how we can associate a possibly infinite matrix16 with a given
bounded linear operator on a Hilbert space. Given is a bounded linear operator A
on a Hilbert space H with the orthonormal basis {xi}. Then any x from H can be
written as x =

∑

i〈xi,x〉xi, and

Ax =
∑

i

〈xi,x〉Axi, Axi =
∑

k

〈xk,Axi〉xk.

Similarly, writing y =
∑

i〈xi,y〉xi, we can write Ax = y as





〈x1,Ax1〉 〈x1,Ax2〉 . . .
〈x2,Ax1〉 〈x2,Ax2〉 . . .

...
...









〈x1,x〉
〈x2,x〉

...



 =





〈x1,y〉
〈x2,y〉

...



 ,

or, in other words, the matrix {aij} corresponding to the operator A expressed
with respect to the basis {xi} is defined by aij = 〈xi,Axj〉.

APPENDIX 2.B PARAMETRIZATION OF UNITARY MATRICES

Our aim in this appendix is to show two ways of factoring real, n × n, unitary
matrices, namely using Givens rotations and Householder building blocks. We
concentrate here on real, square matrices, since these are the ones we will be using
in Chapter 3. The treatment here is fairly brisk; for a more detailed, yet succinct
account of these two factorizations, see [308].

15In the case of matrices, the adjoint is the hermitian transpose.
16To be consistent with our notation throughout the book, in this context, matrices will be

denoted by capital bold letters, while vectors will be denoted by lower-case bold letters.
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Figure 2.13 Unitary matrices. (a) Factorization of a real, unitary, n × n
matrix. (b) The structure of the block U i.

2.B.1 Givens Rotations

Recall that a real, n × n, unitary matrix Usatisfies (2.3.6). We want to show
that such a matrix can be factored as in Figure 2.13, where each cross in part (b)
represents a Givens (planar) rotation

Gα =

(
cosα − sinα
sinα cosα

)

. (2.B.1)

The way to demonstrate this is to show that any real, unitary n×n matrix Un can
be expressed as

Un = Rn−2 · · ·R0

(
Un−1 0

0 ±1

)

, (2.B.2)
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where Un−1 is an (n− 1)× (n− 1), real, unitary matrix, and Ri is of the following
form:

Ri =

















1 . . . 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
0 . . . 1 0 0 . . . 0 0
0 . . . 0 cosαi 0 . . . 0 − sinαi
0 . . . 0 0 1 . . . 0 0
...

...
...

...
...

...
...

...
0 . . . 0 0 0 . . . 1 0
0 . . . 0 sinαi 0 . . . 0 cosαi

















,

that is, we have a planar rotation in rows (i− 1) and n. By repeating the process
on the matrix Un−1, we obtain the factorization as in Figure 2.13. The proof that
any real, unitary matrix can be written as in (2.B.2) can be found in [308]. Note
that the number of free variables (angles in Givens rotations) is n(n− 1)/2.

2.B.2 Householder Building Blocks

A unitary matrix can be factored in terms of Householder building blocks, where
each block has the form I − 2 · uuT , and u is a unitary vector. Thus, an n × n
unitary matrix U can be written as

U =
√
c H1 · · ·Hn−1 ·D, (2.B.3)

where D is diagonal with dii = ejθi , and Hi are Householder blocks I − 2ui u
T
i .

The fact that we mention the Householder factorization here is because we will
use its polynomial version to factor lossless matrices in Chapter 3.

Note that the Householder building block is unitary, and that the factorization
in (2.B.3) can be proved similarly to the factorization using Givens rotations. That
is, we can first show that

1√
c
H1U =

(
ejα0 0
0 U1

)

,

whereU1 is an (n−1)×(n−1) unitary matrix. Repeating the process onU1,U 2, . . . ,
we finally obtain

1√
c
Hn−1 . . .H1U = D,

but since H i = H−1
i , we obtain (2.B.3).
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APPENDIX 2.C CONVERGENCE AND REGULARITY OF FUNCTIONS

In Section 2.4.3, when discussing Fourier series, we pointed out possible convergence
problems such as the Gibbs phenomenon. In this appendix, we first review different
types of convergence and then discuss briefly some convergence properties of Fourier
series and transforms. Then, we discuss regularity of functions and the associated
decay of the Fourier series and transforms. More details on these topics can be
found for example in [46, 326].

2.C.1 Convergence

Pointwise Convergence Given an infinite sequence of functions {fn}∞n=1, we say
that it converges pointwise to a limit function f = limn→∞ fn if for each value of t
we have

lim
n→∞

fn(t) = f(t).

This is a relatively weak form of convergence, since certain properties of fn(t), such
as continuity, are not passed on to the limit. Consider the truncated Fourier series,
that is (from (2.4.13))

fn(t) =

n∑

k=−n
F [k] ejkwot. (2.C.1)

This Fourier series converges pointwise for all t when F [k] are the Fourier coefficients
(see (2.4.14)) of a piecewise smooth17 function f(t). Note that while each fn(t) is
continuous, the limit need not be.

Uniform Convergence An infinite sequence of functions {fn}∞n=1 converges uni-
formly to a limit f(t) on a closed interval [a, b] if (i) the sequence converges pointwise
on [a, b] and (ii) given any ǫ > 0, there exists an integer N such that for n > N ,
fn(t) satisfies |f(t)− fn(t)| < ǫ for all t in [a, b].

Uniform convergence is obviously stronger than pointwise convergence. For
example, uniform convergence of the truncated Fourier series (2.C.1) implies con-
tinuity of the limit, and conversely, continuous piecewise smooth functions have
uniformly convergent Fourier series [326]. An example of pointwise convergence
without uniform convergence is the Fourier series of piecewise smooth but discon-
tinuous functions and the associated Gibbs phenomenon around discontinuities.

17A piecewise smooth function on an interval is piecewise continuous (finite number of disconti-
nuities) and its derivative is also piecewise continuous.
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Mean Square Convergence An infinite sequence of functions {fn}∞n=1 converges
in the mean square sense to a limit f(t) if

lim
n→∞

‖f − fn‖2 = 0.

Note that this does not mean that limn→∞ fn = f for all t, but only almost ev-
erywhere. For example, the truncated Fourier series (2.C.1) of a piecewise smooth
function converges in the mean square sense to f(t) when F [k] are the Fourier se-
ries coefficients of f(t), even though at a point of discontinuity t0, f(t0) might be
different from limn→∞ fn(t0) which equals the mean of the right and left limits.

In the case of the Fourier transform, the concept analogous to the truncated
Fourier series (2.C.1) is the truncated integral defined from the Fourier inversion
formula (2.4.2) as

fc(t) =
1

2π

∫ c

−c
F (ω) ejωt dω

where F (ω) is the Fourier transform of f(t) (see (2.4.1)). The convergence of the
above integral as c → ∞ is an important question, since the limit limc→∞ fc(t)
might not equal f(t). Under suitable restrictions on f(t), equality will hold. As an
example, if f(t) is piecewise smooth and absolutely integrable, then limc→∞ fc(t0) =
f(t0) at each point of continuity and is equal to the mean of the left and right limits
at discontinuity points [326].

2.C.2 Regularity

So far, we have mostly discussed functions satisfying some integral conditions (abso-
lutely or square-integrable functions for example). Instead, regularity is concerned
with differentiability. The space of continuous functions is called C0, and similarly,
Cn is the space of functions having n continuous derivatives.

A finer analysis is obtained using Lipschitz (or Hölder) exponents. A function
f is called Lipschitz of order α, 0 < α ≤ 1, if for any t and some small ǫ, we have

|f(t)− f(t+ ǫ)| ≤ c|ǫ|α. (2.C.2)

Higher orders r = n + α can be obtained by replacing f with its nth derivative.
This defines Hölder spaces of order r. Note that condition (2.C.2) for α = 1 is
weaker than differentiability. For example, the triangle function or linear spline
f(t) = 1− |t|, t ∈ [0, 1], and 0 otherwise is Lipschitz of order 1 but only C0.

How does regularity manifest itself in the Fourier domain? Since differentiation
amounts to a multiplication by (jω) in Fourier domain (see (2.4.6)), existence of
derivatives is related to sufficient decay of the Fourier spectrum.
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It can be shown (see [216]) that if a function f(t) and all its derivatives up
to order n exist and are of bounded variation, then the Fourier transform can be
bounded by

F (ω) ≤ c

1 + |ω|n+1
, (2.C.3)

that is, it decays as O(1/|ω|n+1) for large ω. Conversely, if F (ω) has a decay as in
(2.C.3), then f(t) has n−1 continuous derivatives, and the nth derivative exists but
might be discontinuous. A finer analysis of regularity and associated localization in
Fourier domain can be found in [241], in particular for functions in Hölder spaces
and using different norms in Fourier domain.
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PROBLEMS

2.1 Legendre polynomials: Consider the interval [−1, 1] and the vectors 1, t, t2, t3, . . .. Using
Gram-Schmidt orthogonalization, find an equivalent orthonormal set.

2.2 Prove Theorem 2.4, parts (a), (b), (d), (e), for finite-dimensional Hilbert spaces, Rn or Cn.

2.3 Orthogonal transforms and l∞ norm: Orthogonal transforms conserve the l2 norm, but not
others, in general. The l∞ norm of a vector is defined as (assume v ∈ Rn):

l∞[v] = max
i=0,...,n−1

|vi|.

(a) Consider n = 2 and the set of real orthogonal transforms T2, that is, plane rotations.
Given the set of vectors v with unit l2 norm (that is, vectors on the unit circle), give
lower and upper bounds such that

a2 ≤ l∞[T2 · v] ≤ b2.

(b) Give the lower and upper bounds for the general case n > 2, that is, an and bn.

2.4 Norm of operators: Consider operators that map l2(Z) to itself, and indicate their norm, or
bounds on their norm.

(a) (Ax)[n] = m[n] · x[n], m[n] = ejΘn , n ∈ Z.

(b) (Ax)[2n] = x[2n] + x[2n+ 1], (Ax)[2n+ 1] = x[2n] − x[2n+ 1], n ∈ Z.

2.5 Assume a finite-dimensional space R
N and an orthonormal basis {x1,x2, . . . ,xN}. Any

vector y can thus be written as y =
∑

i αixi where αi = 〈xi,y〉. Consider the best
approximation to y in the least-squares sense and living on the subspace spanned by the
first K vectors, {x1,x2, . . . ,xK}, or ŷ =

∑K
i=1 βixi. Prove that βi = αi for i = 1, . . . , K,

by showing that it minimizes ‖y − ŷ‖. Hint: Use Parseval’s equality.

2.6 Least-squares solution: Show that for the least-squares solution obtained in Section 2.3.2,
the partial derivatives ∂(|y − ŷ|2)/∂x̂i are all zero.

2.7 Least-squares solution to a linear system of equations: The general solution was given in
Equation (2.3.4–2.3.5).

(a) Show that if y belongs to the column space of A, then ŷ = y.

(b) Show that if y is orthogonal to the column space of A, then ŷ = 0.

2.8 Parseval’s formulas can be proven by using orthogonality and biorthogonality relations of
the basis vectors.

(a) Show relations (2.2.5–2.2.6) using the orthogonality of the basis vectors.

(b) Show relations (2.2.11–2.2.13) using the biorthogonality of the basis vectors.
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2.9 Consider the space of square-integrable real functions on the interval [−π, π], L2([−π, π]),
and the associated orthonormal basis given by

{

1√
2π
,
cosnx√

π
,
sinnx√

π

}

, n = 1, 2, . . .

Consider the following two subspaces: S – space of symmetric functions, that is, f(x) =
f(−x), on [−π, π], and A – space of antisymmetric functions, f(x) = −f(−x), on [−π, π].

(a) Show how any function f(x) from L2([−π, π]) can be written as f(x) = fs(x)+ fa(x),
where fs(x) ∈ S and fa(x) ∈ A.

(b) Give orthonormal bases for S and A.

(c) Verify that L2([−π, π]) = S ⊕ A.

2.10 Downsampling by N : Prove (2.5.13) by going back to the underlying time-domain signal
and resampling it with an N-times longer sampling period. That is, consider x[n] and
y[n] = x[nN ] as two sampled versions of the same continuous-time signal, with sampling
periods T and NT , respectively. Hint: Recall that the discrete-time Fourier transform
X(ejω) of x[n] is (see (2.4.36))

X(ejω) = XT (
ω

T
) =

1

T

∞
∑

k=−∞
XC

(

ω

T
− k 2π

T

)

,

where T is the sampling period. Then Y (ejω) = XNT (ω/NT ) (since the sampling period
is now NT ), where XNT (ω/NT ) can be written similarly to the above equation. Finally,
split the sum involved in XNT (ω/NT ) into k = nN + l, and gathering terms, (2.5.13) will
follow.

2.11 Downsampling and aliasing: If an arbitrary discrete-time sequence x[n] is input to a filter
followed by downsampling by 2, we know that an ideal half-band lowpass filter (that is,
|H(ejω)| = 1, |ω| < π/2, and H(ejω) = 0, π/2 ≤ |ω| ≤ π) will avoid aliasing.

(a) Show that H ′(ejω) = H(ej2ω) will also avoid aliasing.

(b) Same for H ′′(ejω) = H(ej(2ω−π)).

(c) A two-channel system using H(ejω) and H(ej(ω−π)) followed by downsampling by
2 will keep all parts of the input spectrum untouched in either channel (except at
ω = π/2). Show that this is also true if H ′(ejω) and H ′′(ejω) are used instead.

2.12 In pattern recognition, it is sometimes useful to expand a signal using the desired pattern,
or template, and its shifts, as basis functions. For simplicity, consider a signal of length N ,
x[n], n = 0, . . . , N − 1, and a pattern p[n], n = 0, . . . , N − 1. Then, choose as basis functions

ϕk[n] = p[(n− k) mod N ], k = 0, . . . , N − 1,

that is, circular shifts of p[n].

(a) Derive a simple condition on p[n], so that any x[n] can be written as a linear combi-
nation of {ϕk}.
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(b) Assuming the previous condition is met, give the coefficients αk of the expansion

x[n] =

N−1
∑

k=0

αk ϕk[n].

2.13 Show that a linear, periodically time-varying system of period N can be implemented with
a polyphase transform followed by upsampling by N , N filter operations and a summation.

2.14 Interpolation of oversampled signals: Assume a function f(t) bandlimited to ωm = π. If
the sampling frequency is chosen at the Nyquist rate, ωs = 2π, the interpolation filter is
the usual sinc filter with slow decay (∼ 1/t). If f(t) is oversampled, for example, with
ωs = 3π, then filters with faster decay can be used for interpolating f(t) from its samples.
Such filters are obtained by convolving (in frequency) elementary rectangular filters (two
for H2(ω), three for H3(ω), while H1(ω) would be the usual sinc filter).

(a) Give the expression for h2(t), and verify that it decays as 1/t2.

(b) Same for h3(t), which decays as 1/t3. Show that H3(ω) has a continuous derivative.

(c) By generalizing the construction above of H2(ω) and H3(ω), show that one can obtain
hi(t) with decay 1/ti. Also, show that Hi(ω) has a continuous (i − 2)th derivative.
However, the filters involved become spread out in time, and the result is only inter-
esting asymptotically.

2.15 Uncertainty relation: Consider the uncertainty relation ∆2
ω ∆2

t ≥ π/2.

(a) Show that scaling does not change ∆2
ω ·∆2

t . Either use scaling that conserves the L2

norm (f ′(t) =
√
af(at)) or be sure to renormalize ∆2

ω, ∆
2
t .

(b) Can you give the time-bandwidth product of a rectangular pulse, p(t) = 1, −1/2 ≤
t ≤ 1/2, and 0 otherwise?

(c) Same as above, but for a triangular pulse.

(d) What can you say about the time-bandwidth product as the time-domain function is
obtained from convolving more and more rectangular pulse with themselves?

2.16 Consider allpass filters where

H(z) =
∏

i

a∗i + z−1

1 + aiz−1
.

(a) Assume the filter has real coefficients. Show pole-zero locations, and that numerator
and denominator polynomials are mirrors of each other.

(b) Given h[n], the causal, real-coefficient impulse response of a stable allpass filter, give
its autocorrelation a[k] =

∑

n h[n]h[n− k]. Show that the set {h[n− k]}, k ∈ Z, is an
orthonormal basis for l2(Z). Hint: Use Theorem 2.4.

(c) Show that the set {h[n− 2k]} is an orthonormal set but not a basis for l2(Z).

2.17 Parseval’s relation for nonorthogonal bases: Consider the space V = R
n and a biorthogonal

basis, that is, two sets {αi} and {βi} such that

〈αi, βi〉 = δ[i− j] i, j = 0, . . . , n− 1
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(a) Show that any vector v ∈ V can be written in the following two ways:

v =
n−1
∑

i=0

〈αi, v〉 βi =
n−1
∑

i=0

〈βi, v〉 αi

(b) Call vα the vector with entries 〈αi, v〉 and similarly vβ with entries 〈βi, v〉. Given ‖v‖,
what can you say about ‖vα‖ and ‖vβ‖?

(c) Show that the generalization of Parseval’s identity to biorthogonal systems is

‖v‖2 = 〈v, v〉 = 〈vα, vβ〉

and
〈v, g〉 = 〈vα, gβ〉.

2.18 Circulant matrices: An N × N circulant matrix C is defined by its first line, since subse-
quent lines are obtained by a right circular shift. Denote the first line by {c0, cN−1, . . . , c1}
so that C corresponds to a circular convolution with a filter having impulse response
{c0, c1, c2, . . . , cN−1}.

(a) Give a simple test for the singularity of C.

(b) Give a formula for det(C).

(c) Prove that C−1 is circulant.

(d) Show that C1 C2 = C2 C1 and that the result is circulant.

2.19 Walsh basis: To define the Walsh basis, we need the Kronecker product of matrices defined
in (2.3.2). Then, the matrix W k, of size 2k × 2k, is

W k =

[

1 1
1 −1

]

⊗W k−1, W 0 = [1], W 1 =

[

1 1
1 −1

]

.

(a) Give W 2,W 3 and W 4 (last one only partially).

(b) Show that W k is orthonormal (within a scale factor you should indicate).

(c) Create a block matrix T

T =















W 0

1/
√
2W 1

1/2W 2

1/23/2W 3

. . .















,

and show that T is unitary. Sketch the upper left corner of T .

(d) Consider the rows of T as basis functions in an orthonormal expansion of l2(Z
+)

(right-sided sequences). Sketch the tiling of the time-frequency plane achieved by this
expansion.





3

Discrete-Time Bases and Filter Banks

“What is more beautiful than the Quincunx,
which, from whatever direction you look,
is correct?”

— Quintilian

Our focus in this chapter will be directed to series expansions of discrete-time
sequences. The reasons for expanding signals, discussed in Chapter 1, are linked
to signal analysis, approximation and compression, as well as algorithms and im-
plementations. Thus, given an arbitrary sequence x[n], we would like to write it
as

x[n] =
∑

k∈Z
〈ϕk, x〉 ϕk[n], n ∈ Z.

Therefore, we would like to construct orthonormal sets of basis functions, {ϕk[n]},
which are complete in the space of square-summable sequences, l2(Z). More general,
biorthogonal and overcomplete sets, will be considered as well.

The discrete-time Fourier series, seen in Chapter 2, is an example of such an
orthogonal series expansion, but it has a number of shortcomings. Discrete-time
bases better suited for signal processing tasks will try to satisfy two conflicting
requirements, namely to achieve good frequency resolution while keeping good time
locality as well. Additionally, for both practical and computational reasons, the set
of basis functions has to be structured. Typically, the infinite set of basis functions
{ϕk} is obtained from a finite number of prototype sequences and their shifted
versions in time. This leads to discrete-time filter banks for the implementation of
such structured expansions. This filter bank point of view has been central to the
developments in the digital signal processing community, and to the design of good
basis functions or filters in particular. While the expansion is not time-invariant,

97
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it will at least be periodically time-invariant. Also, the expansions will often have
a successive approximation property. This means that a reconstruction based on
an appropriate subset of the basis functions leads to a good approximation of the
signal, which is an important feature for applications such as signal compression.

Linear signal expansions have been used in digital signal processing since at
least the 1960’s, mainly as block transforms, such as piecewise Fourier series and
Karhunen-Loève transforms [143]. They have also been used as overcomplete ex-
pansions, such as the short-time Fourier transform (STFT) for signal analysis and
synthesis [8, 226] and in transmultiplexers [25]. Increased interest in the subject,
especially in orthogonal and biorthogonal bases, arose with work on compression,
where redundancy of the expansion such as in the STFT is avoided. In particular,
subband coding of speech [68, 69] spurred a detailed study of critically sampled
filter banks. The discovery of quadrature mirror filters (QMF) by Croisier, Esteban
and Galand in 1976 [69], which allows a signal to be split into two downsampled
subband signals and then reconstructed without aliasing (spectral foldbacks) even
though nonideal filters are used, was a key step forward.

Perfect reconstruction filter banks, that is, subband decompositions, where the
signal is a perfect replica of the input, followed soon. The first orthogonal solution
was discovered by Smith and Barnwell [270, 271] and Mintzer [196] for the two-
channel case. Fettweiss and coworkers [98] gave an orthogonal solution related
to wave digital filters [97]. Vaidyanathan, who established the relation between
these results and certain unitary operators (paraunitary matrices of polynomials)
studied in circuit theory [23], gave more general orthogonal solutions [305, 306]
as well as lattice factorizations for orthogonal filter banks [308, 310]. Biorthogonal
solutions were given by Vetterli [315], as well as multidimensional quadrature mirror
filters [314]. Biorthogonal filter banks, in particular with linear phase filters, were
investigated in [208, 321] and multidimensional filter banks were further studied in
[155, 163, 257, 264, 325]. Recent work includes filter banks with rational sampling
factors [166, 206] and filter banks with block sampling [158]. Additional work on
the design of filter banks has been done in [144, 205] among others.

In parallel to this work on filter banks, a generalization of block transforms
called lapped orthogonal transforms (LOT’s) was derived by Cassereau [43] and
Malvar [186, 188, 189]. An attractive feature of a subclass of LOT’s is the existence
of fast algorithms for their implementation since they are modulated filter banks
(similar to a “real” STFT). The connection of LOT’s with filter banks was shown,
in [321].

Another development, which happened independently of filter banks but turns
out to be closely related, is the pyramid decomposition of Burt and Adelson [41].
While it is oversampled (overcomplete), it clearly uses multiresolution concepts, by
decomposing a signal into a coarse approximation plus added details. This frame-
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work is central to wavelet decompositions and establishes conceptually the link be-
tween filter banks and wavelets, as shown by Mallat [179, 180, 181] and Daubechies
[71, 73]. This connection has led to a renewed interest in filter banks, especially
with the work of Daubechies who first constructed wavelets from filter banks [71]
and Mallat who showed that a wavelet series expansion could be implemented with
filter banks [181]. Recent work on this topic includes [117, 240, 319].

As can be seen from the above short historical discussion, there are two different
points of view on the subject, namely, expansion of signals in terms of structured
bases, and perfect reconstruction filter banks. While the two are equivalent, the
former is more in tune with Fourier and wavelet theory, while the latter is central
to the construction of implementable systems. In what follows, we use both points
of view, using whichever is more appropriate to explain the material.

The outline of the chapter is as follows: First, we review discrete-time series
expansions, and consider two cases in some detail, namely the Haar and the sinc
bases. They are two extreme cases of two-channel filter banks. The general two-
channel filter bank is studied in detail in Section 3.2, where both the expansion and
the more traditional filter bank point of view are given. The orthogonal case with
finite-length basis functions or finite impulse response (FIR) filters is thoroughly
studied. The biorthogonal FIR case, in particular with linear phase filters (sym-
metric or antisymmetric basis functions), is considered, and the infinite impulse
response (IIR) filter case (which corresponds to basis functions with exponential
decay) is given as well.

In Section 3.3, the study of filter banks with more than two channels starts
with tree-structured filter banks. In particular, a constant relative bandwidth
(or constant-Q) tree is shown to compute a discrete-time wavelet series. Such a
transform has a multiresolution property that provides an important framework for
wavelet transforms. More general filter bank trees, also known as wavelet packets,
are presented as well.

Filter banks with N channels are treated next. The two particular cases of block
transforms and lapped orthogonal transforms are discussed first, leading to the
analysis of general N -channel filter banks. An important case, namely modulated
filter banks, is studied in detail, both because of its relation to short-time Fourier-
like expansions, and because of its computational efficiency.

Overcomplete discrete-time expansions are discussed in Section 3.5. The pyra-
mid decomposition is studied, as well as the classic overlap-add/save algorithm for
convolution computation which is a filter bank algorithm.

Multidimensional expansions and filter banks are derived in Section 3.6. Both
separable and nonseparable systems are considered. In the nonseparable case, the
focus is mostly on two-channel decompositions, while more general cases are indi-
cated as well.
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Section 3.7 discusses a scheme that has received less attention in the filter bank
literature, but is nonetheless very important in applications, and is called a trans-
multiplexer. It is dual to the analysis/synthesis scheme used in compression appli-
cations, and is used in telecommunications.

The two appendices contain more details on orthogonal solutions and their fac-
torizations as well as on multidimensional sampling.

The material in this chapter covers filter banks at a level of detail which is
adequate for the remainder of the book. For a more exhaustive treatment of filter
banks, we refer the reader to the text by Vaidyanathan [308]. Discussions of fil-
ter banks and multiresolution signal processing are also contained in the book by
Akansu and Haddad [3].

3.1 SERIES EXPANSIONS OF DISCRETE-TIME SIGNALS

We start by recalling some general properties of discrete-time expansions. Then, we
discuss a very simple structured expansion called the Haar expansion, and give its
filter bank implementation. The dual of the Haar expansion — the sinc expansion —
is examined as well. These two examples are extreme cases of filter bank expansions
and set the stage for solutions that lie in between.

Discrete-time series expansions come in various flavors, which we briefly review
(see also Sections 2.2.3–2.2.5). As usual, x[n] is an arbitrary square-summable
sequence, or x[n] ∈ l2(Z). First, orthonormal expansions of signals x[n] from l2(Z)
are of the form

x[n] =
∑

k∈Z
〈ϕk[l], x[l]〉 ϕk[n] =

∑

k∈Z
X[k] ϕk[n], (3.1.1)

where

X[k] = 〈ϕk[l], x[l]〉 =
∑

l

ϕ∗
k[l] x[l], (3.1.2)

is the transform of x[n]. The basis functions ϕk satisfy the orthonormality1 con-
straint

〈ϕk[n], ϕl[n]〉 = δ[k − l]

and the set of basis functions is complete, so that every signal from l2(Z) can
be expressed using (3.1.1). An important property of orthonormal expansions is
conservation of energy,

‖x‖2 = ‖X‖2.
1The first constraint is orthogonality between basis vectors. Then, normalization leads to

orthonormality. The terms “orthogonal” and “orthonormal” will often be used interchangeably,
unless we want to insist on the normalization and then use the latter.
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Biorthogonal expansions, on the other hand, are given as

x[n] =
∑

k∈Z
〈ϕk[l], x[l]〉 ϕ̃k[n] =

∑

k∈Z
X̃[k] ϕ̃k[n], (3.1.3)

=
∑

k∈Z
〈ϕ̃k[l], x[l]〉 ϕk[n] =

∑

k∈Z
X[k] ϕk[n],

where
X̃[k] = 〈ϕk[l], x[l]〉 and X[k] = 〈ϕ̃k[l], x[l]〉

are the transform coefficients of x[n] with respect to {ϕ̃k} and {ϕk}. The dual bases
{ϕk} and {ϕ̃k} satisfy the biorthogonality constraint

〈ϕk[n], ϕ̃l[n]〉 = δ[k − l].

Note that in this case, conservation of energy does not hold. For stability of the
expansion, the transform coefficients have to satisfy

A
∑

k

|X[k]|2 ≤ ‖x‖2 ≤ B
∑

k

|X[k]|2

with a similar relation for the coefficients X̃[k]. In the biorthogonal case, conserva-
tion of energy can be expressed as

‖x‖2 = 〈X[k], X̃ [k]〉.

Finally, overcomplete expansions can be of the form (3.1.1) or (3.1.3), but with
redundant sets of functions, that is, the functions ϕk[n] used in the expansions are
not linearly independent.

3.1.1 Discrete-Time Fourier Series

The discrete-time Fourier transform (see also Section 2.4.6) is given by

x[n] =
1

2π

∫ π

−π
X(ω) ejωn dw (3.1.4)

X(ω) =
∞∑

n=−∞
x[n] e−jωn. (3.1.5)

It is a series expansion of the 2π-periodic function X(ω) as given by (3.1.5), while
x[n] is written in terms of an integral of the continuous-time function X(ω). While
this is an important tool in the analysis of discrete-time signals and systems [211],
the fact that the synthesis of x[n] given by (3.1.4) involves integration rather than
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series expansion, makes it of limited practical use. An example of a series expansion
is the discrete-time Fourier series

x[n] =
1

N

N−1∑

k=0

X[k] ej2πkn/N , (3.1.6)

X[k] =

N−1∑

n=0

x[n] e−j2πkn/N ,

where x[n] is either periodic (n ∈ Z) or of finite length (n = 0, 1, . . . , N − 1). In the
latter case, the above is often called the discrete Fourier transform (DFT).

Because it only applies to such restricted types of signals, the Fourier series
is somewhat limited in its applications. Since the basis functions are complex
exponentials

ϕk[n] =

{
1
N e

j2πkn/N n = 0, 1, . . . , N − 1,
0 otherwise,

for the finite-length case (or the periodic extension in the periodic case), there is no
decay of the basis function over the length-N window, that is, no time localization
(note that ‖ϕk‖ = 1/

√
N in the above definition).

In order to expand arbitrary sequences we can segment the signal, and obtain a
piecewise Fourier series (one for each segment). Simply segment the sequence x[n]
into subsequences x(i)[n] such that

x(i)[n] =

{
x[n] n = i N + l, l = 0, 1, . . . , N − 1, i ∈ Z,
0 otherwise,

(3.1.7)

and take the discrete Fourier transform of each subsequence independently,

X(i)[k] =
N−1∑

l=0

x(i)[iN + l] e−j2πkl/N k = 0, 1, . . . , N − 1. (3.1.8)

Reconstruction of x[n] from X(i)[k] is obvious. Recover x(i)[n] by inverting (3.1.8)
(see also (3.1.6)) and then get x[n] following (3.1.7) by juxtaposing the various
x(i)[n]. This leads to

x[n] =

∞∑

i=−∞

N−1∑

k=0

X(i)[k] ϕ
(i)
k [n],

where

ϕ
(i)
k [n] =

{
1
N e

j2πkn/N n = iN + l, l = 0, 1, . . . , N − 1,
0 otherwise.
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The ϕ
(i)
k [n] are simply the basis functions of the DFT shifted to the appropriate

interval [iN, . . . , (i+ 1)N − 1].

The above expansion is called a block discrete-time Fourier series, since the
signal is divided into blocks of size N , which are then Fourier transformed. In
matrix notation, the overall expansion of the transform is given by a block diagonal
matrix, where each block is an N ×N Fourier matrix FN ,










...
X(−1)

X(0)

X(1)

...










=










. . .

FN

FN

FN
. . .



















...
x(−1)

x(0)

x(1)

...










,

and X(i), x(i) are size-N vectors. Up to a scale factor of 1/
√
N (see (3.1.6)), this is

a unitary transform. This transform is not shift-invariant in general, that is, if x[n]
has transform X[k], then x[n− l] does not necessarily have the transform X[k− l].
However, it can be seen that

x[n− l N ] ←→ X[k − l N ]. (3.1.9)

That is, the transform is periodically time-varying with period N .2 Note that we
have achieved a certain time locality. Components of the signal that exist only in
an interval [iN . . . (i+1)N−1] will only influence transform coefficients in the same
interval. Finally, the basis functions in this block transform are naturally divided
into size-N subsets, with no overlaps between subsets, that is

〈ϕ(i)
k [n], ϕ

(m)
l [n]〉 = 0, i 6= m,

simply because the supports of the basis functions are disjoint. This abrupt change
between intervals, and the fact that the interval length and position are arbitrary,
are the drawbacks of this block DTFS.

In this chapter, we will extend the idea of block transforms in order to address
these drawbacks, and this will be done using filter banks. But first, we turn our
attention to the simplest block transform case, when N = 2. This is followed by
the simplest filter bank case, when the filters are ideal sinc filters. The general case,
to which these are a prelude, lies between these extremes.

2Another way to say this is that the ”shift by N” and the size-N block transform operators
commute.
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3.1.2 Haar Expansion of Discrete-Time Signals

The Haar basis, while very simple, should nonetheless highlight key features such as
periodic time variance and the relation with filter bank implementations. The basic
unit is a two-point average and difference operation. While this is a 2× 2 unitary
transform that could be called a DFT just as well, we refer to it as the elementary
Haar basis because we will see that its suitable iteration will lead to both the
discrete-time Haar decomposition (in Section 3.3) as well as the continuous-time
Haar wavelet (in Chapter 4).

The basis functions in the Haar case are given by

ϕ2k[n] =

{
1√
2

n = 2k, 2k + 1,

0 otherwise,
ϕ2k+1[n] =







1√
2

n = 2k,

− 1√
2

n = 2k + 1,

0 otherwise.

(3.1.10)

It follows that the even-indexed basis functions are translates of each other, and so
are the odd-indexed ones, or

ϕ2k[n] = ϕ0[n− 2k], ϕ2k+1[n] = ϕ1[n− 2k]. (3.1.11)

The transform is

X[2k] = 〈ϕ2k, x〉 =
1√
2
(x[2k] + x[2k + 1]) , (3.1.12)

X[2k + 1] = 〈ϕ2k+1, x〉 =
1√
2
(x[2k]− x[2k + 1]) . (3.1.13)

The reconstruction is obtained from

x[n] =
∑

k∈Z
X[k] ϕk[n], (3.1.14)

as usual for an orthonormal basis. Let us prove that the set ϕk[n] given in (3.1.10)
is an orthonormal basis for l2(Z). While the proof is straightforward in this simple
case, we indicate it for two reasons. First, it is easy to extend it to any block
transform, and second, the method of the proof can be used in more general cases
as well.

PROPOSITION 3.1

The set of functions as given in (3.1.10) is an orthonormal basis for signals
from l2(Z).
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PROOF

To check that the set of basis functions {ϕk}k∈Z indeed constitutes an orthonormal basis
for signals from l2(Z), we have to verify that:

(a) {ϕk}k∈Z is an orthonormal family.

(b) {ϕk}k∈Z is complete.

Consider (a). We want to show that 〈ϕk, ϕl〉 = δ[k − l]. Take k even, k = 2i. Then, for l
smaller than 2i or larger than 2i+1, the inner product is automatically zero since the basis
functions do not overlap. For l = 2i, we have

〈ϕ2i, ϕ2i〉 = ϕ2
2i[2i] + ϕ2

2i[2i+ 1] =
1

2
+

1

2
= 1.

For l = 2i+ 1, we get

〈ϕ2i, ϕ2i+1〉 = ϕ2i[2i] · ϕ2i+1[2i] + ϕ2i[2i+ 1] · ϕ2i+1[2i+ 1] = 0.

A similar argument can be followed for odd l’s, and thus, orthonormality is proven. Now
consider (b). We have to demonstrate that any signal belonging to l2(Z) can be expanded
using (3.1.14). This is equivalent to showing that there exists no x[n] with ‖x‖ > 0, such
that it has a zero expansion, that is, such that ‖〈ϕk, x〉‖ = 0, for all k. To prove this,
suppose it is not true, that is, suppose that there exists an x[n] with ‖x‖ > 0, such that
‖〈ϕk, x〉‖ = 0, for all k. Thus

‖〈ϕk, x〉‖ = 0 ⇐⇒ ‖〈ϕk, x〉‖2 = 0 ⇐⇒
∑

k∈Z

|〈ϕk[n], x[n]〉|2 = 0. (3.1.15)

Since the last sum consists of strictly nonnegative terms, (3.1.15) is possible if and only if

X[k] = 〈ϕk[n], x[n]〉 = 0, for all k.

First, take k even, and consider X[2k] = 0. Because of (3.1.12), it means that x[2k] =
−x[2k + 1] for all k. Now take the odd k’s, and look at X[2k + 1] = 0. From (3.1.13), it
follows that x[2k] = x[2k+1] for all k. Thus, the only solution to the above two requirements
is x[2k] = x[2k + 1] = 0, or a contradiction with our assumption. This shows that there is
no sequence x[n], ‖x‖ > 0 such that ‖X‖ = 0, and proves completeness.

Now, we would like to show how the expansion (3.1.12–3.1.14) can be implemented
using convolutions, thus leading to filter banks. Consider the filter h0[n] with the
following impulse response:

h0[n] =

{
1√
2

n = −1, 0,
0 otherwise.

(3.1.16)

Note that this is a noncausal filter. Then, X[2k] in (3.1.12) is the result of the
convolution of h0[n] with x[n] at instant 2k since

h0[n] ∗ x[n] |n=2k =
∑

l∈Z
h0[2k − l] x[l] =

1√
2
x[2k] +

1√
2
x[2k + 1] = X[2k].
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Figure 3.1 Two-channel filter bank with analysis filters h0[n], h1[n] and synthe-
sis filters g0[n], g1[n]. If the filter bank implements an orthonormal transform,
then g0[n] = h0[−n] and g1[n] = h1[−n]. (a) Block diagram. (b) Spectrum
splitting performed by the filter bank.

Similarly, by defining the filter h1[n] with the impulse response

h1[n] =







1√
2

n = 0,

− 1√
2

n = −1,
0 otherwise,

(3.1.17)

we obtain that X[2k + 1] in (3.1.13) follows from

h1[n] ∗ x[n] |n=2k =
∑

l∈Z
h1[2k − l] x[l]

=
1√
2
x[2k]− 1√

2
x[2k + 1] = X[2k + 1].

We recall (from Section 2.5.3) that evaluating a convolution at even indexes corre-
sponds to a filter followed by downsampling by 2. Therefore, X[2k] and X[2k + 1]
can be obtained from a two-channel filter bank, with filters h0[n] and h1[n], followed
by downsampling by 2, as shown in the left half of Figure 3.1(a). This is called an
analysis filter bank. Often, we will specifically label the channel signals as y0 and
y1, where

y0[k] = X[2k], y1[k] = X[2k + 1].
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It is important to note that the impulse responses of the analysis filters are time-
reversed versions of the basis functions,

h0[n] = ϕ0[−n], h1[n] = ϕ1[−n],

since convolution is an inner product involving time reversal. Also, the filters we
defined in (3.1.16) and (3.1.17) are noncausal, which is to be expected since, for
example, the computation of X[2k] in (3.1.12) involves x[2k + 1], that is, a future
sample. To summarize this discussion, it is easiest to visualize the analysis in matrix
notation as












...
y0[0]
y1[0]
y0[1]
y1[1]
...












=












...
X[0]
X[1]
X[2]
X[3]
...












=






















. . .
ϕ0[n]

︷ ︸︸ ︷

h0[0] h0[−1]
h1[0] h1[−1]
︸ ︷︷ ︸

ϕ1[n]

ϕ2[n]
︷ ︸︸ ︷

h0[0] h0[−1]
h1[0] h1[−1]
︸ ︷︷ ︸

ϕ3[n]

. . .

































...
x[0]
x[1]
x[2]
x[3]
...












,

(3.1.18)
where we again see the shift property of the basis functions (see (3.1.11)). We can
verify the shift invariance of the analysis with respect to even shifts. If x′[n] =
x[n− 2l], then

X ′[2k] =
1√
2
(x′[2k] + x′[2k + 1]) =

1√
2
(x[2k − 2l] + x[2k + 1− 2l])

= X[2k − 2l]

and similarly for X ′[2k + 1] which equals X[2k + 1 − 2l], thus verifying (3.1.9).
This does not hold for odd shifts, however. For example, δ[n] has the transform
(δ[n] + δ[n − 1])/

√
2 while δ[n− 1] leads to (δ[n] − δ[n− 1])/

√
2.

What about the synthesis or reconstruction given by (3.1.14)? Define two filters
g0 and g1 with impulse responses equal to the basis functions ϕ0 and ϕ1

g0[n] = ϕ0[n], g1[n] = ϕ1[n]. (3.1.19)

Therefore

ϕ2k[n] = g0[n− 2k], ϕ2k+1[n] = g1[n− 2k], (3.1.20)
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following (3.1.11). Then (3.1.14) becomes, using (3.1.19) and (3.1.20),

x[n] =
∑

k∈Z
y0[k]ϕ2k [n] +

∑

k∈Z
y1[k]ϕ2k+1[n] (3.1.21)

=
∑

k∈Z
y0[k]g0[n− 2k] +

∑

k∈Z
y1[k]g1[n− 2k]. (3.1.22)

That is, each sample from yi[k] adds a copy of the impulse response of gi[n] shifted by
2k. This can be implemented by an upsampling by 2 (inserting a zero between every
two samples of yi[k]) followed by a convolution with gi[n] (see also Section 2.5.3).
This is shown in the right side of Figure 3.1(a), and is called a synthesis filter bank.

What we have just explained is a way of implementing a structured orthogonal
expansion by means of filter banks. We summarize two characteristics of the filters
which will hold in general orthogonal cases as well.

(a) The impulse responses of the synthesis filters equal the first set of basis func-
tions

gi[n] = ϕi[n], i = 0, 1.

(b) The impulse responses of the analysis filters are the time-reversed versions of
the synthesis ones

hi[n] = gi[−n], i = 0, 1.

What about the signal processing properties of our decomposition? From (3.1.12)
and (3.1.13), we recall that one channel computes the average and the other the
difference of two successive samples. While these are not the ”best possible” low-
pass and highpass filters (they have, however, good time localization), they lead to
an important interpretation. The reconstruction from y0[k] (that is, the first sum
in (3.1.21)) is the orthogonal projection of the input onto the subspace spanned by
ϕ2k[n], that is, an average or coarse version of x[n]. Calling it x0, it equals

x0[2k] = x0[2k + 1] =
1

2
(x[2k] + x[2k + 1]) .

The other sum in (3.1.21), which is the reconstruction from y1[k], is the orthogonal
projection onto the subspace spanned by ϕ2k+1[n]. Denoting it by x1, it is given by

x1[2k] =
1

2
(x[2k]− x[2k + 1]) , x1[2k + 1] = −x1[2k].

This is the difference or added detail necessary to reconstruct x[n] from its coarse
version x0[n]. The two subspaces spanned by {ϕ2k} and {ϕ2k+1} are orthogonal
and the sum of the two projections recovers x[n] perfectly, since summing (x0[2k]+
x1[2k]) yields x[2k] and similarly (x0[2k + 1] + x1[2k + 1]) gives x[2k + 1].
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3.1.3 Sinc Expansion of Discrete-Time Signals

Although remarkably simple, the Haar basis suffers from an important drawback
— the frequency resolution of its basis functions (filters), is not very good. We
now look at a basis which uses ideal half-band lowpass and highpass filters. The
frequency selectivity is ideal (out-of-band signals are perfectly rejected), but the
time localization suffers (the filter impulse response is infinite, and decays only
proportionally to 1/n).

Let us start with an ideal half-band lowpass filter g0[n], defined by its 2π-
periodic discrete-time Fourier transform G0(e

jω) =
√
2, ω ∈ [−π/2, π/2] and 0 for

ω ∈ [π/2, 3π/2]. The scale factor is so chosen that ‖G0‖ = 2π or ‖g0‖ = 1 following
Parseval’s relation for the DTFT. The inverse DTFT yields

g0[n] =

√
2

2π

∫ π/2

π/2
ejωn dω =

1√
2

sinπn/2

πn/2
. (3.1.23)

Note that g0[2n] = 1/
√
2 · δ[n]. As the highpass filter, choose a modulated version

of g0[n], with a twist, namely a time reversal and a shift by one

g1[n] = (−1)ng0[−n+ 1]. (3.1.24)

While the time reversal is only formal here (since g0[n] is symmetric in n), the
shift by one is important for the completeness of the highpass and lowpass impulse
responses in the space of square-summable sequences.

Just as in the Haar case, the basis functions are obtained from the filter impulse
responses and their even shifts,

ϕ2k[n] = g0[n− 2k], ϕ2k+1[n] = g1[n− 2k], (3.1.25)

and the coefficients of the expansion 〈ϕ2k, x〉 and 〈ϕ2k+1, x〉 are obtained by filtering
with h0[n] and h1[n] followed by downsampling by 2, with hi[n] = gi[−n].

PROPOSITION 3.2

The set of functions as given in (3.1.25) is an orthonormal basis for signals
from l2(Z).

PROOF

To prove that the set of functions ϕk[n] is indeed an orthonormal basis, again we would
have to demonstrate orthonormality of the set as well as completeness. Let us demonstrate
orthonormality of basis functions. We will do that only for

〈ϕ2k[n], ϕ2l[n]〉 = δ[k − l], (3.1.26)
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and leave the other two cases

〈ϕ2k[n], ϕ2l+1[n]〉 = 0, (3.1.27)

〈ϕ2k+1[n], ϕ2l+1[n]〉 = δ[k − l], (3.1.28)

as an exercise (Problem 3.1). First, because ϕ2k[n] = ϕ0[n− 2k], it suffices to show (3.1.26)
for k = 0, or equivalently, to prove that

〈g0[n] , g0[n− 2l]〉 = δ[l].

From (2.5.19) this is equivalent to showing

|G0(e
jω)|2 + |G0(e

j(ω+π))|2 = 2,

which holds true since G0(e
jω) =

√
2 between −π/2 and π/2. The proof of the other

orthogonality relations is similar.

The proof of completeness, which can be made along the lines of the proof in Propo-
sition 3.1, is left to the reader (see Problem 3.1).

As we said, the filters in this case have perfect frequency resolution. However,
the decay of the filters in time is rather poor, being of the order of 1/n. The
multiresolution interpretation we gave for the Haar case holds here as well. The
perfect lowpass filter h0, followed by downsampling, upsampling and interpolation
by g0, leads to a projection of the signal onto the subspace of sequences bandlimited
to [−π/2, π/2], given by x0. Similarly, the other path in Figure 3.1 leads to a
projection onto the subspace of half-band highpass signals given by x1. The two
subspaces are orthogonal and their sum is l2(Z). It is also clear that x0 is a coarse,
lowpass approximation to x, while x1 contains the additional frequencies necessary
to reconstruct x from x0.

An example describing the decomposition of a signal into downsampled lowpass
and highpass components, with subsequent reconstruction using upsampling and
interpolation, is shown in Figure 3.2. Ideal half-band filters are assumed. The
reader is encouraged to verify this spectral decomposition using the downsampling
and upsampling formulas (see (2.5.13) and (2.5.17)) from Section 2.5.3.

3.1.4 Discussion

In both the Haar and sinc cases above, we noticed that the expansion was not
time-invariant, but periodically time-varying. We show below that time invariance
in orthonormal expansions leads only to trivial solutions, and thus, any meaningful
orthonormal expansion of l2(Z) will be time-varying.

PROPOSITION 3.3

An orthonormal time-invariant signal decomposition will have no frequency
resolution.
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(b)

(c)

(d)

(e)

(f)

(a)

figtut3.1FIGURE TUT3.1

ω

|X(ejω)|

|X(ejω)|

π−π

ωπ−π

Figure 3.2 Two-channel decomposition of a signal using ideal filters. Left side
depicts the process in the lowpass channel, while the right side depicts the
process in the highpass channel. (a) Original spectrum. (b) Spectrums after
filtering. (c) Spectrums after downsampling. (d) Spectrums after upsampling.
(e) Spectrums after interpolation filtering. (f) Reconstructed spectrum.

PROOF

An expansion is time-invariant if x[n]←→ X[k], then x[n−m]←→ X[k−m] for all x[n] in
l2(Z). Thus, we have that

〈ϕk[n], x[n−m]〉 = 〈ϕk−m[n], x[n]〉.

By a change of variable, the left side is equal to 〈ϕk[n+m], x[n]〉, and then using k′ = k−m,
we find that

ϕk′+m[n+m] = ϕk′ [n], (3.1.29)

that is, the expansion operator is Toeplitz. Now, we want the expansion to be orthonormal,
that is, using (3.1.29),

〈ϕk[n], ϕk+m[n]〉 = 〈ϕk[n], ϕk[n−m]〉 = δ[m],

or the autocorrelation of ϕk[n] is a Dirac function. In Fourier domain, this leads to

|Φ(ejω)|2 = 1,

showing that the basis functions have no frequency selectivity since they are allpass func-
tions.
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Table 3.1 Basis functions (synthesis filters) in Haar and
sinc cases.

Haar Sinc

g0[n] (δ[n] + δ[n− 1])/
√
2 1√

2

sin(π/2)n
(π/2)n

g1[n] (δ[n]− δ[n− 1])/
√
2 (−1)ng0[−n+ 1]

G0(e
jω)

√
2e−j(ω/2) cos(ω/2)

{ √
2 for ω ∈ [−π/2, π/2],
0 otherwise.

G1(e
jω)

√
2je−j(ω/2) sin(ω/2) −e−jωG0(−e−jω)

Therefore, time variance is an inherent feature of orthonormal expansions. Note
that Proposition 3.3 does not hold if the orthogonality constraint is removed (see
Problem 3.3). Another consequence of Proposition 3.3 is that there are no banded3

orthonormal Toeplitz matrices, since an allpass filter has necessarily infinite impulse
response. However, in (3.1.18), we saw a banded block Toeplitz matrix (actually,
block diagonal) that was orthonormal. The construction of orthonormal FIR filter
banks is the study of such banded block Toeplitz matrices.

We have seen two extreme cases of structured series expansions of sequences,
based on Haar and sinc filters respectively (Table 3.1 gives basis functions for both
of these cases). More interesting cases exist between these extremes and they will be
implemented with filter banks as shown in Figure 3.1(a). Thus, we did not consider
arbitrary expansions of l2(Z), but rather a structured subclass. These expansions
will have the multiresolution characteristic already built in, which will be shown
to be a framework for a large body of work on filter banks that appeared in the
literature of the last decade.

3.2 TWO-CHANNEL FILTER BANKS

We saw in the last section how Haar and sinc expansions of discrete-time signals
could be implemented using a two-channel filter bank (see Figure 3.1(a)). The aim
in this section is to examine two-channel filter banks in more detail. The main idea
is that perfect reconstruction filter banks implement series expansions of discrete-
time signals as in the Haar and sinc cases. Recall that in both of these cases, the
expansion is orthonormal and the basis functions are actually the impulse responses
of the synthesis filters and their even shifts. In addition to the orthonormal case,
we will consider biorthogonal (or general) expansions (filter banks) as well.

The present section serves as a core for the remainder of the chapter; all impor-
tant notions and concepts will be introduced here. For the sake of simplicity, we
concentrate on the two-channel case. More general solutions are given later in the

3A banded Toeplitz matrix has a finite number of nonzero diagonals.
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chapter. We start with tools for analyzing general filter banks. Then, we examine
orthonormal and linear phase two-channel filter banks in more detail. We then
present results valid for general two-channel filter banks and examine some special
cases, such as IIR solutions.

3.2.1 Analysis of Filter Banks

Consider Figure 3.1(a). We saw in the Haar and sinc cases, that such a two-channel
filter bank implements an orthonormal series expansion of discrete-time signals
with synthesis filters being the time-reversed version of the analysis filters, that is
gi[n] = hi[−n]. Here, we relax the assumption of orthonormality and consider a
general filter bank, with analysis filters h0[n], h1[n] and synthesis filters g0[n], g1[n].
Our only requirement will be that such a filter bank implements an expansion of
discrete-time signals (not necessarily orthonormal). Such an expansion will be
termed biorthogonal. In the filter bank literature, such a system is called a perfect
reconstruction filter bank.

Looking at Figure 3.1, besides filtering, the key elements in the filter bank
computation of an expansion are downsamplers and upsamplers. These perform
the sampling rate changes and the downsampler creates a periodically time-varying
linear system. As discussed in Section 2.5.3, special analysis techniques are needed
for such systems. We will present three ways to look at periodically time-varying
systems, namely in time, modulation, and polyphase domains. The first approach
was already used in our discussion of the Haar case. The two other approaches
are based on the Fourier or z-transform and aim at decomposing the periodically
time-varying system into several time-invariant subsystems.

Time-Domain Analysis Recall that in the Haar case (see (3.1.18)), in order to vi-
sualize block time invariance, we expressed the transform coefficients via an infinite
matrix, that is












...
y0[0]
y1[0]
y0[1]
y1[1]
...












︸ ︷︷ ︸

y

=












...
X[0]
X[1]
X[2]
X[3]
...












︸ ︷︷ ︸

X

= T a ·












...
x[0]
x[1]
x[2]
x[3]
...












︸ ︷︷ ︸

x

. (3.2.1)

Here, the transform coefficients X[k] are expressed in another form as well. In
the filter bank literature, it is more common to write X[k] as outputs of the two
branches in Figure 3.1(a), that is, as two subband outputs denoted by y0[k] = X[2k],
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and y1[k] = X[2k+1]. Also, in (3.2.1), T a ·x represents the inner products, where
T a is the analysis matrix and can be expressed as

T a =












...
...

...
...

...
...

h0[L− 1] h0[L− 2] h0[L− 3] · · · h0[0] 0 0
h1[L− 1] h1[L− 2] h1[L− 3] · · · h1[0] 0 0

0 0 h0[L− 1] · · · h0[2] h0[1] h0[0]
0 0 h1[L− 1] · · · h1[2] h1[1] h1[0]
...

...
...

...
...

...












,

where we assume that the analysis filters hi[n] are finite impulse response (FIR)
filters of length L = 2K. To make the block Toeplitz structure of T a more explicit,
we can write

T a =








...
...

...
...

· · · A0 A1 · · · AK−1 0 · · ·
· · · 0 A0 · · · AK−2 AK−1 · · ·

...
...

...
...







. (3.2.2)

The block Ai is given by

Ai =

(
h0[2K − 1− 2i] h0[2K − 2− 2i]
h1[2K − 1− 2i] h1[2K − 2− 2i]

)

. (3.2.3)

The transform coefficient
X[k] = 〈ϕk[n], x[n]〉,

equals (in the case k = 2k′)

y0[k
′] = 〈h0[2k′ − n], x[n]〉,

and (in the case k = 2k′ + 1)

y1[k
′] = 〈h1[2k′ − n], x[n]〉.

The analysis basis functions are thus

ϕ2k[n] = h0[2k − n], (3.2.4)

ϕ2k+1[n] = h1[2k − n]. (3.2.5)

To resynthesize the signal, we use the dual-basis, synthesis, matrix T s

x = T s y = T s X = T s T a x. (3.2.6)
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Similarly to T a, T s can be expressed as

T T
s =












...
...

...
...

...
...

g0[0] g0[1] g0[2] · · · g0[L
′ − 1] 0 0

g1[0] g1[1] g1[2] · · · g1[L
′ − 1] 0 0

0 0 g0[0] · · · g0[L
′ − 3] g0[L

′ − 2] g0[L
′ − 1]

0 0 g1[0] · · · g1[L
′ − 3] g1[L

′ − 2] g1[L
′ − 1]

...
...

...
...

...
...












=









...
...

...
...

· · · ST0 ST1 · · · STK ′−1 0 · · ·
· · · 0 ST0 · · · STK ′−2 STK ′−1 · · ·

...
...

...
...









, (3.2.7)

where the block Si is of size 2×2 and FIR filters are of length L′ = 2K ′. The block
Si is

Si =

(
g0[2i] g1[2i]

g0[2i + 1] g1[2i+ 1]

)

,

where g0[n] and g1[n] are the synthesis filters. The dual synthesis basis functions
are

ϕ̃2k[n] = g0[n− 2k],

ϕ̃2k+1[n] = g1[n− 2k].

Let us go back for a moment to (3.2.6). The requirement that {h0[2k−n], h1[2k−n]}
and {g0[n− 2k], g1[n− 2k]} form a dual bases pair is equivalent to

T s T a = T a T s = I. (3.2.8)

This is the biorthogonality condition or, in the filter bank literature, the perfect
reconstruction condition. In other words,

〈ϕk[n], ϕ̃l[n]〉 = δ[k − l],

or in terms of filter impulse responses

〈hi[2k − n], gj [n− 2l]〉 = δ[k − l] δ[i − j], i, j = 0, 1.

Consider the two branches in Figure 3.1(a) which produce y0 and y1. Call Hi the
operator corresponding to filtering by hi[n] followed by downsampling by 2. Then
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the output yi can be written as (L denotes the filter length)








...
yi[0]
yi[1]
...








︸ ︷︷ ︸

yi

=









...
...

...
· · · hi[L− 1] hi[L− 2] hi[L− 3] · · ·
· · · 0 0 hi[L− 1] · · ·

...
...

...









︸ ︷︷ ︸

H i








...
x[0]
x[1]
...








︸ ︷︷ ︸

x

, (3.2.9)

or, in operator notation
yi = H i x.

Defining GT
i similarly to H i but with gi[n] in reverse order (see also the definition

of T s), the output of the system can now be written as

(G0 H0 +G1 H1) x.

Thus, to resynthesize the signal (the condition for perfect reconstruction), we have
that

G0 H0 +G1 H1 = I.

Of course, by interleaving the rows of H0 and H1, we get T a, and similarly, T s

corresponds to interleaving the columns of G0 and G1.
To summarize this part on time-domain analysis, let us stress once more that

biorthogonal expansions of discrete-time signals, where the basis functions are ob-
tained from two prototype functions and their even shifts (for both dual bases), is
implemented using a perfect reconstruction, two-channel multirate filter bank. In
other words, perfect reconstruction is equivalent to the biorthogonality condition
(3.2.8).

Completeness is also automatically satisfied. To prove it, we show that there
exists no x[n] with ‖x‖ > 0, such that it has a zero expansion, that is, such that
‖X‖ = 0. Suppose it is not true, that is, suppose that there exists an x[n] with
‖x‖ > 0, such that ‖X‖ = 0. But, since X = T a x, we have that

‖T a x‖ = 0,

and this is possible if and only if

T a x = 0 (3.2.10)

(since in a Hilbert space — l2(Z) in this case, ‖v‖2 = 〈v, v〉 = 0, if and only
if v ≡ 0). We know that (3.2.10) has a nontrivial solution if and only if T a is
singular. However, due to (3.2.8), T a is nonsingular and thus (3.2.10) has only a
trivial solution, x ≡ 0, violating our assumption and proving completeness.
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Modulation-Domain Analysis This approach is based on Fourier or more gener-
ally z-transforms. Recall from Section 2.5.3, that downsampling a signal with the
z-transform X(z) by 2 leads to X ′(z) given by

X ′(z) =
1

2

[

X(z1/2) +X(−z1/2)
]

. (3.2.11)

Then, upsampling X ′(z) by 2 yields X ′′(z) = X ′(z2), or

X ′′(z) =
1

2
[X(z) +X(−z)] . (3.2.12)

To verify (3.2.12) directly, notice that downsampling followed by upsampling by 2
simply nulls out the odd-indexed coefficients, that is, x′′[2n] = x[2n] and x′′[2n+1] =
0. Then, note that X(−z) is the z-transform of (−1)nx[n] by the modulation
property, and therefore, (3.2.12) follows.

With this preamble, the z-transform analysis of the filter bank in Figure 3.1(a)
becomes easy. Consider the lower branch. The filtered signal, which has the z-
transform H0(z) ·X(z), goes through downsampling and upsampling, yielding (ac-
cording to (3.2.12))

1

2
[H0(z) X(z) + H0(−z) X(−z)] .

This signal is filtered with G0(z), leading to X0(z) given by

X0(z) =
1

2
G0(z) [H0(z) X(z) + H0(−z) X(−z)] . (3.2.13)

The upper branch contributes X1(z), which equals to (3.2.13) up to the change of
index 0→ 1, and the output of the analysis/synthesis filter bank is the sum of the
two components X0(z) and X1(z). This is best written in matrix notation as

X̂(z) = X0(z) +X1(z) (3.2.14)

=
1

2
(G0(z) G1(z) )

(
H0(z) H0(−z)
H1(z) H1(−z)

)

︸ ︷︷ ︸

Hm(z)

(
X(z)
X(−z)

)

︸ ︷︷ ︸

xm(z)

.

In the above, Hm(z) is the analysis modulation matrix containing the modulated
versions of the analysis filters and xm(z) contains the modulated versions of X(z).
Relation (3.2.14) is illustrated in Figure 3.3, where the time-varying part is in
the lower channel. If the channel signals Y0(z) and Y1(z) are desired, that is, the
downsampled domain signals, it follows from (3.2.11) and (3.2.14) that

(
Y0(z)
Y1(z)

)

=
1

2

(
H0(z

1/2) H0(−z1/2)
H1(z

1/2) H1(−z1/2)

)(
X(z1/2)
X(−z1/2)

)

,
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x̂x

G0

G1

(-1)n

Hm

figlast3.2.1FIGURE 3.2

+ 1
2
---

Figure 3.3 Modulation-domain analysis of the two-channel filter bank. The
2×2 matrix Hm(z) contains the z-transform of the filters and their modulated
versions.

or, calling y(z) the vector [Y0(z) Y1(z)]
T ,

y(z) =
1

2
Hm(z

1/2) xm(z
1/2).

For the system to represent a valid expansion, (3.2.14) has to yield X̂(z) = X(z),
which can be obtained when

G0(z) H0(z) +G1(z) H1(z) = 2, (3.2.15)

G0(z) H0(−z) +G1(z) H1(−z) = 0. (3.2.16)

The above two conditions then ensure perfect reconstruction. Expressing (3.2.15)
and (3.2.16) in matrix notation, we get

(G0(z) G1(z) ) ·Hm(z) = ( 2 0 ) . (3.2.17)

We can solve now forG0(z) andG1(z) (transpose (3.2.17) and multiply by (HT
m(z))

−1

from the left)
(
G0(z)
G1(z)

)

=
2

det(Hm(z))

(
H1(−z)
−H0(−z)

)

. (3.2.18)

In the above, we assumed that Hm(z) is nonsingular; that is, its normal rank is
equal to 2. Define P (z) as

P (z) = G0(z) H0(z) =
2

det(Hm(z))
H0(z)H1(−z), (3.2.19)

where we used (3.2.18). Observe that det(Hm(z)) = − det(Hm(−z)). Then, we
can express the product G1(z)H1(z) as

G1(z) H1(z) =
−2

det(Hm(z))
H0(−z) H1(z) = P (−z).
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It follows that (3.2.15) can be expressed in terms of P (z) as

P (z) + P (−z) = 2. (3.2.20)

We will show later, that the function P (z) plays a crucial role in analyzing and
designing filter banks. It suffices to note at this moment that, due to (3.2.20), all
even-indexed coefficients of P (z) equal 0, except for p[0] = 1. Thus, P (z) is of the
following form:

P (z) = 1 +
∑

k∈Z
p[2k + 1] z−(2k+1).

A polynomial or a rational function in z satisfying (3.2.20) will be called valid.
Following the definition of P (z) in (3.2.19), we can rewrite (3.2.15) or equivalently
(3.2.20) as

G0(z) H0(z) +G0(−z) H0(−z) = 2. (3.2.21)

Using the modulation property, its time-domain equivalent is

∑

k∈Z
g0[k] h0[n− k] + (−1)n

∑

k∈Z
g0[k] h0[n− k] = 2δ[n],

or equivalently,
∑

k∈Z
g0[k] h0[2n − k] = δ[n],

since odd-indexed terms are cancelled. Written as an inner product

〈g0[k], h0[2n− k]〉 = δ[n],

this is one of the biorthogonality relations

〈ϕ̃0[k], ϕ2n[k]〉 = δ[n].

Similarly, starting from (3.2.15) or (3.2.16) and expressing G0(z) and H0(z) as
a function of G1(z) and H1(z) would lead to the other biorthogonality relations,
namely

〈ϕ̃1[k], ϕ2n+1[k]〉 = δ[n],

〈ϕ̃0[k], ϕ2n+1[k]〉 = 0,

〈ϕ̃1[k], ϕ2n[k]〉 = 0

Note that we obtained these relations for ϕ̃0 and ϕ̃1 but they hold also for ϕ̃2l and
ϕ̃2l+1, respectively. This shows once again that perfect reconstruction implies the
biorthogonality conditions. The converse can be shown as well, demonstrating the
equivalence of the two conditions.
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+
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z z-1

FIGURE 3.3

x̂

x̂

Figure 3.4 Polyphase-domain analysis. (a) Forward and inverse polyphase
transform. (b) Analysis part in the polyphase domain. (c) Synthesis part in
the polyphase domain.

Polyphase-Domain Analysis Although a very natural representation, modulation-
domain analysis suffers from a drawback — it is redundant. Note how in Hm(z)
every filter coefficient appears twice, since both the filter Hi(z) and its modulated
version Hi(−z) are present. A more compact way of analyzing a filter bank uses
polyphase-domain analysis, which was introduced in Section 2.5.3.

Thus, what we will do is decompose both signals and filters into their polyphase
components and use (2.5.23) with N = 2 to express the output of filtering followed
by downsampling. For convenience, we introduce matrix notation to express the
two channel signals Y0 and Y1, or

(
Y0(z)
Y1(z)

)

︸ ︷︷ ︸

y(z)

=

(
H00(z) H01(z)
H10(z) H11(z)

)

︸ ︷︷ ︸

Hp(z)

(
X0(z)
X1(z)

)

︸ ︷︷ ︸

xp(z)

, (3.2.22)
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where Hij is the jth polyphase component of the ith filter, or, following (2.5.22–
2.5.23),

Hi(z) = Hi0(z
2) + zHi1(z

2).

In (3.2.22) y(z) contains the signals in the middle of the system in Figure 3.1(a).
Hp(z) contains the polyphase components of the analysis filters, and is conse-
quently denoted the analysis polyphase matrix, while xp(z) contains the polyphase
components of the input signal or, following (2.5.20),

X(z) = X0(z
2) + z−1X1(z

2).

It is instructive to give a block diagram of (3.2.22) as shown in Figure 3.4(b). First,
the input signal X is split into its polyphase components X0 andX1 using a forward
polyphase transform. Then, a two-input, two-output system containing Hp(z) as
transfer function matrix leads to the outputs y0 and y1.

The synthesis part of the system in Figure 3.1(a) can be analyzed in a similar
fashion. It can be implemented with an inverse polyphase transform (as given
on the right side of Figure 3.4(a)) preceded by a two-input two-output synthesis
polyphase matrix Gp(z) defined by

Gp(z) =

(
G00(z) G10(z)
G01(z) G11(z)

)

, (3.2.23)

where
Gi(z) = Gi0(z

2) + z−1Gi1(z
2). (3.2.24)

The synthesis filter polyphase components are defined such as those of the signal
(2.5.20–2.5.21), or in reverse order of those of the analysis filters. In Figure 3.4(c),
we show how the output signal is synthesized from the channel signals Y0 and Y1 as

X̂(z) = ( 1 z−1 )

(
G00(z

2) G10(z
2)

G01(z
2) G11(z

2)

)

︸ ︷︷ ︸

Gp(z2)

(
Y0(z

2)
Y1(z

2)

)

︸ ︷︷ ︸

y(z2)

. (3.2.25)

This equation reflects that the channel signals are first upsampled by 2 (leading to
Yi(z

2)) and then filtered by filters Gi(z) which can be written as in (3.2.24). Note
that the matrix-vector product in (3.2.25) is in z2 and can thus be implemented
before the upsampler by 2 (replacing z2 by z) as shown in the figure.

Note the duality between the analysis and synthesis filter banks. The former
uses a forward, the latter an inverse polyphase transform, and Gp(z) is a transpose
of Hp(z). The phase reversal in the definition of the polyphase components in
analysis and synthesis comes from the fact that z and z−1 are dual operators, or,
on the unit circle, ejω = (e−jω)∗.
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Obviously the transfer function between the forward and inverse polyphase
transforms defines the analysis/synthesis filter bank. This transfer polyphase matrix
is given by

T p(z) = Gp(z) Hp(z).

In order to find the input-output relationship, we use (3.2.22) as input to (3.2.25),
which yields

X̂(z) = ( 1 z−1 ) Gp(z
2) Hp(z

2) xp(z
2),

= ( 1 z−1 ) T p(z
2) xp(z

2). (3.2.26)

Obviously, if T p(z) = I, we have

X̂(z) = ( 1 z−1 )

(
X0(z

2)
X1(z

2)

)

= X(z),

following (2.5.20), that is, the analysis/synthesis filter bank achieves perfect recon-
struction with no delay and is equivalent to Figure 3.4(a).

Relationships Between Time, Modulation and Polyphase Repr esentations
Being different views of the same system, the representations discussed are related.
A few useful formulas are given below. From (2.5.20), we can write

(
X0(z

2)
X1(z

2)

)

=
1

2

(
1

z

)(
1 1
1 −1

)(
X(z)
X(−z)

)

, (3.2.27)

thus relating polyphase and modulation representations of the signal, that is, xp(z)
and xm(z). For the analysis filter bank, we have that
(
H00(z

2) H01(z
2)

H10(z
2) H11(z

2)

)

=
1

2

(
H0(z) H0(−z)
H1(z) H1(−z)

)(
1 1
1 −1

)(
1

z−1

)

, (3.2.28)

establishing the relationship between Hp(z) and Hm(z). Finally, following the
definition of Gp(z) in (3.2.23) and similarly to (3.2.28) we have

(
G00(z

2) G10(z
2)

G01(z
2) G11(z

2)

)

=
1

2

(
1

z

)(
1 1
1 −1

)(
G0(z) G1(z)
G0(−z) G1(−z)

)

, (3.2.29)

which relates Gp(z) with Gm(z) defined as

Gm(z) =

(
G0(z) G1(z)
G0(−z) G1(−z)

)

.

Again, note that (3.2.28) is the transpose of (3.2.29), with a phase change in the
diagonal matrix. The change from the polyphase to the modulation representation
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(and vice versa) involves not only a diagonal matrix with a delay (or phase factor),
but also a sum and/or a difference operation (see the middle matrix in (3.2.27–
3.2.29)). This is actually a size-2 Fourier transform, as will become clear in cases
of higher dimension.

The relation between time domain and polyphase domain is most obvious for
the synthesis filters gi, since their impulse responses correspond to the first basis
functions ϕi. Consider the time-domain synthesis matrix, and create a matrix T s(z)

T s(z) =

K ′−1∑

i=0

Si z
−i,

where Si are the successive 2×2 blocks along a column of the block Toeplitz matrix
(there are K ′ of them for length 2K ′ filters), or

Si =

(
g0[2i] g1[2i]

g0[2i + 1] g1[2i+ 1]

)

.

Then, by inspection, it can be seen that T s(z) is identical to Gp(z). A similar
relation holds between Hp(z) and the time-domain analysis matrix. It is a bit
more involved since time reversal has to be taken into account, and is given by

T a(z) = z−K+1Hp(z
−1)

(
0 1
z−1 0

)

,

where

T a(z) =

K−1∑

i=0

Ai z
−i,

and

Ai =

(
h0[2(K − i)− 1] h0[2(K − i)− 2]
h1[2(K − i)− 1] h1[2(K − i)− 2]

)

,

K being the number of 2 × 2 blocks in a row of the block Toeplitz matrix. The
above relations can be used to establish equivalences between results in the various
representations (see also Theorem 3.7 below).

3.2.2 Results on Filter Banks

We now use the tools just established to review several classic results from the filter
bank literature. These have a slightly different flavor than the expansion results
which are concerned with the existence of orthogonal or biorthogonal bases. Here,
approximate reconstruction is considered, and issues of realizability of the filters
involved are very important.
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In the filter bank language, perfect reconstruction means that the output is a
delayed and possibly scaled version of the input,

X̂(z) = cz−kX(z).

This is equivalent to saying that, up to a shift and scale, the impulse responses of the
analysis filters (with time reversal) and of the synthesis filters form a biorthogonal
basis.

Among approximate reconstructions, the most important one is alias-free re-
construction. Remember that because of the periodic time-variance of analy-
sis/synthesis filter banks, the output is both a function of x[n] and its modulated
version (−1)nx[n], or X(z) and X(−z) in the z-transform domain. The aliased
component X(−z) can be very disturbing in applications and thus cancellation of
aliasing is of prime importance. In particular, aliasing represents a nonharmonic
distortion (new sinusoidal components appear which are not harmonically related
to the input) and this is particularly disturbing in audio applications.

What follows now, are results on alias cancellation and perfect reconstruction
for the two-channel case. Note that all the results are valid for a general, N -channel
case as well (substitute N for 2 in statements and proofs).

For the first result, we need to introduce pseudocirculant matrices [311]. These
are N ×N circulant matrices with elements Fij(z), except that the lower triangular
elements are multiplied by z, that is

Fij(z) =

{
F0,j−i(z) j ≥ i,

z · F0,N+j−i(z) j < i.

Then, the following holds:

PROPOSITION 3.4

Aliasing in a one-dimensional subband coding system will be cancelled if and
only if the transfer polyphase matrix T p is pseudocirculant [311].

PROOF

Consider a 2× 2 pseudocirculant matrix

T p(z) =

(

F0(z) F1(z)
zF1(z) F0(z)

)

,

and substitute it into (3.2.26)

X̂(z) = ( 1 z−1 )T p(z
2)

(

X0(z
2)

X1(z
2)

)

,
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yielding (use F (z) = F0(z
2) + zF1(z

2))

X̂(z) = (F (z) z−1F (z) ) ·
(

X0(z
2)

X1(z
2)

)

,

= F (z) · (X0(z
2) + z−1X1(z

2)),

= F (z) ·X(z),

that is, it results in a time-invariant system or aliasing is cancelled. Given a time-invariant
system, defined by a transfer function F (z), it can be shown (see [311]) that its polyphase
implementation is pseudocirculant.

A corollary to Proposition 3.4, is that for perfect reconstruction, the transfer func-
tion matrix has to be a pseudocirculant delay, that is, for an even delay 2k

T p(z) = z−k
(
1 0
0 1

)

,

while for an odd delay 2k + 1

T p(z) = z−k−1

(
0 1
z 0

)

.

The next result indicates when aliasing can be cancelled for a given analysis filter
bank. Since the analysis and synthesis filter banks play dual roles, the result that
we will discuss holds for synthesis filter banks as well.

PROPOSITION 3.5

Given a two-channel filter bank downsampled by 2 with the polyphase matrix
Hp(z), then alias-free reconstruction is possible if and only if the determinant
of Hp(z) is not identically zero, that is, Hp(z) has normal rank 2.

PROOF

Choose the synthesis matrix as

Gp(z) = cofactor (Hp(z)) ,

resulting in
T p(z) = Gp(z) Hp(z) = det (Hp(z)) · I

which is pseudocirculant, and thus cancels aliasing. If, on the other hand, the system is
alias-free, then we know (see Proposition 3.4) that T p(z) is pseudocirculant and therefore
has full rank 2. Since the rank of a matrix product is bounded above by the ranks of its
terms, Hp(z) has rank 2.4

Often, one is interested in perfect reconstruction filter banks where all filters
involved have a finite impulse response (FIR). Again, analysis and synthesis filter
banks play the same role.

4Note that we excluded the case of zero reconstruction, even if technically it is also aliasing free
(but of zero interest!).
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PROPOSITION 3.6

Given a critically sampled FIR analysis filter bank, perfect reconstruction
with FIR filters is possible if and only if det(Hp(z)) is a pure delay.

PROOF

Suppose that the determinant of Hp(z) is a pure delay, and choose

Gp(z) = cofactor (Hp(z)) .

It is obvious that the above choice leads to perfect reconstruction with FIR filters. Suppose,
on the other hand, that we have perfect reconstruction with FIR filters. Then, T p(z) has
to be a pseudocirculant shift (corollary below Proposition 3.4), or

det(T p(z)) = det(Gp(z)) · det(Hp(z)) = z−l,

meaning that it has l poles at z = 0. Since the synthesis has to be FIR as well, det(Gp(z))
has only zeros (or poles at the origin). Therefore, det(Hp(z)) cannot have any zeros (except
possibly at the origin or ∞).

If det(Hp(z)) has no zeros, neither does det(Hm(z)) (because of (3.2.28) and
assuming FIR filters). Since det(Hm(z)) is an odd function of z, it is of the form

det(Hm(z)) = αz−2k−1,

(typically, α = 2) and following (3.2.18)

G0(z) =
2

α
z2k+1 H1(−z), (3.2.30)

G1(z) = − 2

α
z2k+1 H0(−z). (3.2.31)

These filters give perfect reconstruction with zero delay but they are noncausal if
the analysis filters are causal. Multiplying them by z−2k−1 gives a causal version
with perfect reconstruction and a delay of 2k + 1 samples (note that the shift can
be arbitrary, since it only changes the overall delay).

In the above results, we used the polyphase decomposition of filter banks. All
these results can be translated to the other representation as well. In particular,
aliasing cancellation can be studied in the modulation domain. Then, a necessary
and sufficient condition for alias cancellation is that (see (3.2.14))

(G0(z) G1(z) ) ·Hm(z)

be a row-vector with only the first component different from zero. One could expand
(G0(z) G1(z) ) into a matrix Gm(z) by modulation, that is

Gm(z) =

(
G0(z) G1(z)
G0(−z) G1(−z)

)

. (3.2.32)
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It is easy to see then that for the system to be alias-free

Tm(z) = Gm(z) Hm(z) =

(
F (z)

F (−z)

)

.

The matrix Tm(z) is sometimes called the aliasing cancellation matrix [272].

Let us for a moment return to (3.2.14). As we said, X(−z) is the aliased version
of the signal. A necessary and sufficient condition for aliasing cancellation is that

G0(z) H0(−z) +G1(z) H1(−z) = 0. (3.2.33)

The solution proposed by Croisier, Esteban, Galand [69] is known under the name
QMF (quadrature mirror filters), which cancels aliasing in a two-channel filter bank:

H1(z) = H0(−z), (3.2.34)

G0(z) = H0(z),

G1(z) = −H1(z) = −H0(−z). (3.2.35)

Substituting the above into (3.2.33) leads to H0(z)H0(−z)−H0(−z)H0(z) = 0, and
aliasing is indeed cancelled. In order to achieve perfect reconstruction, the following
has to be satisfied:

G0(z) H0(z) +G1(z) H1(z) = 2z−l. (3.2.36)

For the QMF solution, (3.2.36) becomes

H2
0 (z)−H2

0 (−z) = 2z−l. (3.2.37)

Note that the left side is an odd function of z, and thus, l has to be odd. The above
relation explains the name QMF. On the unit circle H0(−z) = H(ej(ω+π)) is the
mirror image of H0(z) and both the filter and its mirror image are squared. For FIR
filters, the condition (3.2.37) cannot be satisfied exactly except for the Haar filters
introduced in Section 3.1. Taking a causal Haar filter, or H0(z) = (1 + z−1)/

√
2,

(3.2.37) becomes

1

2
(1 + 2z−1 + z−2)− 1

2
(1− 2z−1 + z−2) = 2z−1.

For larger, linear phase filters, (3.2.37) can only be approximated (see Section 3.2.4).

Summary of Biorthogonality Relations Let us summarize our findings on bior-
thogonal filter banks.
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THEOREM 3.7

In a two-channel, biorthogonal, real-coefficient filter bank, the following are
equivalent:

(a) 〈hi[−n], gj [n − 2m]〉 = δ[i − j]δ[m], i = 0, 1.

(b) G0(z)H0(z)+G1(z)H1(z) = 2, and G0(z)H0(−z)+G1(z)H1(−z) = 0.

(c) T s · T a = T a · T s = I.

(d) Gm(z)Hm(z) = Hm(z)Gm(z) = 2I.

(e) Gp(z)Hp(z) = Hp(z)Gp(z) = I.

The proof follows from the equivalences between the various representations intro-
duced in this section and is left as an exercise (see Problem 3.4). Note that we are
assuming a critically sampled filter bank. Thus, the matrices in points (c)–(e) are
square, and left inverses are also right inverses.

3.2.3 Analysis and Design of Orthogonal FIR Filter Banks

Assume now that we impose two constraints on our filter bank: First, it should
implement an orthonormal expansion5 of discrete-time signals and second, the filters
used should be FIR.

Let us first concentrate on the orthonormality requirement. We saw in the Haar
and sinc cases (both orthonormal expansions), that the expansion was of the form

x[n] =
∑

k∈Z
〈ϕk[l], x[l]〉 ϕk[n] =

∑

k∈Z
X[k] ϕk[n], (3.2.38)

with the basis functions being

ϕ2k[n] = h0[2k − n] = g0[n− 2k], (3.2.39)

ϕ2k+1[n] = h1[2k − n] = g1[n− 2k], (3.2.40)

or, the even shifts of synthesis filters (even shifts of time-reversed analysis filters).
We will show here that (3.2.38–3.2.40) describe orthonormal expansions, in the
general case.

5The term orthogonal is often used, especially for the associated filters or filter banks. For filter
banks, the term unitary or paraunitary is also often used, as well as the notion of losslessness (see
Appendix 3.A).
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Orthonormality in Time Domain Start with a general filter bank as given in Fig-
ure 3.1(a). Impose orthonormality on the expansion, that is, the dual basis {ϕ̃k[n]}
becomes identical to {ϕk[n]}. In filter bank terms, the dual basis — synthesis filters
— now becomes

{g0[n−2k], g1[n−2k]} = {ϕ̃k[n]} = {ϕk[n]} = {h0[2k−n], h1[2k−n]}, (3.2.41)

or,
gi[n] = hi[−n], i = 0, 1. (3.2.42)

Thus, we have encountered the first important consequence of orthonormality: The
synthesis filters are the time-reversed versions of the analysis filters. Also, since
(3.2.41) holds and ϕk is an orthonormal set, the following are the orthogonality
relations for the synthesis filters:

〈gi[n− 2k], gj [n− 2l]〉 = δ[i− j] δ[k − l], (3.2.43)

with a similar relation for the analysis filters. We call this an orthonormal filter
bank.

Let us now see how orthonormality can be expressed using matrix notation.
First, substituting the expression for gi[n] given by (3.2.42) into the synthesis matrix
T s given in (3.2.7), we see that

T s = T T
a ,

or, the perfect reconstruction condition is

T s T a = T T
a T a = I. (3.2.44)

That is, the above condition means that the matrix T a is unitary. Because it is
full rank, the product commutes and we have also T a T T

a = I. Thus, having an
orthonormal basis, or perfect reconstruction with an orthonormal filter bank, is
equivalent to the analysis matrix T a being unitary.

If we separate the outputs now as was done in (3.2.9), and note that

Gi = HT
i ,

then the following is obtained from (3.2.43):

H i H
T
j = δ[i− j] I, i, j = 0, 1.

Now, the output of one channel in Figure 3.1(a) (filtering, downsampling, upsam-
pling and filtering) is equal to

M i = HT
i H i.
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It is easy to verify that M i satisfies the requirements for an orthogonal projection
(see Appendix 2.A) since MT

i = M i and M2
i = M i. Thus, the two channels of

the filter bank correspond to orthogonal projections onto spaces spanned by their
respective impulse responses, and perfect reconstruction can be written as the direct
sum of the projections

HT
0 H0 +HT

1 H1 = I.

Note also, that sometimes in order to visualize the action of the matrix T a, it is
expressed in terms of 2× 2 blocks Ai (see (3.2.2–3.2.3)), which can also be used to
express orthonormality as follows (see (3.2.44)):

K−1∑

i=0

AT
i Ai = I,

K−1∑

i=0

AT
i+j Ai = 0, j = 1, . . . ,K − 1.

Orthonormality in Modulation Domain To see how orthonormality translates in
the modulation domain, consider (3.2.43) and i = j = 0. Substitute n′ = n − 2k.
Thus, we have

〈g0[n′], g0[n′ + 2(k − l)]〉 = δ[k − l],
or

〈g0[n], g0[n+ 2m]〉 = δ[m]. (3.2.45)

Recall that p[l] = 〈g0[n], g0[n + l]〉 is the autocorrelation of the sequence g0[n] (see
Section 2.5.2). Then, (3.2.45) is simply the autocorrelation of g0[n] evaluated at
even indexes l = 2m, or p[l] downsampled by 2, that is, p′[m] = p[2m]. The
z-transform of p′[m] is (see Section 2.5.3)

P ′(z) =
1

2
[P (z1/2) + P (−z1/2)].

Replacing z by z2 (for notational convenience) and recalling that the z-transform
of the autocorrelation of g0[n] is given by P (z) = G0(z) ·G0(z

−1), the z-transform
of (3.2.45) becomes

G0(z) G0(z
−1) +G0(−z) G0(−z−1) = 2. (3.2.46)

Using the same arguments for the other cases in (3.2.43), we also have that

G1(z) G1(z
−1) +G1(−z) G1(−z−1) = 2, (3.2.47)

G0(z) G1(z
−1) +G0(−z) G1(−z−1) = 0. (3.2.48)
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On the unit circle, (3.2.46–3.2.47) become (use G(e−jω) = G∗(ejω) since the filter
has real coefficients)

|Gi(ejω)|2 + |Gi(ej(ω+π))|2 = 2, (3.2.49)

that is, the filter and its modulated version are power complementary (their mag-
nitudes squared sum up to a constant). Since this condition was used in [270]
for designing the first orthogonal filter banks, it is also called the Smith-Barnwell
condition. Writing (3.2.46–3.2.48) in matrix form,

(
G0(z

−1) G0(−z−1)
G1(z

−1) G1(−z−1)

)(
G0(z) G1(z)
G0(−z) G1(−z)

)

=

(
2 0
0 2

)

, (3.2.50)

that is, using the synthesis modulation matrix Gm(z) (see (3.2.32))

GT
m(z

−1) Gm(z) = 2I. (3.2.51)

Since gi and hi are identical up to time reversal, a similar relation holds for the
analysis modulation matrix Hm(z) (up to a transpose), or Hm(z

−1) HT
m(z) = 2I.

A matrix satisfying (3.2.51) is called paraunitary (note that we have assumed
that the filter coefficients are real). If all its entries are stable (which they are in this
case, since we assumed the filters to be FIR), then such a matrix is called lossless.
The concept of losslessness comes from classical circuit theory [23, 308] and is
discussed in more detail in Appendix 3.A. It suffices to say at this point that having
a lossless transfer matrix is equivalent to the filter bank implementing an orthogonal
transform. Concentrating on lossless modulation matrices, we can continue our
analysis of orthogonal systems in the modulation domain. First, from (3.2.50) we
can see that (G1(z

−1) G1(−z−1) )T has to be orthogonal to (G0(z) G0(−z) )T .
It will be proven in Appendix 3.A (although in polyphase domain), that this implies
that the two filters G0(z) and G1(z) are related as follows:

G1(z) = −z−2K+1 G0(−z−1), (3.2.52)

or, in time domain
g1[n] = (−1)ng0[2K − 1− n].

Equation (3.2.52) therefore establishes an important property of an orthogonal
system: In an orthogonal two-channel filter bank, all filters are obtained from a
single prototype filter.

This single prototype filter has to satisfy the power complementary property
given by (3.2.49). For filter design purposes, one can use (3.2.46) and design an
autocorrelation function P (z) that satisfies P (z) + P (−z) = 2 as will be shown
below. This special form of the autocorrelation function can be used to prove that
the filters in an orthogonal FIR filter bank have to be of even length (Problem 3.5).
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Orthonormality in Polyphase Domain We have seen that the polyphase and
modulation matrices are related as in (3.2.29). Since Gm and Gp are related by
unitary operations, Gp will be lossless if and only if Gm is lossless. Thus, one
can search or examine an orthonormal system in either modulation, or polyphase
domain, since

GT
p (z

−2) Gp(z
2) =

1

4
GT
m(z

−1)

(
1 1
1 −1

)(
1 0
0 z−1

)

×
(
1 0
0 z

)(
1 1
1 −1

)

Gm(z)

=
1

2
GT
m(z

−1) Gm(z) = I, (3.2.53)

where we used (3.2.51). Since (3.2.53) also implies Gp(z) G
T
p (z

−1) = I (left inverse
is also right inverse), it is clear that given a paraunitary Gp(z) corresponding to
an orthogonal synthesis filter bank, we can choose the analysis filter bank with a
polyphase matrix Hp(z) = GT

p (z
−1) and get perfect reconstruction with no delay.

Summary of Orthonormality Relations Let us summarize our findings so far.

THEOREM 3.8

In a two-channel, orthonormal, FIR, real-coefficient filter bank, the following
are equivalent:

(a) 〈gi[n], gj [n+ 2m]〉 = δ[i − j] δ[m], i = 0, 1.

(b) G0(z) G0(z
−1) +G0(−z) G0(−z−1) = 2,

and G1(z) = −z−2K+1 G0(−z−1), K ∈ Z.

(c) T T
s T s = T s T

T
s = I, T a = T T

s .

(d) GT
m(z

−1) Gm(z) = Gm(z) G
T
m(z

−1) = 2I, Hm(z) = GT
m(z

−1).

(e) GT
p (z

−1) Gp(z) = Gp(z) G
T
p (z

−1) = I, Hp(z) = GT
p (z

−1).

Again, we used the fact that the left inverse is also the right inverse in a square
matrix in relations (c), (d) and (e). The proof follows from the relations between
the various representations, and is left as an exercise (see Problem 3.7). Note that
the theorem holds in more general cases as well. In particular, the filters do not have
to be restricted to be FIR, and if their coefficients are complex valued, transposes
have to be hermitian transposes (in the case of Gm and Gp, only the coefficients of
the filters have to be conjugated, not z since z−1 plays that role).
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Because all filters are related to a single prototype satisfying (a) or (b), the
other filter in the synthesis filter bank follows by modulation, time reversal and an
odd shift (see (3.2.52)). The filters in the analysis are simply time-reversed versions
of the synthesis filters. In the FIR case, the length of the filters is even. Let us
formalize these statements:

COROLLARY 3.9

In a two-channel, orthonormal, FIR, real-coefficient filter bank, the following
hold:

(a) The filter length L is even, or L = 2K.

(b) The filters satisfy the power complementary or Smith-Barnwell condi-
tion.

|G0(e
jω)|2+|G0(e

j(ω+π))|2 = 2, |G0(e
jω)|2+|G1(e

jω)|2 = 2. (3.2.54)

(c) The highpass filter is specified (up to an even shift and a sign change)
by the lowpass filter as

G1(z) = −z−2K+1 G0(z
−1).

(d) If the lowpass filter has a zero at π, that is, G0(−1) = 0, then

G0(1) =
√
2. (3.2.55)

Also, an orthogonal filter bank has, as any orthogonal transform, an energy conser-
vation property:

PROPOSITION 3.10

In an orthonormal filter bank, that is, a filter bank with a unitary polyphase
or modulation matrix, the energy is conserved between the input and the
channel signals,

‖x‖2 = ‖y0‖2 + ‖y1‖2. (3.2.56)

PROOF

The energy of the subband signals equals

‖y0‖2 + ‖y1‖2 =
1

2π

∫ 2π

0

(

|Y 0(e
jω)|2 + |Y 1(e

jω)|2
)

dω,
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by Parseval’s relation (2.4.37). Using the fact that y(z) = Hp(z) xp(z), the right side can
be written as,

1

2π

∫ 2π

0

[

y(ejω)
]∗
· y(ejω)dω =

1

2π

∫ 2π

0

[

xp(e
jω)
]∗ [

Hp(e
jω)
]∗

×Hp(e
jω) xp(e

jω) dω,

=
1

2π

∫ 2π

0

[

xp(e
jω)
]∗

xp(e
jω) dω,

= ‖x0‖2 + ‖x1‖2.

We used the fact that Hp(e
jω) is unitary and Parseval’s relation. Finally, (3.2.56) follows

from the fact that the energy of the signal is equal to the sum of the polyphase components’
energy, ‖x‖2 = ‖x0‖2 + ‖x1‖2.

Designing Orthogonal Filter Banks Now, we give two design procedures: the
first, based on spectral factorization, and the second, based on lattice structures.
Let us just note that most of the methods in the literature design analysis filters.
We will give designs for synthesis filters so as to be consistent with our approach;
however, analysis filters are easily obtained by time reversing the synthesis ones.

Designs Based on Spectral Factorizations The first solution we will show is due to
Smith and Barnwell [271]. The approach here is to find an autocorrelation se-
quence P (z) = G0(z)G0(z

−1) that satisfies (3.2.46) and then to perform spectral
factorization as explained in Section 2.5.2. However, factorization becomes numeri-
cally ill-conditioned as the filter size grows, and thus, the resulting filters are usually
only approximately orthogonal.

Example 3.1

Choose p[n] as a windowed version of a perfect half-band lowpass filter,

p[n] =

{

w[n] sin(π/2n)
π/2·n n = −2K + 1, . . . , 2K − 1,

0 otherwise.

where w[n] is a symmetric window function with w[0] = 1. Because p[2n] = δ[n], the
z-transform of p[n] satisfies

P (z) + P (−z) = 2. (3.2.57)

Also since P (z) is an approximation to a half-band lowpass filter, its spectral factor will be
such an approximation as well. Now, P (ejω) might not be positive everywhere, in which
case it is not an autocorrelation and has to be modified. The following trick can be used
to find an autocorrelation sequence p′[n] close to p[n] [271]. Find the minimum of P (ejω),
δmin = minω[P (ejω)]. If δmin > 0, we need not do anything, otherwise, subtract it from
p[0] to get the sequence p′[n] . Now,

P ′(ejω) = P (ejω)− δmin ≥ 0,

and P ′(z) still satisfies (3.2.57) up to a scale factor (1− δmin) which can be divided out.
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FIGURE 3.4

(a) (b)

(c) (d)

Figure 3.5 Orthogonal filter designs. Magnitude responses of: (a) Smith and
Barnwell filter of length 8 [271], (b) Daubechies’ filter of length 8 (D4) [71],
(c) Vaidyanathan and Hoang filter of length 8 [310], (d) Butterworth filter for
N = 4 [133].

An example of a design for N = 8 by Smith and Barnwell is given in Figure
3.5(a) (magnitude responses) and Table 3.2 (impulse response coefficients) [271].

Another example based on spectral factorization is Daubechies’ family of max-
imally flat filters [71]. Daubechies’ purpose was that the filters should lead to
continuous-time wavelet bases (see Section 4.4). The design procedure then amounts
to finding orthogonal lowpass filters with a large number of zeros at ω = π. Equiv-
alently, one has to design an autocorrelation satisfying (3.2.46) and having many
zeros at ω = π. That is, we want

P (z) = (1 + z−1)k(1 + z)kR(z),

which satisfies (3.2.57), where R(z) is symmetric (R(z−1) = R(z)) and positive
on the unit circle, R(ejω) ≥ 0. Of particular interest is the case when R(z) is
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Table 3.2 Impulse response coefficients for
Smith and Barnwell filter [271], Daubechies’ fil-
ter D4 [71] and Vaidyanathan and Hoang filter
[310] (all of length 8).

n Smith and Daubechies Vaidyanathan
Barnwell and Hoang

0 0.04935260 0.23037781 0.27844300
1 -0.01553230 0.71484657 0.73454200
2 -0.08890390 0.63088076 0.58191000
3 0.31665300 -0.02798376 -0.05046140
4 0.78751500 -0.18703481 -0.19487100
5 0.50625500 0.03084138 0.03547370
6 -0.03380010 0.03288301 0.04692520
7 -0.10739700 -0.01059740 -0.01778800

of minimal degree, which turns out to be when R(z) has powers of z going from
(−k+1) to (k−1). Once the solution to this constrained problem is found, a spectral
factorization of R(z) yields the desired filter G0(z), which has automatically k zeros
at π. As always with spectral factorization, there is a choice of taking zeros either
inside or outside the unit circle. Taking them systematically from inside the unit
circle, leads to Daubechies’ family of minimum-phase filters.

The function R(z) which is required so that P (z) satisfies (3.2.57) can be found
by solving a system of linear equations or a closed form is possible in the minimum-
degree case [71]. Let us indicate a straightforward approach leading to a system of
linear equations. Assume the minimum-degree solution. Then P (z) has powers of
z going from (−2k + 1) to (2k − 1) and (3.2.57) puts 2k − 1 constraints on P (z).
But because P (z) is symmetric, k − 1 of them are redundant, leaving k active
constraints. Because R(z) is symmetric, it has k degrees of freedom (out of its
2k−1 nonzero coefficients). Since P (z) is the convolution of (1+z−1)k(1+z)k with
R(z), it can be written as a matrix-vector product, where the matrix contains the
impulse response of (1 + z−1)k(1 + z)k and its shifts. Gathering the even terms of
this matrix-vector product (which correspond to the k constraints) and expressing
them in terms of the k free parameters of R(z), leads to the desired k × k system
of equation. It is interesting to note that the matrix involved is never singular, and
the R(z) obtained by solving the system of equations is positive on the unit circle.
Therefore, this method automatically leads to an autocorrelation, and by spectral
factorization, to an orthogonal filter bank with filters of length 2k having k zeros
at π and 0 for the lowpass and highpass, respectively.

As an example, we will construct Daubechies’ D2 filter, that is, a length-4
orthogonal filter with two zeros at ω = π (the maximum number of zeros at π is
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equal to half the length, and indicated by the subscript).

Example 3.2

Let us choose k = 2 and construct length-4 filters. This means that

P (z) = G0(z)G0(z
−1) = (1 + z−1)2(1 + z)2R(z).

Now, recall that since P (z) + P (−z) = 2, all even-indexed coefficients in P (z) equal 0,
except for p[0] = 1. To obtain a length-4 filter, the highest-degree term has to be z−3, and
thus R(z) is of the form

R(z) = (az + b+ az−1). (3.2.58)

Substituting (3.2.58) into P (z) we obtain

P (z) = az3 + (4a+ b)z2 + (7a+ 4b)z + (8a+ 6b) + (4b+ 7a)z−1 + (b+ 4a)z−2 + az−3.

Equating the coefficients of z2 or z−2 with 0, and the one with z0 with 1 yields

4a + b = 0, 8a+ 6b = 1.

The solution to this system of equations is

a = − 1

16
, b =

1

4
,

yielding the following R(z):

R(z) = − 1

16
z +

1

4
− 1

16
z−1.

We factor now R(z) as

R(z) =

(

1

4
√
2

)2

(1 +
√
3 + (1−

√
3)z−1)(1 +

√
3 + (1−

√
3)z).

Taking the term with the zero inside the unit circle, that is (1 +
√
3 + (1 −

√
3)z−1), we

obtain the filter G0(z) as

G0(z) =
1

4
√
2
(1 + z−1)2(1 +

√
3 + (1−

√
3)z−1),

=
1

4
√
2
((1 +

√
3)

+ (3 +
√
3)z−1 + (3−

√
3)z−2 + (1−

√
3)z−3). (3.2.59)

Note that this lowpass filter has a double zero at z = −1 (important for constructing wavelet
bases, as will be seen in Section 4.4). A longer filter with four zeros at ω = π is shown in
Figure 3.5(b) (magnitude responses of the lowpass/highpass pair) while the impulse response
coefficients are given in Table 3.2 [71].
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UΚ−1 UΚ−2 U0

x0

x1

y0

y1
z−1z−1z−1

• • •

• • •

figA.1.0FIGURE 3.5

Figure 3.6 Two-channel lattice factorization of paraunitary filter banks. The
2× 2 blocks U i are rotation matrices.

Designs Based on Vaidyanathan and Hoang Lattice Factorizations An alternative and
numerically well-conditioned procedure relies on the fact that paraunitary, just
like unitary matrices, possess canonical factorizations6 into elementary paraunitary
matrices [305, 310] (see also Appendix 3.A). Thus, all paraunitary filter banks with
FIR filters of length L = 2K can be reached by the following lattice structure (here
G1(z) = −z−2K+1G0(−z−1)):

Gp(z) =

(
G00(z) G10(z)
G01(z) G11(z)

)

= U0

[
K−1∏

i=1

(
1

z−1

)

U i

]

, (3.2.60)

where U i is a 2× 2 rotation matrix given in (2.B.1)

U i =

(
cosαi − sinαi
sinαi cosαi

)

.

That the resulting structure is paraunitary is easy to check (it is the product of
paraunitary elementary blocks). What is much more interesting is that all pa-
raunitary matrices of a given degree can be written in this form [310] (see also
Appendix 3.A.1). The lattice factorization is given in Figure 3.6.

As an example of this approach, we construct the D2 filter from the previous
example, using the lattice factorization.

Example 3.3

We construct the D2 filter which is of length 4, thus L = 2K = 4. This means that

Gp(z) =

(

cosα0 − sinα0

sinα0 cosα0

)(

1
z−1

)(

cosα1 − sinα1

sinα1 cosα1

)

,

=

(

cosα0 cosα1 − sinα0 sinα1z
−1 − cosα0 sinα1 − sinα0 cosα1z

−1

sinα0 cosα1 + cosα0 sinα1z
−1 − sinα0 sinα1 + cosα0 cosα1z

−1

)

.

(3.2.61)

6By canonical we mean complete factorizations with a minimum number of free parameters.
However, such factorizations are not unique in general.
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We get the lowpass filter G0(z) as

G0(z) = G00(z
2) + z−1G01(z

2),

= cosα0 cosα1 + sinα0 cosα1z
−1 − sinα0 sinα1z

−2 + cosα0 sinα1z
−3.

We now obtain the D2 filter by imposing a second-order zero at z = −1. So, we obtain the
first equation as

G0(−1) = cosα1 cosα0 − cosα1 sinα0 − sinα1 sinα0 − sinα1 cosα0 = 0,

or,
cos(α0 + α1)− sin(α0 + α1) = 0.

This equation implies that

α0 + α1 = kπ +
π

4
.

Since we also know that G0(1) =
√
2 (see (3.2.55)

cos(α0 + α1) + sin(α0 + α1) =
√
2,

we get that

α0 + α1 =
π

4
. (3.2.62)

Imposing now a zero at ejω = −1 on the derivative of G0(e
jω), we obtain

dG0(e
jω)

dω

∣

∣

∣

∣

ω=π

= cosα1 sinα0 + 2 sinα1 sinα0 + 3 sinα1 cosα0 = 0. (3.2.63)

Solving (3.2.62) and (3.2.63), we obtain

α0 =
π

3
, α1 = − π

12
.

Substituting the angles α0, α1 into the expression for G0(z) (3.2.61) and comparing it to
(3.2.59), we can see that we have indeed obtained the D2 filter.

An example of a longer filter obtained by lattice factorization is given in Fig-
ure 3.5(c) (magnitude responses) and Table 3.2 (impulse response coefficients). This
design example was obtained by Vaidyanathan and Hoang in [310].

3.2.4 Linear Phase FIR Filter Banks

Orthogonal filter banks have many nice features (conservation of energy, identical
analysis and synthesis) but also some restrictions. In particular, there are no or-
thogonal linear phase solutions with real FIR filters (see Proposition 3.12) except
in some trivial cases (such as the Haar filters). Since linear phase filter banks yield
biorthogonal expansions, four filters are involved, namely H0, H1 at analysis, and
G0 and G1 at synthesis. In our discussions, we will often concentrate on H0 and
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H1 first (that is, in this case we design the analysis part of the system, or, one of
the two biorthogonal bases).

First, note that if a filter is linear phase, then it can be written as

H(z) = ±z−L+1 H(z−1), (3.2.64)

where ± will mean it is a symmetric/antisymmetric filter, respectively, and L de-
notes the filter’s length. Note that here we have assumed that H(z) has the impulse
response ranging from h[0], . . . , h[L − 1] (otherwise, modify (3.2.64) with a phase
factor). Recall from Proposition 3.6 that perfect reconstruction FIR solutions are
possible if and only if the matrix Hp(z) (or equivalently Hm(z)) has a determinant
equal to a delay, that is [319]

H00(z) H11(z)−H01(z) H10(z) = z−l, (3.2.65)

H0(z) H1(−z)−H0(−z) H1(z) = 2z−2l−1. (3.2.66)

The right-hand side of (3.2.65) is the determinant of the polyphase matrix Hp(z),
while the right-hand side of (3.2.66) is the determinant of the modulation matrix
Hm(z). The synthesis filters are then equal to (see (3.2.30–3.2.31))

G0(z) = z−kH1(−z), G1(z) = −z−kH0(−z),

where k is an arbitrary shift.

Of particular interest is the case when both H0(z) and H1(z) are linear phase
(symmetric or antisymmetric) filters. Then, as in the paraunitary case, there are
certain restrictions on possible filters [315, 319].

PROPOSITION 3.11

In a two-channel, perfect reconstruction filter bank, where all filters are linear
phase, the analysis filters have one of the following forms:

(a) Both filters are symmetric and of odd lengths, differing by an odd mul-
tiple of 2.

(b) One filter is symmetric and the other is antisymmetric; both lengths are
even, and are equal or differ by an even multiple of 2.

(c) One filter is of odd length, the other one of even length; both have all
zeros on the unit circle. Either both filters are symmetric, or one is
symmetric and the other one is antisymmetric (this is a degenerate case)
.
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The proof can be found in [319] and is left as an exercise (see Problem 3.8).
We will discuss it briefly. The idea is to consider the product polynomial P (z) =
H0(z)H1(−z) that has to satisfy (3.2.66). Because H0(z) and H1(z) (as well as
H1(−z)) are linear phase, so is P (z). Because of (3.2.66), when P (z) has more
than two nonzero coefficients, it has to be symmetric with one central coefficient
at 2l − 1. Also, the end terms of P (z) have to be of an even index, so they cancel
in P (z) − P (−z). The above two requirements lead to the symmetry and length
constraints for cases (a) and (b). In addition, there is a degenerate case (c), of little
practical interest, when P (z) has only two nonzero coefficients,

P (z) = z−j(1± z2N−1−2j),

which leads to zeros at odd roots of ±1. Because these are distributed among H0(z)
and H1(−z) (rather than H1(z)), the resulting filters will be a poor set of lowpass
and highpass filters.

Another result that we mentioned at the beginning of this section is:

PROPOSITION 3.12

There are no two-channel perfect reconstruction, orthogonal filter banks, with
filters being FIR, linear phase, and with real coefficients (except for the Haar
filters).

PROOF

We know from Theorem 3.8 that orthonormality implies that

Hp(z)H
T
p (z

−1) = I,

which further means that

H00(z)H00(z
−1) +H01(z)H01(z

−1) = 1. (3.2.67)

We also know that in orthogonal filter banks, the filters are of even length. Therefore,
following Proposition 3.11, one filter is symmetric and the other one is antisymmetric. Take
the symmetric one, H0(z) for example, and use (3.2.64)

H0(z) = H00(z
2) + z−1H01(z

2),

= z−L+1H0(z
−1) = z−L+1(H00(z

−2) + zH01(z
−2)),

= z−L+2H01(z
−2) + z−1(z−L+2H00(z

−2)).

This further means that the polyphase components are related as

H00(z) = z−L/2+1H01(z
−1), H01(z) = z−L/2+1H00(z

−1). (3.2.68)

Substituting the second equation from (3.2.68) into (3.2.67) we obtain

H00(z) H00(z
−1) =

1

2
.
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However, the only FIR, real-coefficient polynomial satisfying the above is

H00(z) =
1√
2
z−l.

Performing a similar analysis for H01(z), we obtain that H01(z) = 1/
√
2z−k, which, in turn,

means that

H0(z) =
1√
2
(z−2l + z−2k−1), H1(z) = H0(−z),

or, the only solution yields Haar filters (l = k = 0) or trivial variations thereof.

We now shift our attention to design issues.

Lattice Structure for Linear Phase Filters Unlike in the paraunitary case, there are no
canonical factorizations for general matrices of polynomials.7 But there are lattice
structures that will produce, for example, linear phase perfect reconstruction filters
[208, 321]. To obtain it, note that Hp(z) has to satisfy (if the filters are of the same
length)

Hp(z) =

(
1 0
0 −1

)

· z−k ·Hp(z
−1) ·

(
0 1
1 0

)

. (3.2.69)

Here, we assume that Hi(z) = Hi0(z
2) + z−1Hi1(z

2) in order to have causal filters.
This is referred to as the linear phase testing condition (see Problem 3.9). Then,
assume that Hp(z) satisfies (3.2.69) and construct H

′
p(z) as

H
′
p(z) = Hp(z)

(
1

z−1

)(
1 α
α 1

)

.

It is then easy to show that H
′
p(z) satisfies (3.2.69) as well. The lattice

Hp(z) = C

(
1 1
−1 1

)[K−1∏

i=1

(
1

z−1

)(
1 αi
αi 1

)]

, (3.2.70)

with C = −(1/2)∏K−1
i=1 (1/(1−α2

i )), produces length L = 2K symmetric (lowpass)
and antisymmetric (highpass) filters leading to perfect reconstruction filter banks.
Note that the structure is incomplete [321] and that |αi| 6= 1. Again, just as in the
paraunitary lattice, perfect reconstruction is structurally guaranteed within a scale
factor (in the synthesis, replace simply αi by −αi and pick C = 1).

7There exist factorizations of polynomial matrices based on ladder steps [151], but they are not
canonical like the lattice structure in (3.2.60).
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Table 3.3 Impulse response coefficients for analysis and
synthesis filters in two different linear phase cases. There
is a factor of 1/16 to be distributed between hi[n] and
gi[n], like {1/4, 1/4} or {1/16, 1} (the latter was used in
the text).

n h0[n] h1[n] g0[n] g1[n] h0[n] h1[n] g0[n] g1[n]

0 1 -1 -1 -1 1 -1 -1 -1
1 3 -3 3 3 2 -2 2 2
2 3 3 3 -3 1 6 6 -1
3 1 1 -1 1 -2 2
4 -1 -1

Example 3.4

Let us construct filters of length 4 where the lowpass has a maximum number of zeros at
z = −1 (that is, the linear phase counterpart of the D2 filter). From the cascade structure,

Hp(z) =
−1

2(1− α2)

(

1 1
−1 1

)(

1
z−1

)(

1 α
α 1

)

=
−1

2(1− α2)

(

1 + αz−1 α+ z−1

−1 + αz−1 −α+ z−1

)

.

We can now find the filter H0(z) as

H0(z) = H00(z
2) + z−1H01(z

2) =
1 + αz−1 + αz−2 + z−3

−2(1− α2)
.

Because H0(z) is an even-length symmetric filter, it has automatically a zero at z = −1,
or H0(−1) = 0. Take now the first derivative of H0(e

jω) at ω = π and set it to 0 (which
corresponds to imposing a double zero at z = −1)

dH0(e
jω)

dω

∣

∣

∣

∣

ω=π

=
−1

2(1− α2)
(α− 2α+ 3) = 0,

leading to α = 3. Substituting this into the expression for H0(z), we get

H0(z) =
1

16
(1 + 3z−1 + 3z−2 + z−3) =

1

16
(1 + z−1)3, (3.2.71)

which means that H0(z) has a triple zero at z = −1. The highpass filter is equal to

H1(z) =
1

16
(−1− 3z−1 + 3z−2 + z−3). (3.2.72)

Note that det(Hm(z)) = (1/8) z−3. Following (3.2.30–3.2.31), G0(z) = 16z3H1(−z) and
G1(z) = −16z3 H0(−z). A causal version simply skips the z3 factor. Recall that the key
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to perfect reconstruction is the product P (z) = H0(z) ·H1(−z) in (3.2.66), which equals in
this case (using (3.2.71–3.2.72))

P (z) =
1

256
(−1 + 9z−1 + 16z−3 + 9z−4 − z−6)

=
1

256
(1 + z−1)4 (−1 + 4z−1 − z−2),

that is, the same P (z) as in Example 3.2. One can refactor this P (z) into a different set of
{H ′

0(z),H
′
1(−z)}, such as, for example,

P (z) = H ′
0(z) H

′
1(−z)

=
1

16
(1 + 2z−1 + z−2)

1

16
(−1 + 2z−1 + 6z−2 + 2z−3 − z−4),

that is, odd-length linear phase lowpass and highpass filters with impulse responses 1/16 [1,
2, 1] and 1/16 [-1, -2, 6, -2, -1], respectively. Table 3.3 gives impulse response coefficients
for both analysis and synthesis filters for the two cases given above.

The above example showed again the central role played by P (z) = H0(z) ·H1(−z).
In some sense, designing two-channel filter banks boils down to designing P (z)’s
with particular properties, and factoring them in a particular way.

If one relaxes the perfect reconstruction constraint, one can obtain some desir-
able properties at the cost of some small reconstruction error. For example, popular
QMF filters have been designed by Johnston [144], which have linear phase and “al-
most” perfect reconstruction. The idea is to approximate perfect reconstruction in
a QMF solution (see (3.2.37)) as well as possible, while obtaining a good lowpass
filter (the highpass filter H1(z) being equal to H0(−z), is automatically as good as
the lowpass). Therefore, define an objective function depending on two quantities:
(a) stopband attenuation error of H0(z)

S =

∫ π

ωs

|H0(e
jω)|2 dω,

and (b) reconstruction error

E =

∫ π

0
|2− (H0(e

jω))2 + (H0(e
j(ω+π)))2|2 dω.

The objective function is

O = cS + (1− c)E,

where c assigns the relative cost to these two quantities. Then, O is minimized
using the coefficients of H0(z) as free variables. Such filter designs are tabulated in
[67, 144].
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Complementary Filters The following question sometimes arises in the design of
filter banks: given an FIR filter H0(z), is there a complementary filter H1(z) such
that the filter bank allows perfect reconstruction with FIR filters? The answer is
given by the following proposition which was first proven in [139]. We will follow
the proof in [319]:

PROPOSITION 3.13

Given a causal FIR filter H0(z), there exists a complementary filter H1(z)
if and only if the polyphase components of H0(z) are coprime (except for
possible zeros at z =∞).

PROOF

From Proposition 3.6, we know that a necessary and sufficient condition for perfect FIR
reconstruction is that det(Hp(z)) be a monomial. Thus, coprimeness is obviously neces-
sary, since if there is a common factor between H00(z) and H01(z), it will show up in the
determinant. Sufficiency follows from the Euclidean algorithm or Bezout’s identity: given
two coprime polynomials a(z) and b(z), the equation a(z)p(z)+b(z)q(z) = c(z) has a unique
solution (see, for example, [32]). Thus, choose c(z) = z−k and then, the solution {p(z), q(z)}
corresponds to the two polyphase components of H1(z).

Note that the solution H1(z) is not unique [32, 319]. Also, coprimeness of
H00(z),H01(z) is equivalent with H0(z) not having any pair of zeros at locations α
and −α. This can be used to prove that the filter H0(z) = (1 + z−1)N always has
a complementary filter (see Problem 3.12).

Example 3.5

Consider the filter H0(z) = (1 + z−1)4 = 1 + 4z−1 + 6z−2 + 4z−3 + z−4. It can be verified
that its two polyphase components are coprime, and thus, there is a complementary filter.
We will find a solution to the equation

det(Hp(z)) = H00(z) ·H11(z)−H01(z) ·H10(z) = z−1, (3.2.73)

with H00(z) = 1+6z−1 + z−2 and H01(z) = 4+4z−1. The right side of (3.2.73) was chosen
so that there is a linear phase solution. For example,

H10(z) =
1

16
(1 + z−1), H11(z) =

1

4
,

is a solution to (3.2.73), that is, H1(z) = (1 + 4z−1 + z2)/16. This of course leads to the
same P (z) as in Examples 3.3 and 3.4.

3.2.5 Filter Banks with IIR Filters

We will now concentrate on orthogonal filter banks with infinite impulse response
(IIR) filters. An early study of IIR filter banks was done in [313], and further
developed in [234] as well as in [269] for perfect reconstruction in the context of
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image coding. The main advantage of such filter banks is good frequency selectivity
and low computational complexity, just like in regular IIR filtering. However, this
advantage comes with a cost. Recall that in orthogonal filter banks, the synthesis
filter impulse response is the time-reversed version of the analysis filter. Now if
the analysis uses causal filters (with impulse response going from 0 to +∞), then
the synthesis has anticausal filters. This is a drawback from the point of view of
implementation, since in general anticausal IIR filters cannot be implemented unless
their impulse responses are truncated. However, a case where anticausal IIR filters
can be implemented appears when the signal to be filtered is of finite length, a case
encountered in image processing [234, 269]. IIR filter banks have been less popular
because of this drawback, but their attractive features justify a brief treatment as
given below. For more details, the reader is referred to [133].

First, return to the lattice factorization for FIR orthogonal filter banks (see
(3.2.60)). If one substitutes an allpass section8 for the delay z−1 in (3.2.60), the
factorization is still paraunitary. For example, instead of the diagonal matrix used
in (3.2.60), take a diagonal matrix D(z) such that

D(z) D(z−1) =

(
F0(z) 0
0 F1(z)

)(
F0(z

−1) 0
0 F1(z

−1)

)

= I,

where we have assumed that the coefficients are real, and have used two allpass
sections (instead of 1 and z−1). What is even more interesting is that such a
factorization is complete [84].

Alternatively, recall that one of the ways to design orthogonal filter banks is to
find an autocorrelation function P (z) which is valid, that is, which satisfies

P (z) + P (−z) = 2, (3.2.74)

and then factor it into P (z) = H0(z)H0(z
−1). This approach is used in [133] to

construct all possible orthogonal filter banks with rational filters. The method goes
as follows:

First, one chooses an arbitrary polynomial R(z) and forms P (z) as

P (z) =
2R(z)R(z−1)

R(z)R(z−1) +R(−z)R(−z−1)
. (3.2.75)

It is easy to see that this P (z) satisfies (3.2.74). Since both the numerator and the
denominator are autocorrelations (the latter being the sum of two autocorrelations),
P (z) is as well. It can be shown that any valid autocorrelation can be written as
in (3.2.75) [133]. Then factor P (z) as H(z)H(z−1) and form the filter

H0(z) = AH0(z) H(z),

8Remember that a filter H(ejω) is allpass if |H(ejω)| = c, c > 0, for all ω. Here we choose
c = 1.
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where AH0(z) is an arbitrary allpass. Finally choose

H1(z) = z2K−1H0(−z−1) AH1(z), (3.2.76)

where AH1(z) is again an arbitrary allpass. The synthesis filters are then

G0(z) = H0(z
−1), G1(z) = −H1(z

−1). (3.2.77)

The above construction covers the whole spectrum of possible solutions. For exam-
ple, if R(z)R(z−1) is in itself a valid function, then

R(z)R(z−1) +R(−z)R(−z−1) = 2,

and by choosing AH0 , AH1 to be pure delays, the solutions obtained by the above
construction are FIR.

Example 3.6 Butterworth Filters

As an example, consider a family of IIR solutions constructed in [133]. It is obtained using
the above construction and imposing a maximum number of zeros at z = −1. Choosing
R(z) = (1 + z−1)N in (3.2.75) gives

P (z) =
(1 + z−1)N (1 + z)N

(z−1 + 2 + z)N + (−z−1 + 2− z)N = H(z)H(z−1). (3.2.78)

These filters are the IIR counterparts of the Daubechies’ filters given in Example 3.2. These
are, in fact, the Nth order half-band digital Butterworth filters [211] (see also Example 2.2).
That these particular filters satisfy the conditions for orthogonality was also pointed out
in [269]. The Butterworth filters are known to be the maximally flat IIR filters of a given
order.

Choose N = 5, or P (z) equals

P (z) =
(1 + z)5(1 + z−1)5

10z4 + 120z3 + 252 + 120z−2 + 10z−4
.

In this case, we can obtain a closed form spectral factorization of P (z), which leads to

H0(z) =
1 + 5z−1 + 10z−2 + 10z−3 + 5z−4 + z−5

√
2(1 + 10z−2 + 5z−4)

, (3.2.79)

H1(z) = z−1 1− 5z + 10z2 − 10z3 + 5z4 − z5√
2(1 + 10z2 + 5z4)

. (3.2.80)

For the purposes of implementation, it is necessary to factor Hi(z) into stable causal (poles
inside the unit circle) and anticausal (poles outside the unit circle) parts. For comparison
with earlier designs, where length-8 FIR filters were designed, we show in Figure 3.5(d) the
magnitude responses of H0(e

jω) and H1(e
jω) for N = 4. The form of the P (z) is then

P (z) =
z−4(1 + z)4(1 + z−1)4

1 + 28z−2 + 70z−4 + 28z−6 + z−8
.
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As we pointed out in Proposition 3.12, there are no real FIR orthogonal sym-
metric/antisymmetric filter banks. However, if we allow IIR filters instead, then
solutions do exist. There are two cases, depending if the center of symmetry/anti-
symmetry is at a half integer (such as in an even-length FIR linear phase filter)
or at an integer (such as in the odd-length FIR case). We will only consider the
former case. For discussion of the latter case as well as further details, see [133].

It can be shown that the polyphase matrix for an orthogonal, half-integer sym-
metric/antisymmetric filter bank is necessarily of the form

Hp(z) =

(
A(z) z−lA(z−1)

−zl−nA(z) z−nA(z−1)

)

,

where A(z)A(z−1) = 1, that is, A(z) is an allpass filter. Choosing l = n = 0 gives

H0(z) = A(z2) + z−1A(z−2), H1(z) = −A(z2) + z−1A(z−2), (3.2.81)

which is an orthogonal, linear phase pair. For a simple example, choose

A(z) =
1 + 6z−1 + (15/7)z−2

(15/7) + 6z−1 + z−2
. (3.2.82)

This particular solution will prove useful in the construction of wavelets (see Sec-
tion 4.6.2). Again, for the purposes of implementation, one has to implement stable
causal and anticausal parts separately.

Remarks The main advantage of IIR filters is their good frequency selectivity and
low computational complexity. The price one pays, however, is the fact that the
filters become noncausal. For the sake of discussion, assume a finite-length signal,
and a causal analysis filter, which will be followed by an anticausal synthesis filter.
The output will be infinite even though the input is of finite length. One can take
care of this problem in two ways. Either one stores the state of the filters after
the end of the input signal and uses this as an initial state for the synthesis filters
[269], or one takes advantage of the fact that the outputs of the analysis filter bank
decay rapidly after the input is zero, and stores only a finite extension of these
signals. While the former technique is exact, the latter is usually a good enough
approximation. This short discussion indicates that the implementation of IIR filter
banks is less straightforward than that of their FIR counterparts, and explains their
lesser popularity.

3.3 TREE-STRUCTURED FILTER BANKS

An easy way to construct multichannel filter banks is to cascade two-channel banks
appropriately. One case can be seen in Figure 3.7(a), where frequency analysis is
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FIGURE 3.5
Figure 3.7 An octave-band filter bank with J stages. Decomposition spaces
Vi, Wi are indicated. If hi[n] is an orthogonal filter, and gi[n] = hi[−n], the
structure implements an orthogonal discrete-time wavelet series expansion. (a)
Analysis part. (b) Synthesis part.

obtained by simply iterating a two-channel division on the previous lowpass channel.
This is often called a constant-Q or constant relative bandwidth filter bank since the
bandwidth at each channel, divided by its center frequency, is constant. It is also
sometimes called a logarithmic filter bank since the channels are equal bandwidth
on a logarithmic scale. We will call it an octave-band filter bank since each successive
highpass output contains an octave of the input bandwidth. Another case appears
when 2J equal bandwidth channels are desired. This can be obtained by a J-step
subdivision into 2 channels, that is, the two-channel bank is now iterated on both
the lowpass and highpass channels. This results in a tree with 2J leaves, each
corresponding to (1/2J )th of the original bandwidth, with a downsampling by 2J .
Another possibility is building an arbitrary tree-structured filter bank, giving rise
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to wavelet packets, discussed later in this section.

3.3.1 Octave-Band Filter Bank and Discrete-Time Wavelet Se ries

Consider the filter bank given in Figure 3.7. We see that the signal is split first via a
two-channel filter bank, then the lowpass version is split again using the same filter
bank, and so on. It will be shown later that this structure implements a discrete-
time biorthogonal wavelet series (we assume here that the two-channel filter banks
are perfect reconstruction). If the two-channel filter bank is orthonormal, then it
implements an orthonormal discrete-time wavelet series.9

Recall that the basis functions of the discrete-time expansion are given by the
impulse responses of the synthesis filters. Therefore, we will concentrate on the
synthesis filter bank (even though, in the orthogonal case, simple time reversal
relates analysis and synthesis filters). Let us start with a simple example which
should highlight the main features of octave-band filter bank expansions.

Example 3.7

Consider what happens if the filters gi[n] from Figure 3.7(a)-(b) are Haar filters defined in
z-transform domain as

G0(z) =
1√
2
(1 + z−1), G1(z) =

1√
2
(1− z−1).

Take, for example, J = 3, that is, we will use three two-channel filter banks. Then, using
the multirate identity which says that G(z) followed by upsampling by 2 is equivalent to
upsampling by 2 followed by G(z2) (see Section 2.5.3), we can transform this filter bank
into a four-channel one as given in Figure 3.8. The equivalent filters are

G
(1)
1 (z) = G1(z) =

1√
2
(1− z−1),

G
(2)
1 (z) = G0(z) G1(z

2) =
1

2
(1 + z−1 − z−2 − z−3),

G
(3)
1 (z) = G0(z) G0(z

2) G1(z
4)

=
1

2
√
2
(1 + z−1 + z−2 + z−3 − z−4 − z−5 − z−6 − z−7),

G
(3)
0 (z) = G0(z) G0(z

2) G0(z
4)

=
1

2
√
2
(1 + z−1 + z−2 + z−3 + z−4 + z−5 + z−6 + z−7),

preceded by upsampling by 2, 4, 8 and 8 respectively. The impulse responses follow by
inverse z-transform. Denote by g

(3)
0 [n] the equivalent filter obtained by going through three

9This is also sometimes called a discrete-time wavelet transform in the literature.
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FIGURE 3.6Figure 3.8 Octave-band synthesis filter bank with Haar filters and three stages.
It is obtained by transforming the filter bank from Figure 3.7(b) using the mul-
tirate identity for filtering followed by upsampling.

stages of lowpass filters g0[n] each preceded by upsampling by 2. It can be defined recursively
as (we give it in z-domain for simplicity)

G
(3)
0 (z) = G0(z

22) G
(2)
0 (z) =

2
∏

k=0

G0(z
2k ).

Note that this implies that G
(1)
0 (z) = G0(z). On the other hand, we denote by g

(i)
1 [n], the

equivalent filter corresponding to highpass filtering followed by (i − 1) stages of lowpass
filtering, each again preceded by upsampling by 2. It can be defined recursively as

G
(3)
1 (z) = G1(z

22) G
(2)
0 (z) = G1(z

22)
1
∏

k=0

G0(z
2k ), j = 1, 2, 3.

Since this is an orthonormal system, the time-domain matrices representing analysis and
synthesis are just transposes of each other. Thus the analysis matrix T a representing the
actions of the filters h

(1)
1 [n], h

(2)
1 [n], h

(3)
1 [n], h

(3)
0 [n] contains as lines the impulse responses

of g
(1)
1 [n], g

(2)
1 [n], g

(3)
1 [n], and g

(3)
0 [n] or of h

(j)
i [−n] since analysis and synthesis filters are

linked by time reversal. The matrix T a is block-diagonal,

T a =













. . .

A0

A0

. . .













, (3.3.1)
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where the block A0 is of the following form:

A0 =
1

2
√
2























2 −2 0 0 0 0 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 0 0 0 0 2 −2√
2
√
2 −

√
2 −

√
2 0 0 0 0

0 0 0 0
√
2
√
2 −

√
2 −

√
2

1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1























. (3.3.2)

Note how this matrix reflects the fact that the filter g
(1)
1 [n] is preceded by upsampling by

2 (the row ( 2 −2 ) is shifted by 2 each time and appears 4 times in the matrix). g
(2)
1 [n]

is preceded by upsampling by 4 (the corresponding row is shifted by 4 and appears twice),

while filters in g
(3)
1 [n], g

(3)
0 [n] are preceded by upsampling by 8 (the corresponding rows

appear only once in the matrix). Note that the ordering of the rows in (3.3.2) is somewhat
arbitrary; we simply gathered successive impulse responses for clarity.

Now that we have seen how it works in a simple case, we take more general
filters gi[n], and a number of stages J . We concentrate on the orthonormal case
(the biorthogonal one would follow similarly). In an orthonormal octave-band filter
bank with J stages, the equivalent filters (basis functions) are given by (again we
give them in z-domain for simplicity)

G
(J)
0 (z) = G

(J−1)
0 (z) G0(z

2J−1
) =

J−1∏

K=0

G0(z
2K ), (3.3.3)

G
(j)
1 (z) = G

(j−1)
0 (z) G1(z

2j−1
) = G1(z

2j−1
)

j−2
∏

K=0

G0(z
2K ),

j = 1, . . . , J. (3.3.4)

In time domain, each of the outputs in Figure 3.7(a) can be described as

H1 H
j−1
0 x, j = 1, . . . , J − 1

except for the last, which is obtained by

HJ
0 x.

Here, the time-domain matrices H0, H1 are as defined in Section 3.2.1, that is,
each line is an even shift of the impulse response of gi[n], or equivalently, of hi[−n].
Since each stage in the analysis bank is orthonormal and invertible, the overall
scheme is as well. Thus, we get a unitary analysis matrix T a by interleaving the
rows of H1, H1H0, . . ., H1H

J−1
0 , HJ

0 , as was done in (3.3.1–3.3.2). A formal
proof of this statement will be given in Section 3.3.2 under orthogonality of basis
functions.
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Example 3.8

Let us go back to the Haar case and three stages. We can form matrices H1, H1H0,
H1H

2
0, H

3
0 as

H1 =
1√
2













...
...

...
...

· · · 1 −1 0 0 · · ·
· · · 0 0 1 −1 · · ·

...
...

...
...













, (3.3.5)

H0 =
1√
2













...
...

...
...

· · · 1 1 0 0 · · ·
· · · 0 0 1 1 · · ·

...
...

...
...













, (3.3.6)

H1H0 =
1

2













...
...

...
...

...
...

...
...

· · · 1 1 −1 −1 0 0 0 0 · · ·
· · · 0 0 0 0 1 1 −1 −1 · · ·

...
...

...
...

...
...

...
...













, (3.3.7)

H1H
2
0 =

1

2
√
2













...
...

...
...

...
...

...
...

...
...

· · · 1 1 1 1 −1 −1 −1 −1 0 0 · · ·
· · · 0 0 0 0 0 0 0 0 1 1 · · ·

...
...

...
...

...
...

...
...

...
...













, (3.3.8)

H
3
0 =

1

2
√
2













...
...

...
...

...
...

...
...

...
...

· · · 1 1 1 1 1 1 1 1 0 0 · · ·
· · · 0 0 0 0 0 0 0 0 1 1 · · ·

...
...

...
...

...
...

...
...

...
...













. (3.3.9)

Now, it is easy to see that by interleaving (3.3.5–3.3.9) we obtain the matrix T a as in (3.3.1–
3.3.2). To check that it is unitary, it is enough to check that A0 is unitary (which it is, just
compute the product A0A

T
0 ).

Until now, we have concentrated on the orthonormal case. If one would relax
the orthonormality constraint, we would obtain a biorthogonal tree-structured filter
bank. Now, hi[n] and gi[n] are not related by simple time reversal, but are impulse
responses of a biorthogonal perfect reconstruction filter bank. We therefore have

both equivalent synthesis filters g
(j)
1 [n− 2jk], g

(J)
0 [n− 2Jk] as given in (3.3.3–3.3.4)

and analysis filters h
(j)
1 [n−2jk], h(J)0 [n−2Jk], which are defined similarly. Therefore

if the individual two-channel filter banks are biorthogonal (perfect reconstruction),
then the overall scheme is as well. The proof of this statement will follow the proof
for the orthonormal case (see Section 3.3.2 for the discrete-time wavelet series case),
and is left as an exercise to the reader.
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3.3.2 Discrete-Time Wavelet Series and Its Properties

What was obtained in the last section is called a discrete-time wavelet series. It
should be noted that this is not an exact equivalent of the continuous-time wavelet
transform or series discussed in Chapter 4. In continuous time, there is a single
wavelet involved, whereas in the discrete-time case, there are different iterated
filters.

At the risk of a slight redundancy, we go once more through the whole process
leading to the discrete-time wavelet series. Consider a two-channel orthogonal filter
bank with filters h0[n], h1[n], g0[n] and g1[n], where hi[n] = gi[−n]. Then, the input
signal can be written as

x[n] =
∑

k∈Z
X(1)[2k + 1] g

(1)
1 [n− 21k] +

∑

k∈Z
X(1)[2k] g

(1)
0 [n− 21k], (3.3.10)

where

X(1)[2k] = 〈h(1)0 [21k − l], x[l]〉,
X(1)[2k + 1] = 〈h(1)1 [21k − l], x[l]〉,

are the convolutions of the input with h0[n] and h1[n] evaluated at even indexes

2k. In these equations h
(1)
i [n] = hi[n], and g

(1)
i [n] = gi[n]. In an octave-band

filter bank or discrete-time wavelet series, the lowpass channel is further split by
lowpass/highpass filtering and downsampling. Then, the first term on the right side
of (3.3.10) remains unchanged, while the second can be expressed as

∑

k∈Z
X(1)[2k] h

(1)
0 [21k − n] =

∑

k∈Z
X(2)[2k + 1] g

(2)
1 [n− 22k]

+
∑

k∈Z
X(2)[2k] g

(2)
0 [n− 22k], (3.3.11)

where

X(2)[2k] = 〈h(2)0 [22k − l], x[l]〉,
X(2)[2k + 1] = 〈h(2)1 [22k − l], x[l]〉,

that is, we applied (3.3.10) once more. In the above, basis functions g(i)[n] are as

defined in (3.3.3) and (3.3.4). In other words, g
(2)
0 [n] is the time-domain version of

G
(2)
0 (z) = G0(z) G0(z

2),

while g
(2)
1 [n] is the time-domain version of

G
(2)
1 (z) = G0(z) G1(z

2).
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FIGURE 3.7Figure 3.9 Dyadic sampling grid used in the discrete-time wavelet series. The

shifts of the basis functions g
(j)
1 are shown, as well as g

(J)
0 (case J = 4 is shown).

This corresponds to the “sampling” of the discrete-time wavelet series. Note
the conservation of the number of samples between the signal and transform
domains.

With (3.3.11), the input signal x[n] in (3.3.10) can be written as

x[n] =
∑

k∈Z
X(1)[2k + 1] g

(1)
1 [n− 21k] +

∑

k∈Z
X(2)[2k + 1] g

(2)
1 [n− 22k]

+
∑

k∈Z
X(2)[2k] g

(2)
0 [22k − n]. (3.3.12)

Repeating the process in (3.3.12) J times, one obtains the discrete-time wavelet
series over J octaves, plus the final octave containing the lowpass version. Thus,
(3.3.12) becomes

x[n] =

J∑

j=1

∑

k∈Z
X(j)[2k + 1] g

(j)
1 [n− 2jk] +

∑

k∈Z
X(J)[2k] g

(J)
0 [n− 2Jk], (3.3.13)

where

X(j)[2k + 1] = 〈h(j)1 [2jk − l], x[l]〉, j = 1, . . . , J, (3.3.14)

X(J)[2k] = 〈h(J)0 [2Jk − l], x[l]〉.

In (3.3.13) the sequence g
(j)
1 [n] is the time-domain version of (3.3.4), while g

(J)
0 [n]

is the time-domain version of (3.3.3) and h
(j)
i [n] = g

(j)
i [−n]. Because any input

sequence can be decomposed as in (3.3.13), the family of functions {g(j)1 [2jk −
n], g

(J)
0 [2Jk − n]}, j = 1, . . . , J , and k, n ∈ Z, is an orthonormal basis for l2(Z).
Note the special sampling used in the discrete-time wavelet series. Each sub-

sequent channel is downsampled by 2 with respect to the previous one and has a
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bandwidth that is reduced by 2 as well. This is called a dyadic sampling grid, as
shown in Figure 3.9.

Let us now list a few properties of the discrete-time wavelet series (orthonormal
and dyadic).

Linearity Since the discrete-time wavelet series involves inner products or convo-
lutions (which are linear operators) it is obviously linear.

Shift Recall that multirate systems are not shift-invariant in general, and two-
channel filter banks downsampled by 2 are shift-invariant with respect to even
shifts only. Therefore, it is intuitive that a J-octave discrete-time wavelet series
will be invariant under shifts by multiples of 2J . A visual interpretation follows
from the fact that the dyadic grid in Figure 3.9, when moved by k2J , will overlap
with itself, whereas it will not if the shift is a noninteger multiple of 2J .

PROPOSITION 3.14

In a discrete-time wavelet series expansion over J octaves, if

x[l] ←→ X(j)[2k + 1], j = 1, 2, . . . , J

then

x[l −m2J ] ←→ X(j)[2(k −m2J−j) + 1].

PROOF

If y[l] = x[l −m2J ], then its transform is, following (3.3.14),

Y (j)[2k + 1] = 〈h(j)
1 [2jk − l], x[l −m2J ]〉

= 〈h(j)
1 [2jk − l′ −m2J ], x[l′]〉

= X(j)[2j(k −m2J−j) + 1].

Very similarly, one proves for the lowpass channel that, when x[l] producesX(J)[2k],
then x[l −m2J ] leads to X(J)[2(k −m)].

Orthogonality We have mentioned before that g
(J)
0 [n] and g

(j)
1 [n], j = 1, . . . , J , with

appropriate shifts, form an orthonormal family of functions (see [274]). This stems
from the fact that we have used two-channel orthogonal filter banks, for which we
know that

〈gi[n− 2k], gj [n− 2l]〉 = δ[i− j] δ[k − l].
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PROPOSITION 3.15

In a discrete-time wavelet series expansion, the following orthogonality rela-
tions hold:

〈g(J)0 [n− 2Jk], g
(J)
0 [n− 2J l]〉 = δ[k − l], (3.3.15)

〈g(j)1 [n− 2jk], g
(i)
1 [n− 2il]〉 = δ[i− j] δ[k − l], (3.3.16)

〈g(J)0 [n− 2Jk], g
(j)
1 [n− 2j l]〉 = 0. (3.3.17)

PROOF

We will here prove only (3.3.15), while (3.3.16) and (3.3.17) are left as an exercise to the
reader (see Problem 3.15). We prove (3.3.15) by induction.

It will be convenient to work with the z-transform of the autocorrelation of the filter
G

(j)
0 (z), which we call P (j)(z) and equals

P (j)(z) = G
(j)
0 (z) G

(j)
0 (z−1).

Recall that because of the orthogonality of g0[n] with respect to even shifts, we have that

P (1)(z) + P (1)(−z) = 2,

or, equivalently, that the polyphase decomposition of P (1)(z) is of the form

P (1)(z) = 1 + zP
(1)
1 (z2).

This is the initial step for our induction. Now, assume that g
(j)
0 [n] is orthogonal to its

translates by 2j . Therefore, the polyphase decomposition of its autocorrelation can be
written as

P (j)(z) = 1 +

2j−1
∑

i=1

ziP
(j)
i (z2

j

).

Now, because of the recursion (3.3.3), the autocorrelation of G(j+1)(z) equals

P (j+1)(z) = P (j)(z) P (1)(z2
j

).

Expanding both terms on the right-hand side, we get

P (j+1)(z) =



1 +

2j−1
∑

i=1

ziP
(j)
i (z2

j

)





(

1 + z2
j

P
(1)
1 (z2

j+1

)
)

.

We need to verify that the 0th polyphase component of P (j+1)(z) is equal to 1, or that
coefficients of z’s which are raised to powers multiple of 2j+1 are 0. Out of the four products
that appear when multiplying out the above right-hand side, only the product involving the
polyphase components needs to be considered,

2j−1
∑

i=1

ziP
(j)
i (z2

j

) · z2jP (1)
1 (z2

j+1

).
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The powers of z appearing in the above product are of the form l = i+ k2j + 2j +m2j+1,
where i = 0 · · · 2j − 1 and k,m ∈ Z. Thus, l cannot be a multiple of 2j+1, and we have
shown that

P j+1(z) = 1 +
2j+1−1
∑

i=1

ziP
(j+1)
i (z2

j+1

),

thus completing the proof.

Parseval’s Equality Orthogonality together with completeness (which follows from
perfect reconstruction) leads to conservation of energy, also called Bessel’s or Par-
seval’s equality, that is

‖x[n]‖2 =
∑

k∈Z
(|X(J)[2k]|2 +

J∑

j=1

|X(j)[2k + 1]|2).

3.3.3 Multiresolution Interpretation of Octave-Band Filt er Banks

The two-channel filter banks studied in Sections 3.1 and 3.2 have the property
of splitting the signal into two lower-resolution versions. One was a lowpass or
coarse resolution version, and the other was a highpass version of the input. Then,
in this section, we have applied this decomposition recursively on the lowpass or
coarse version. This leads to a hierarchy of resolutions, also called a multiresolution
decomposition.

Actually, in computer vision as well as in image processing, looking at signals at
various resolutions has been around for quite some time. In 1983, Burt and Adelson
introduced the pyramid coding technique, that builds up a signal from its lower-
resolution version plus a sequence of details (see also Section 3.5.2) [41]. In fact, one
of the first links between wavelet theory and signal processing was Daubechies’ [71]
and Mallat’s [180] recognition that the scheme of Burt and Adelson is closely related
to wavelet theory and multiresolution analysis, and that filter banks or subband
coding schemes can be used for the computation of wavelet decompositions. While
these relations will be further explored in Chapter 4 for the continuous-time wavelet
series, here we study the discrete-time wavelet series or its octave-band filter bank
realization. This discrete-time multiresolution analysis was studied by Rioul [240].

Since this is a formalization of earlier concepts, we need some definitions. First
we introduce the concept of embedded closed spaces. We will say that the space V0
is the space of all square-summable sequences, that is,

V0 = l2{Z}. (3.3.18)

Then, a multiresolution analysis consists of a sequence of embedded closed spaces

VJ ⊂ · · · ⊂ V2 ⊂ V1 ⊂ V0. (3.3.19)
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It is obvious that due to (3.3.18–3.3.19)

J⋃

j=0

Vj = V0 = l2{Z}.

The orthogonal complement of Vj+1 in Vj will be denoted by Wj+1, and thus

Vj = Vj+1 ⊕Wj+1, (3.3.20)

with Vj+1 ⊥ Wj+1, where ⊕ denotes the direct sum (see Section 2.2.2). Assume
that there exists a sequence g0[n] ∈ V0 such that

{g0[n − 2k]}k∈Z

is a basis for V1. Then, it can be shown that there exists a sequence g1[n] ∈ V such
that

{g1[n − 2k]}k∈Z
is a basis for W1. Such a sequence is given by

g1[n] = (−1)ng0[−n+ 1]. (3.3.21)

In other words, and having in mind (3.3.20), {g0[n − 2k], g1[n − 2k]}k∈Z is an
orthonormal basis for V0. This splitting can be iterated on V1. Therefore, one
can see that V0 can be decomposed in the following manner:

V0 = W1 ⊕W2 ⊕ · · · ⊕WJ ⊕ VJ , (3.3.22)

by simply iterating the decomposition J times.
Now, consider the octave-band filter bank in Figure 3.7(a). The analysis filters

are the time-reversed versions of g0[n] and g1[n]. Therefore, the octave-band analy-
sis filter bank computes the inner products with the basis functions forW1,W2, . . . ,
WJ and VJ .

In Figure 3.7(b), after convolution with the synthesis filters, we get the orthog-
onal projection of the input signal onto W1,W2, . . . ,WJ and VJ . That is, the input
is decomposed into a very coarse resolution (which exists in VJ) and added details
(which exist in the spaces Wi, i = 1, . . . , J). By (3.3.22), the sum of the coarse
version and all the added details yields back the original signal; a result that follows
from the perfect reconstruction property of the analysis/synthesis system as well.

We will call Vj ’s approximation spaces and Wj ’s detail spaces. Then, the pro-
cess of building up the signal is intuitively very clear — one starts with its lower-
resolution version belonging to VJ , and adds up the details until the final resolution
is reached.
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Figure 3.10 Ideal division of the spectrum by the discrete-time wavelet series
using sinc filters. Note that the spectrums are symmetric around zero. Division
into Vi spaces (note how Vi ⊂ Vi−1), and resulting Wi spaces. (Actually, Vj
and Wj are of height 2j/2, so they have unit norm).

It will be seen in Chapter 4 that the decomposition into approximation and
detail spaces is very similar to the multiresolution framework for continuous-time
signals. However, there are a few important distinctions. First, in the discrete-time
case, there is a “finest” resolution, associated with the space V0, that is, one cannot
refine the signal further. Then, we are considering a finite number of decomposition
steps J , thus leading to a “coarsest” resolution, associated with VJ . Finally, in
the continuous-time case, a simple function and its scales and translates are used,
whereas here, various iterated filters are involved (which, under certain conditions,
resemble scales of each other as we will see).

Example 3.9 Sinc Case

In the sinc case, introduced in Section 3.1.3, it is very easy to spot the multiresolution
flavor. Since the filters used are ideal lowpass/highpass filters, respectively, at each stage
the lowpass filter would halve the coarse space, while the highpass filter would take care
of the difference between them. The above argument is best seen in Figure 3.10. The
original signal (discrete in time and thus its spectrum occupies (−π, π)) is lowpass filtered
using the ideal half-band filter. As a result, starting from the space V0, we have derived
a lower-resolution signal by halving V0, resulting in V1. Then, an even coarser version is
obtained by using the same process, resulting in the space V2. Using the above process
repeatedly, one obtains the final coarse (approximation) space VJ . Along the way we have
created difference spaces, Wi, as well.

For example, the space V1 occupies the part (−π/2, π/2) in the spectrum, while W1

will occupy (−π,−π/2) ∪ (π/2, π). It can be seen that g0[n] as defined in (3.1.23) with its
even shifts, will constitute a basis for V1, while g1[n] following (3.3.21) constitutes a basis
for W1. In other words, g0[n], g1[n] and their even shifts would constitute a basis for the
original (starting) space V0 (l2(Z)).
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Figure 3.11 All possible combinations of tree-structured filter banks of depth
2. Symbolically, a fork stands for a two-channel filter bank with the lowpass
on the bottom. From left to right is the full tree (STFT like), the octave-band
tree (wavelet), the tree where only the highpass is split further, the two-band
tree and finally the nil-tree tree (no split at all). Note that all smaller trees
are pruned versions of the full tree.

Because we deal with ideal filters, there is an obvious frequency interpretation. How-
ever, one has to be careful with the boundaries between intervals. With our definition of
g0[n] and g1[n], cos((π/2)n)

10 belongs to V1 while sin((π/2)n) belongs to W1.

3.3.4 General Tree-Structured Filter Banks and Wavelet Pac kets

A major part of this section was devoted to octave-band, tree-structured filter
banks. It is easy to generalize that discussion to arbitrary tree structures, starting
from a single two-channel filter bank, all the way through the full grown tree of
depth J . Consider, for example, Figure 3.11. It shows all possible tree structures
of depth less or equal to two.

Note in particular the full tree, which yields a linear division of the spectrum sim-
ilar to the short-time Fourier transform, and the octave-band tree, which performs
a two-step discrete-time wavelet series expansion. Such arbitrary tree structures
were recently introduced as a family of orthonormal bases for discrete-time signals,
and are known under the name of wavelet packets [63]. The potential of wavelet
packets lies in the capacity to offer a rich menu of orthonormal bases, from which
the “best” one can be chosen (“best” according to a particular criterion). This
will be discussed in more detail in Chapter 7 when applications in compression are
considered. What we will do here, is define the basis functions and write down
the appropriate orthogonality relations; however, since the octave-band case was
discussed in detail, the proofs will be omitted (for a proof, see [274]).

10To be precise, since cos((π/2)n) is not of finite energy and does not belong to l2(Z), one needs
to define windowed versions of unit norm and take appropriate limits.
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Denote the equivalent filters by g
(j)
i [n], i = 0, . . . , 2j − 1. In other words, g

(j)
i is

the ith equivalent filter going through one of the possible paths of length j. The
ordering is somewhat arbitrary, and we will choose the one corresponding to a full
tree with a lowpass in the lower branch of each fork, and start numbering from the
bottom.

Example 3.10

Let us find all equivalent filters in Figure 3.11, or the filters corresponding to depth-1 and
depth-2 trees. Since we will be interested in the basis functions, we consider the synthesis
filter banks. For simplicity, we do it in z-domain.

G
(1)
0 (z) = G0(z), G

(1)
1 (z) = G1(z),

G
(2)
0 (z) = G0(z) G0(z

2), G
(2)
1 (z) = G0(z) G1(z

2), (3.3.23)

G
(2)
2 (z) = G1(z) G0(z

2), G
(2)
3 (z) = G1(z) G1(z

2). (3.3.24)

Note that with the ordering chosen in (3.3.23–3.3.24), increasing index does not always cor-

respond to increasing frequency. It can be verified that for ideal filters, G
(2)
2 (ejω) chooses

the range [3π/4, π], while G
(2)
3 (ejω) covers the range [π/2, 3π/4] (see Problem 3.16). Be-

side the identity basis, which corresponds to the no-split situation, we have four possible
orthonormal bases, corresponding to the four trees in Figure 3.11. Thus, we have a family
W = {W0,W1,W2,W3,W4}, where W4 is simply {δ[n− k]}k∈Z.

W0 = {g(2)0 [n− 22k], g
(2)
1 [n− 22k], g

(2)
2 [n− 22k], g

(2)
3 [n− 22k]}k∈Z,

corresponds to the full tree.

W1 = {g(1)1 [n− 2k], g
(2)
0 [n− 22k], g

(2)
1 [n− 22k]}k∈Z,

corresponds to the octave-band tree.

W2 = {g(1)0 [n− 2k], g
(2)
2 [n− 22k], g

(2)
3 [n− 22k]}k∈Z,

corresponds to the tree with the highband split twice, and

W3 = {g(0)0 [n− 2k], g
(1)
1 [n− 2k]}k∈Z,

is simply the usual two-channel filter bank basis.

This small example should have given the intuition behind orthonormal bases
generated from tree-structured filter banks. In the general case, with filter banks of
depth J , it can be shown that, counting the no-split tree, the number of orthonormal
bases satisfies

MJ = M2
J−1 + 1. (3.3.25)

Among this myriad of bases, there are the STFT-like basis, given by

W0 = {g(J)0 [n − 2Jk], . . . , g
(J)

2J−1
[n− 2Jk]}k∈Z, (3.3.26)
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and the wavelet-like basis,

W1 = {g(1)1 [n− 2k], g
(2)
1 [n− 22k], . . . , g

(J)
1 [n− 2Jk], g

(J)
0 [n− 2Jk]}k∈Z. (3.3.27)

It can be shown that the sets of basis functions in (3.3.26) and (3.3.27), as well as
in all other bases generated by the filter bank tree, are orthonormal (for example,
along the lines of the proof in the discrete-time wavelet series case). However, this
would be quite cumbersome. A more immediate proof is sketched here. Note that
we have a perfect reconstruction system by construction, and that the synthesis
and the analysis filters are related by time reversal. That is, the inverse operator
of the analysis filter bank (whatever its particular structure) is its transpose, or
equivalently, the overall filter bank is orthonormal. Therefore, the impulse responses
of all equivalent filters and their appropriate shifts form an orthonormal basis for
l2(Z).

It is interesting to consider the time-frequency analysis performed by various
filter banks. This is shown schematically in Figure 3.12 for three particular cases
of binary trees. Note the different trade-offs in time and frequency resolutions.

Figure 3.13 shows a dynamic time-frequency analysis, where the time and fre-
quency resolutions are modified as time evolves. This is achieved by modifying the
frequency split on the fly [132], and can be used for signal compression as discussed
in Section 7.3.4.

3.4 MULTICHANNEL FILTER BANKS

In the previous section, we have seen how one can obtain multichannel filter banks
by cascading two-channel ones. Although this is a very easy way of achieving
the goal, one might be interested in designing multichannel filter banks directly.
Therefore, in this section we will present a brief analysis of N-channel filter banks,
as given in Figure 3.14. We start the section by discussing two special cases which
are of interest in applications: the first, block transforms, and the second, lapped
orthogonal transforms. Then, we will formalize our treatment of N-channel filter
banks (time-, modulation- and polyphase-domain analyses). Finally, a particular
class of multichannel filter banks, where all filters are obtained by modulating a
single, prototype filter — called modulated filter banks — is presented.

3.4.1 Block and Lapped Orthogonal Transforms

Block Transforms Block transforms, which are used quite frequently in signal
compression (for example, the discrete cosine transform), are a special case of filter
banks with N channels, filters of length N , and downsampling by N . Moreover,
when such transforms are unitary or orthogonal, they are the simplest examples
of orthogonal (also called paraunitary or lossless) N-channel filter banks. Let us
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Figure 3.12 Time-frequency analysis achieved by different binary subband
trees. The trees are on bottom, the time-frequency tilings on top. (a) Full tree
or STFT. (b) Octave-band tree or wavelet series. (c) Arbitrary tree or one
possible wavelet packet.

analyze such filter banks in a manner similar to Section 3.2. Therefore, the channel
signals, after filtering and sampling can be expressed as


















...
y0[0]
...

yN−1[0]
y0[1]
...

yN−1[1]
...


















=








...
...

· · · A0 0 · · ·
· · · 0 A0 · · ·

...
...















...
x[0]
x[1]
...







, (3.4.1)
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figtut3.3
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Figure 3.13 Dynamic time-frequency analysis achieved by concatenating the
analyses from Figure 3.12. The tiling and the evolving tree are shown.

fignew3.4.1

Ν

Ν

Ν

Ν

Ν Ν G0

G1

GN 1–HN 1–

H1

H0

y0

y1

yN-1

x̂

FIGURE 3.10

+x

• 
• 

•

• 
• 

•

• 
• 

•

• • •

• • •

• • •
Figure 3.14 N-channel analysis/synthesis filter bank with critical downsampling by N .

where the block A0 is equal to (similarly to (3.2.3))

A0 =





h0[N − 1] · · · h0[0]
...

...
hN−1[N − 1] · · · hN−1[0]



 =





g0[0] · · · g0[N − 1]
...

...
gN−1[0] · · · gN−1[N − 1]



 .

(3.4.2)
The second equality follows since the transform is unitary, that is,

A0 AT
0 = AT

0 A0 = I. (3.4.3)

We can see that (3.4.2–3.4.3) imply that

〈hi[kN − n], hj [lN − n]〉 = 〈gi[n− kN ], gj [n− lN ]〉 = δ[i − j] δ[k − l],
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that is, we obtained the orthonormality relations for this case. Denoting by
ϕkN+i[n] = gi[n − kN ], we have that the set of basis functions {ϕkN+i[n]} =
{g0[n − kN ], g1[n − kN ], . . . , gN−1[n − kN ]}, with i = 0, . . . , N − 1, and k ∈ Z, is
an orthonormal basis for l2(Z).

Lapped Orthogonal Transforms Lapped orthogonal transforms (LOT’s), intro-
duced by Cassereau [43] and Malvar [189, 188] are a class of N-channel unitary filter
banks where some additional constraints are imposed. In particular, the length of
the filters is restricted to L = 2N , or twice the number of channels (or down-
sampling rate), and thus, it is easy to interpret LOT’s as an extension of block
transforms where neighboring filters overlap. Usually, the number of channels is
even and sometimes they are all obtained from a single prototype window by mod-
ulation. In this case, fast algorithms taking advantage of the modulation relation
between the filters reduce the order N2 operations per N outputs of the filter bank
to cN log2N (see also Chapter 6). This computational efficiency, as well as the
simplicity and close relationship to block transforms, has made LOT’s quite pop-
ular. A related class of filter banks, called time-domain aliasing cancellation filter
banks, studied by Princen and Bradley [229] can be seen as another interpretation
of LOT’s. For an excellent treatment of LOT’s, see the book by Malvar [188], to
which we refer for more details.

Let us examine the lapped orthogonal transform. First, the fact that the filter
length is 2N , means that the time-domain matrix analogous to the one in (3.4.1),
has the following form:

T a =








...
...

...
...

· · · A0 A1 0 0 · · ·
· · · 0 A0 A1 0 · · ·

...
...

...
...







, (3.4.4)

that is, it has a double block diagonal. The fact that T a is orthogonal, or T aT
T
a =

T T
a T a = I, yields

AT
0 A0 +AT

1 A1 = A0A
T
0 +A1A

T
1 = I, (3.4.5)

as well as
AT

0 A1 = AT
1 A0 = 0, A0A

T
1 = A1A

T
0 = 0. (3.4.6)

The property (3.4.6) is called orthogonality of tails since overlapping tails of the basis
functions are orthogonal to each other. Note that these conditions characterize
nothing but an N-channel orthogonal filter bank, with filters of length 2N and
downsampling by N . To obtain certain classes of LOT’s, one imposes additional
constraints. For example, in Section 3.4.3, we will consider a cosine modulated
filter bank.
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Generalizations What we have seen in these two simple cases, is how to obtain
N-channel filter banks with filters of length N (block transforms) and filters of
length 2N (lapped orthogonal transforms). It is obvious that by allowing longer
filters, or more blocks Ai in (3.4.4), we can obtain general N-channel filter banks.

3.4.2 Analysis of Multichannel Filter Banks

The analysis of N-channel filter banks is in many ways analogous to that of two-
channel filter banks; therefore, the treatment here will be fairly brisk, with refer-
ences to Section 3.2.

Time-Domain Analysis We can proceed here exactly as in Section 3.2.1. Thus,
we can say that the channel outputs (or transform coefficients) in Figure 3.14 can
be expressed as in (3.2.1)

y = X = T a x,

where the vector of transform coefficients is X, withX[Nk+i] = yi[k]. The analysis
matrix T a is given as in (3.2.2) with blocks Ai of the form

Ai =





h0[Nk − 1−Ni] · · · h0[Nk −N −Ni]
...

...
hN−1[Nk − 1−Ni] · · · hN−1[Nk −N −Ni]



 .

When the filters are of length L = KN , there are K blocks Ai of size N × N
each. Similarly to (3.2.4–3.2.5), we see that the basis functions of the first basis
corresponding to the analysis are

ϕNk+i[n] = hi[Nk − n].

Defining the synthesis matrix as in (3.2.7), we obtain the basis functions of the dual
basis

ϕ̃Nk+i[n] = gi[n−Nk],

and they satisfy the following biorthogonality relations:

〈ϕk[n], ϕ̃l[n]〉 = δ[k − l],

which can be expressed in terms of analysis/synthesis matrices as

T s T a = I.

As was done in Section 3.2, we can define single operators for each branch. If the
operator H i represents filtering by hi followed by downsampling by N , its matrix
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representation is

Hi =









...
...

...
· · · hi[L− 1] · · · hi[L−N ] hi[L−N − 1] · · ·
· · · 0 · · · 0 hi[L− 1] · · ·

...
...

...









.

Defining Gi similarly to H i (except that there is no time reversal), the output of
the system can then be written as

x̂ =

(
N−1∑

i=0

GT
i H i

)

x.

Then, the condition for perfect reconstruction is

N−1∑

i=0

GT
i H i = I.

We leave the details and proofs of the above relationships as an exercise (Problem
3.21), since they are simple extensions of the two-channel case seen in Section 3.2.

Modulation-Domain Analysis Let us turn our attention to filter banks repre-
sented in the modulation domain. We write directly the expressions we need in
the z-domain. One can verify that downsampling a signal x[n] by N followed by
upsampling by N (that is, replacing x[n], n mod N 6= 0 by 0) produces a signal y[n]
with z-transform Y (z) equal to

Y (z) =
1

N

N−1∑

i=0

X(W i
Nz), WN = e−j2π/N , j =

√
−1

because of the orthogonality of the roots of unity. Then, the output of the system
in Figure 3.14 becomes, in a similar fashion to (3.2.14)

X̂(z) =
1

N
gT (z) Hm(z) xm(z),

where gT (z) = (G0(z) . . . GN−1(z) ) is the vector containing synthesis filters,
xm(z) = (X(z) . . . X(WN−1

N z) )T and the ith line of Hm(z) is equal to
(Hi(z) . . . Hi(W

N−1
N z) ), i = 0, . . . , N − 1. Then, similarly to the two-channel

case, to cancel aliasing, gTHm has to have all elements equal to zero, except for
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the first one. To obtain perfect reconstruction, this only nonzero element has to be
equal to a scaled pure delay.

As in the two-channel case, it can be shown that the perfect reconstruction
condition is equivalent to the system being biorthogonal, as given earlier. The
proof is left as an exercise for the reader (Problem 3.21). For completeness, let us
define Gm(z) as the matrix with the ith row equal to

(G0(W
i
Nz) G1(W

i
Nz) . . . GN−1(W

i
Nz) ) .

Polyphase-Domain Analysis The gist of the polyphase analysis of two-channel
filter banks downsampled by 2 was to expand signals and filter impulse responses
into even- and odd-indexed components (together with some adequate phase terms).
Quite naturally, in the N-channel case with downsampling by N , there will be N
polyphase components. We follow the same definitions as in Section 3.2.1 (the
choice of the phase in the polyphase component is arbitrary, but consistent).

Thus, the input signal can be decomposed into its polyphase components as

X(z) =
N−1∑

j=0

z−jXj(z
N ),

where

Xj(z) =

∞∑

n=−∞
x[nN + j] z−n.

Define the polyphase vector as

xp(z) = (X0(z) X1(z) . . . XN−1(z) )
T .

The polyphase components of the synthesis filter gi are defined similarly, that is

Gi(z) =

N−1∑

j=0

z−jGij(z
N ),

where

Gij(z) =
∞∑

n=−∞
gi[nN + j] z−n.

The polyphase matrix of the synthesis filter bank is given by

[Gp(z)]ji = Gij(z),
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where the implicit transposition should be noticed. Up to a phase factor and a
transpose, the analysis filter bank is decomposed similarly. The filter is written as

Hi(z) =

N−1∑

j=0

zjHij(z
N ), (3.4.7)

where

Hij(z) =

∞∑

n=−∞
hi[nN − j] z−n. (3.4.8)

The analysis polyphase matrix is then defined as follows:

[Hp(z)]ij = Hij(z).

For example, the vector of channel signals,

y(z) = ( y0(z) y1(z) . . . yN−1(z) )
T ,

can be compactly written as

y(z) = Hp(z) xp(z).

Putting it all together, the output of the analysis/synthesis filter bank in Figure 3.14
can be written as

X̂(z) = ( 1 z−1 z−1 . . . z−N+1 ) ·Gp(z
N ) ·Hp(z

N ) · xp(zN ).

Similarly to the two-channel case, we can define the transfer function matrix T p(z) =
Gp(z)Hp(z). Then, the same results hold as in the two-channel case. Here, we just
state them (the proofs are N-channel counterparts of the two-channel ones).

THEOREM 3.16 Multichannel Filter Banks

(a) Aliasing in a one-dimensional system is cancelled if and only if the trans-
fer function matrix is pseudo-circulant [311].

(b) Given an analysis filter bank downsampled by N with polyphase matrix
Hp(z), alias-free reconstruction is possible if and only if the normal rank
of Hp(z) is equal to N .

(c) Given a critically sampled FIR analysis filter bank, perfect reconstruction
with FIR filters is possible if and only if det(Hp(z)) is a pure delay.
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Note that the modulation and polyphase representations are related via the Fourier
matrix. For example, one can verify that

xp(z
N ) =

1

N







1
z

. . .

zN−1







Fxm(z), (3.4.9)

where F kl =W kl
N = e−j(2π/N)kl. Similar relationships hold between Hm(z), Gm(z)

and Hp(z), Gp(z), respectively (see Problem 3.22). The important point to note
is that modulation and polyphase matrices are related by unitary operations (such
as F and delays as in (3.4.9)).

Orthogonal Multichannel FIR Filter Banks Let us now consider the particular
but important case when the filter bank is unitary or orthogonal. This is an ex-
tension of the discussion in Section 3.2.3 to the N-channel case. The idea is to
implement an orthogonal transform using an N-channel filter bank, or in other
words, we want the following set:

{g0[n−NK], . . . , gN−1[n−NK]} , n ∈ Z

to be an orthonormal basis for l2(Z). Then

〈gi[n−Nk], gj [n−Nl]〉 = δ[i − j] δ[l − k]. (3.4.10)

Since in the orthogonal case analysis and synthesis filters are identical up to a time
reversal, (3.4.10) holds for hi[Nk − l] as well. By using (2.5.19), (3.4.10) can be
expressed in z-domain as

N−1∑

k=0

Gi(W
k
Nz) Gj(W

−k
N z−1) = Nδ[i − j], (3.4.11)

or
GT
m∗(z

−1) Gm(z) = NI,

where the subscript ∗ stands for conjugation of the coefficients but not of z (this is
necessary since Gm(z) has complex coefficients). Thus, as in the two-channel case,
having an orthogonal transform is equivalent to having a paraunitary modulation
matrix. Unlike the two-channel case, however, not all of the filters are obtained
from a single prototype filter.

Since modulation and polyphase matrices are related, it is easy to check that
having a paraunitary modulation matrix is equivalent to having a paraunitary
polyphase matrix, that is

GT
m∗(z

−1) Gm(z) = N I ⇐⇒ GT
p (z

−1) Gp(z) = I. (3.4.12)
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Finally, in time domain

Gi G
T
j = δ[i − j] I, i, j = 0, 1,

or
T T
a T a = I.

The above relations lead to a direct extension of Theorem 3.8, where the particular
case N = 2 was considered.

Thus, according to (3.4.12), designing an orthogonal filter bank with N channels
reduces to finding N × N paraunitary matrices. Just as in the two-channel case,
where we saw a lattice realization of orthogonal filter banks (see (3.2.60)), N ×
N paraunitary matrices can be parametrized in terms of cascades of elementary
matrices (2×2 rotations and delays). Such parametrizations have been investigated
by Vaidyanathan, and we refer to his book [308] for a thorough treatment. An
overview can be found in Appendix 3.A.2. As an example, we will see how to
construct three-channel paraunitary filter banks.

Example 3.11

We use the factorization given in Appendix 3.A.2, (3.A.8). Thus, we can express the 3× 3
polyphase matrix as

Gp(z) = U0





K−1
∏

i=1





z−1

1
1



U i



 ,

where

U0 =





1 0 0
0 cosα00 − sinα00

0 sinα00 cosα00









cosα01 0 − sinα01

0 1 0
sinα01 0 cosα01





×





cosα02 − sinα02 0
sinα02 cosα02 0

0 0 1



 ,

and U i are given by

U i =





cosαi0 − sinαi0 0
sinαi0 cosαi0 0

0 0 1









1 0 0
0 cosαi1 − sinαi1
0 sinαi1 cosαi1



 .

The degrees of freedom are given by the angles αij . To obtain the three analysis filters, we
upsample the polyphase matrix, and thus

[G0(z) G1(z) G2(z)] = [1 z−1 z−2] Gp(z
3).

To design actual filters, one could minimize an objective function as the one given in [306],
where the sum of all the stopbands was minimized.
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It is worthwhile mentioning that N-channel orthogonal filter banks with more
than two channels have greater design freedom. It is possible to obtain orthogo-
nal linear phase FIR solutions [275, 321], a solution which was impossible for two
channels (see Appendix 3.A.2).

3.4.3 Modulated Filter Banks

We will now examine a particular class of N channel filter banks — modulated
filter banks. The name stems from the fact that all the filters in the analysis bank
are obtained by modulating a single prototype filter. If we impose orthogonality
as well, the synthesis filters will obviously be modulated as well. The first class
we consider imitates the short-time Fourier transform (STFT), but in the discrete-
time domain. The second one — cosine modulated filter banks, is an interesting
counterpart to the STFT, and when the length of the filters is restricted to 2N , it
is an example of a modulated LOT.

Short-Time Fourier Transform in the Discrete-Time Domain The short-time
Fourier or Gabor transform [204, 226] is a very popular tool for nonstationary
signal analysis (see Section 2.6.3). It has an immediate filter bank interpretation.
Assume a window function hpr[n] with a corresponding z-transform Hpr(z). This
window function is a prototype lowpass filter with a bandwidth of 2π/N , which is
then modulated evenly over the frequency spectrum using consecutive powers of
the Nth root of unity

Hi(z) = Hpr(W
i
Nz), i = 0, . . . , N − 1, WN = e−j2π/N , (3.4.13)

or
hi[n] = W−in

N hpr[n]. (3.4.14)

That is, if Hpr(e
jω) is a lowpass filter centered around ω = 0, then Hi(e

jω) is a
bandpass filter centered around ω = (i2π)/N . Note that the prototype window is
usually real, but the bandpass filters are complex.

In the short-time Fourier transform, the window is advanced by M samples
at a time, which corresponds to a downsampling by M of the corresponding filter
bank. This filter bank interpretation of the short-time Fourier transform analysis
is depicted in Figure 3.15. The short-time Fourier transform synthesis is achieved
similarly with a modulated synthesis filter bank. Usually, M is chosen smaller than
N (for example, N/2), and then, it is obviously an oversampled scheme or a noncrit-
ically sampled filter bank. Let us now consider what happens if we critically sample
such a filter bank, that is, downsample by N . Compute a critically sampled discrete
short-time Fourier (or Gabor) transform, where the window function is given by
the prototype filter. It is easy to verify the following negative result [315] (which is
a discrete-time equivalent of the Balian-Low theorem, given in Section 5.3.3):
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Figure 3.15 A noncritically sampled filter bank; it has N branches followed
by sampling by M (N > M). When the filters are modulated versions (by
the Nth root of unity), then this implements a discrete-time version of the
short-time Fourier transform.

THEOREM 3.17

There are no finite-support bases with filters as in (3.4.13) (except trivial ones
with only N nonzero coefficients).

PROOF

The proof consists in analyzing the polyphase matrix Hp(z). Write the prototype filter
Hpr(z) in terms of its polyphase components (see (3.4.7–3.4.8))

Hpr(z) =

N−1
∑

j=0

zjHprj (z
N ),

where Hprj (z) is the jth polyphase component of Hpr(z).

Obviously, following (3.4.7) and (3.4.13),

Hi(z) =
∑

W ij
N zj Hprj (z

N).

Therefore, the polyphase matrix Hp(z) has entries

[Hp(z)]ij = W ij
N Hprj (z).

Then, Hp(z) can be factored as

Hp(z) = F











Hpr0(z)
Hpr1(z)

. . .

HprN−1
(z)











, (3.4.15)



3.4. MULTICHANNEL FILTER BANKS 175

where Fkl = W kl
N = e−j(2π/N)kl. For FIR perfect reconstruction, the determinant of Hp(z)

has to be a delay (by Theorem 3.16). Now,

det(Hp(z)) = c

N−1
∏

j=0

Hprj (z),

where c is a complex number equal to det(F ). Therefore, for perfect FIR reconstruction,
Hprj (z) has to be of the form αi · z−m, that is, the prototype filter has exactly N nonzero
coefficients. For an orthogonal solution, the αi’s have to be unit-norm constants.

What happens if we relax the FIR requirement? For example, one can choose
the following prototype:

Hpr(z) =

N−1∑

i=0

Pi(z
N ) zi, (3.4.16)

where Pi(z) are allpass filters. The factorization (3.4.15) still holds, with Hpri(z) =
Pi(z), and since Pi(z

−1) · Pi(z) = 1, Hp(z) is paraunitary. While this gives an
orthogonal modulated filter bank, it is IIR (either analysis or synthesis will be
noncausal), and the quality of the filter in (3.4.16) can be poor.

Cosine Modulated Filter Banks The problems linked to complex modulated fil-
ter banks can be solved by using appropriate cosine modulation. Such cosine-
modulated filter banks are very important in practice, for example in audio com-
pression (see Section 7.2.2). Since they are often of length L = 2N (where N is the
downsampling rate), they are sometimes referred to as modulated LOT’s, or MLT’s.
A popular version was proposed in [229] and thus called the Princen-Bradley filter
bank. We will study one class of cosine modulated filter banks in some depth, and
refer to [188, 308] for a more general and detailed treatment. The cosine modulated
filter banks we consider here are a particular case of pseudoquadrature mirror filter
banks (PQMF) when the filter length is restricted to twice the number of channels
L = 2N . Pseudo QMF filters have been proposed as an extension to N channels
of the classical two-channel QMF filters. Pseudo QMF analysis/synthesis systems
achieve in general only cancellation of the main aliasing term (aliasing from neigh-
boring channels). However, when the filter length is restricted to L = 2N , they
can achieve perfect reconstruction. Due to the modulated structure and just as in
the STFT case, there are fast computational algorithms, making such filter banks
attractive for implementations.

A family of PQMF filter banks that achieves cancellation of the main aliasing
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term is of the form [188, 321]11

hk[n] =
1√
N
hpr[n] cos

(
π(2k + 1)

2N

(

n−
(
L− 1

2

))

+ φk

)

, (3.4.17)

for the analysis filters (hpr[n] is the impulse response of the window). The modu-
lating frequencies of the cosines are at π/2N, 3π/2N, . . . , (2N − 1)π/2N , and the
prototype window is a lowpass filter with support [−π/2N,π/2N ]. Then, the kth
filter is a bandpass filter with support from kπ/N to (k + 1)π/N (and a mirror
image from −kπ/N to −(k + 1)π/N), thus covering the range from 0 to π evenly.
Note that for k = 0 and N − 1, the two lobes merge into a single lowpass and
highpass filter respectively. In the general case, the main aliasing term is canceled
for the following possible value of the phase:

φk =
π

4
+ k

π

2
.

For this value of phase, and in the special case L = 2N , exact reconstruction is
achieved. This yields filters of the form

hk[n] =
1√
N
hpr[n] cos

(
2k + 1

4N
(2n−N + 1)π

)

, (3.4.18)

for k = 0, . . . , N − 1, n = 0, . . . , 2N − 1. Since the filter length is 2N , we have
an LOT, and we can use the formalism in (3.4.4). It can be shown that, due to
the particular structure of the filters, if hpr[n] = 1, n = 0, . . . , 2N − 1, (3.4.5–
3.4.6) hold. The idea of the proof is the following (we assume N to be even):
Being of length 2N , each filter has a left and a right tail of length N . It can be
verified that with the above choice of phase, all the filters have symmetric left tails
(hk[N/2−1− l] = hk[N/2+ l], for l = 0, . . . , N/2−1) and antisymmetric right tails
(hk[3N/2 − 1 − l] = hk[3N/2 + l], for l = 0, . . . , N/2 − 1). Then, orthogonality of
the tails (see (3.4.6)) follows because the product of the left and right tail is an odd
function, and therefore, sums to zero. Additionally, each filter is orthogonal to its
modulated versions and has norm 1, and thus, we have an orthonormal LOT. The
details are left as an exercise (see Problem 3.24).

Suppose now that we use a symmetric window hpr[n]. We want to find conditions
under which (3.4.5–3.4.6) still hold. Call Bi the blocks in (3.4.5–3.4.6) when no
windowing is used, or hpr[n] = 1, n = 0, . . . , 2N − 1, and Ai the blocks, with a
general symmetric window hpr[n]. Then, we can express A0 in terms of B0 as

A0 =





h0[2N − 1] · · · h0[N ]
...

...
hN−1[2N − 1] · · · hN−1[N ]



 (3.4.19)

11The derivation of this type of filter bank is somewhat technical and thus less explicit at times
than other filter banks seen so far.
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= B0 ·






hpr[2N − 1]
. . .

hpr[N ]




 (3.4.20)

= B0 ·






hpr[0]
. . .

hpr[N − 1]






︸ ︷︷ ︸

W

(3.4.21)

since hpr is symmetric, that is hpr[n] = hpr[2N −1−n], and W denotes the window
matrix. Using the antidiagonal matrix J ,

J =





1
· · ·

1



 ,

it is easy to verify that A1 is related to B1, in a similar fashion, up to a reversal of
the entries of the window function, or

A1 = B1JWJ . (3.4.22)

Note also that due to the particular structure of the cosines involved, the following
are true as well:

BT
0 B0 =

1

2
(I − J), BT

1 B1 =
1

2
(I + J). (3.4.23)

The proof of the above fact is left as an exercise to the reader (see Problem 3.24).
Therefore, take (3.4.5) and substitute the expressions for A0 and A1 given in
(3.4.19) and (3.4.22)

AT
0 A0 +AT

1 A1 = WBT
0 B0W + JWJBT

1 B1JWJ = I.

Using now (3.4.23), this becomes

1

2
W 2 +

1

2
JW 2J = I,

where we used the fact that J2 = I. In other words, for perfect reconstruction, the
following has to hold:

h2pr[i] + h2pr[N − 1− i] = 2, (3.4.24)

that is, a power complementary property. Using the expressions for A0 and A1,
one can easily prove that (3.4.6) holds as well.

Condition (3.4.24) also regulates the shape of the window. For example, if
instead of length 2N , one uses shorter window of length 2N − 2M , then the outer
M coefficients of each “tail” (the symmetric nonconstant half of the window) are
set to zero, and the inner M ones are set to

√
2 according to (3.4.24).
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Table 3.4 Values of a power complementary
window used for generating cosine mod-
ulated filter banks (the window satisfies
(3.4.24)). It is symmetric (hpr[16−k−1] =
hpr[k]).

hpr[0] 0.125533 hpr[4] 1.111680
hpr[1] 0.334662 hpr[5] 1.280927
hpr[2] 0.599355 hpr[6] 1.374046
hpr[3] 0.874167 hpr[7] 1.408631
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Figure 3.16 An example of a cosine modulated filter bank with N = 8. (a)
Impulse responses for the first four filters. (b) The magnitude responses of all
the filters are given. The symmetric prototype window is of length 16 with the
first 8 coefficients given in Table 3.4.

Example 3.12

Consider the case N = 8. The center frequency of the modulated filter hk[n] is (2k+1)2π/32,
and since this is a cosine modulation and the filters are real, there is a mirror lobe at
(32− 2k− 1)2π/32. For the filters h0[n] and h7[n], these two lobes overlap to form a single
lowpass and highpass, respectively, while h1[n], . . . , h6[n] are bandpass filters. A possible
symmetric window of length 16 and satisfying (3.4.24) is given in Table 3.4, while the impulse
responses of the first four filters as well as the magnitude responses of all the modulated
filters are given in Figure 3.16.

Note that cosine modulated filter banks which are orthogonal have been recently
generalized to lengths L = KN where K can be larger than 2. For more details,
refer to [159, 188, 235, 308].
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3.5 PYRAMIDS AND OVERCOMPLETE EXPANSIONS

In this section, we will consider expansions that are overcomplete, that is, the set
of functions used in the expansion is larger than actually needed. In other words,
even if the functions play the role of a set of “basis functions”, they are actually
linearly dependent. Of course, we are again interested in structured overcomplete
expansions and will consider the ones implementable with filter banks. In filter
bank terminology, overcomplete means we have a noncritically sampled filter bank,
as the one given in Figure 3.15.

In compression applications, such redundant representations tend to be avoided,
even if an early example of a multiresolution overcomplete decomposition (the pyra-
mid scheme to be discussed below) has been used for compression. Such schemes
are also often called hierarchical transforms in the compression literature.

In some other applications, overcomplete expansions might be more appropriate
than bases. One of the advantages of such expansions is that, due to oversampling,
the constraints on the filters used are relaxed. This can result in filters of a superior
quality than those in critically sampled systems. Another advantage is that time
variance can be reduced, or in the extreme case of no downsampling, avoided. One
such example is the oversampled discrete-time wavelet series which is also explained
in what follows.

3.5.1 Oversampled Filter Banks

The simplest way to obtain a noncritically sampled filter bank is not to sample at
all, producing an overcomplete expansion. Thus, let us consider a two-channel filter
bank with no downsampling. In the scheme given in Figure 3.15 this means that
N = 2 and M = 1. Then, the output is (see also Example 5.2)

X̂(z) = [G0(z) H0(z) +G1(z) H1(z)] X(z), (3.5.1)

and perfect reconstruction is easily achievable. For example, in the FIR case if
H0(z) and H1(z) have no zeros in common (that is, the polynomials in z−1 are
coprime), then one can use Euclid’s algorithm [32] to find G0(z) and G1(z) such
that

G0(z) H0(z) +G1(z) H1(z) = 1

is satisfied leading to X̂(z) = X(z) in (3.5.1). Note how coprimeness of H0(z) and
H1(z), used in Euclid’s algorithm, is also a very natural requirement in terms of
signal processing. A common zero would prohibit FIR reconstruction, or even IIR
reconstruction (if the common zero is on the unit circle). Another case appears
when we have two filters G0(z) and G1(z) which have unit norm and satisfy

G0(z) G0(z
−1) +G1(z) G1(z

−1) = 2, (3.5.2)
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since then with H0(z) = G0(z
−1) and H1(z) = G1(z

−1) one obtains

X̂(z) = [G0(z) G0(z
−1) +G1(z) G1(z

−1)] X(z) = 2X(z).

Writing this in time domain (see Example 5.2), we realize that the set {gi[n− k]},
i = 0, 1, and k ∈ Z, forms a tight frame for l2(Z) with a redundancy factor R = 2.

The fact that {gi[n− k]} form a tight frame simply means that they can uniquely
represent any sequence from l2(Z) (see also Section 5.3). However, the basis vectors
are not linearly independent and thus they do not form an orthonormal basis. The
redundancy factor indicates the oversampling rate; we can indeed check that it is
two in this case, that is, there are twice as many basis functions than actually needed
to represent sequences from l2(Z). This is easily seen if we remember that until
now we needed only the even shifts of gi[n] as basis functions, while now we use the
odd shifts as well. Also, the expansion formula in a tight frame is similar to that in
the orthogonal case, except for the redundancy (which means the functions in the
expansion are not linearly independent). There is an energy conservation relation,
or Parseval’s formula, which says that the energy of the expansion coefficients equals
R times the energy of the original. In our case, calling yi[n] the output of the filter
hi[n], we can verify (Problem 3.26) that

‖x‖2 = 2(‖y0‖2 + ‖y1‖2). (3.5.3)

To design such a tight frame for l2(Z) based on filter banks, that is, to find solutions
to (3.5.2), one can find a unit norm12 filter G0(z) which satisfies

0 ≤ |G0(e
jω)|2 ≤ 2,

and then take the spectral factorization of the difference 2 − G0(z)G0(z
−1) =

G1(z)G1(z
−1) to find G1(z). Alternatively, note that (3.5.2) means the 2×1 vector

(G0(z) G1(z) )
T is lossless, and one can use a lattice structure for its factorization,

just as in the 2× 2 lossless case [308]. On the unit circle, (3.5.2) becomes

|G0(e
jω)|2 + |G1(e

jω)|2 = 2,

that is, G0(z) and G1(z) are power complementary. Note that (3.5.2) is less restric-
tive than the usual orthogonal solutions we have seen in Section 3.2.3. For example,
odd-length filters are possible.

Of course, one can iterate such nondownsampled two-channel filter banks, and
get more general solutions. In particular, by adding two-channel nondownsampled
filter banks with filters

{
H0(z

2),H1(z
2)
}
to the lowpass analysis channel and iter-

ating (raising z to the appropriate power) one can devise a discrete-time wavelet

12Note that the unit norm requirement is not necessary for constructing a tight frame.
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Figure 3.17 Pyramid scheme involving a coarse lowpass approximation and
a difference between the coarse approximation and the original. We show the
case where an orthogonal filter is used and therefore, the coarse version (after
interpolation) is a projection onto V1, while the difference is a projection onto
W1. This indicates the multiresolution behavior of the pyramid.

series. This is a very redundant expansion, since there is no downsampling. How-
ever, unlike the critically sampled wavelet series, this expansion is shift-invariant
and is useful in applications where shift invariance is a requirement (for example,
object recognition).

More general cases of noncritically sampled filter banks, that is, N -channel filter
banks with downsampling byM whereM < N , have not been much studied (except
for the Fourier case discussed below). While some design methods are possible (for
example, embedding into larger lossless systems), there are still open questions.

3.5.2 Pyramid Scheme

In computer vision and image coding, a successive approximation or multiresolution
technique called an image pyramid is frequently used. This scheme was introduced
by Burt and Adelson [41] and was recognized by the wavelet community to have a
strong connection to multiresolution analysis as well as orthonormal bases of wave-
lets. It consists of deriving a low-resolution version of the original, then predicting
the original based on the coarse version, and finally taking the difference between the
original and the prediction (see Figure 3.17). At the reconstruction, the prediction
is added back to the difference, guaranteeing perfect reconstruction. A shortcoming
of this scheme is the oversampling, since we end up with a low-resolution version
and a full-resolution difference signal (at the initial rate). Obviously, the scheme
can be iterated, decomposing the coarse version repeatedly, to obtain a coarse ver-
sion at level J plus J detailed versions. From the above description, it is obvious
that the scheme is inherently multiresolution. Consider, for example, the coarse
and detailed versions at the first level (one stage). The coarse version is now at
twice the scale (downsampling has contracted it by 2) and half the resolution (in-
formation loss has occurred), while the detailed version is also of half resolution but
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of the same scale as the original. Also, a successive approximation flavor is easily
seen: One could start with the coarse version at level J , and by adding difference
signals, obtain versions at levels J − 1, . . . , 1, 0, (that is, the original).

An advantage of the pyramid scheme in image coding is that nonlinear inter-
polation and decimation operators can be used. A disadvantage, however, as we
have already mentioned, is that the scheme is oversampled, although the overhead
in number of samples decreases as the dimensionality increases. In n dimensions,
oversampling s as a function of the number of levels L in the pyramid is given by

s =

L−1∑

i=0

(
1

2n

)i

<
2n

2n − 1
, (3.5.4)

which is an overhead of 50–100% in one dimension. It goes down to 25–33% in two
dimensions, and further down to 12.5–14% in three dimensions. However, we will
show below [240, 319] that if the system is linear and the lowpass filter is orthogonal
to its even translates, then one can actually downsample the difference signal after
filtering it. In that case, the pyramid reduces exactly to a critically downsampled
orthogonal subband coding scheme.

First, the prediction of the original, based on the coarse version, is simply the
projection onto the space spanned by {h0[2k − n], k ∈ Z}. That is, calling the
prediction x̄

x̄ = HT
0 H0 x.

The difference signal is thus

d = (I −HT
0 H0) x.

But, because it is a perfect reconstruction system

I −HT
0 H0 = HT

1 H1,

that is, d is the projection onto the space spanned by {h1[2k−n], k ∈ Z}. Therefore,
we can filter and downsample d by 2, since

H1H
T
1 H1 = H1.

In that case, the redundancy of d is removed (d is now critically sampled) and the
pyramid is equivalent to an orthogonal subband coding system.

The signal d can be reconstructed by upsampling by 2 and filtering with h1[n].
Then we have

HT
1 (H1H

T
1 H1) x = HT

1 H1 x = d

and this, added to x̄ = HT
0 H0x, is indeed equal to x. In the notation of the

multiresolution scheme the prediction x̄ is the projection onto the space V1 and d
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is the projection onto W1. This is indicated in Figure 3.17. We have thus shown
that pyramidal schemes can be critically sampled as well, that is, in Figure 3.17 the
difference signal can be followed by a filter h1[n] and a downsampler by 2 without
any loss of information.

Note that we assumed an orthogonal filter and no quantization of the coarse
version. The benefit of the oversampled pyramid comes from the fact that arbitrary
filters (including nonlinear ones) can be used, and that quantization of the coarse
version does not influence perfect reconstruction (see Section 7.3.2).

This scheme is very popular in computer vision, not so much because perfect
reconstruction is desired but because it is a computationally efficient way to obtain
multiple resolution of an image. As a lowpass filter, an approximation to a Gaus-
sian, bell-shaped filter is often used and because the difference signal resembles the
original filtered by the Laplace operator, such a scheme is usually called a Laplacian
pyramid.

3.5.3 Overlap-Save/Add Convolution and Filter Bank Implem entations

Filter banks can be used to implement algorithms for the computation of convolu-
tions (see also Section 6.5.1). Two classic examples are block processing schemes —
the overlap-save and overlap-add algorithms for computing a running convolution
[211]. Essentially, a block of input is processed at a time (typically with frequency-
domain circular convolution) and the output is merged so as to achieve true linear
running convolution. Since the processing advances by steps (which corresponds
to downsampling the input by the step size), these two schemes are multirate in
nature and have an immediate filter bank interpretation [317].

Overlap-Add Scheme This scheme performs the following task: Assuming a
filter of length L, the overlap-add algorithm takes a block of input samples of
length M = N − L + 1, and feeds it into a size-N FFT (N > L). This results in
a linear convolution of the signal with the filter. Since the size of the FFT is N ,
there will be L− 1 samples overlapping with adjacent blocks of size M , which are
then added together (thus the name overlap-add). One can see that such a scheme
can be implemented with an N -channel analysis filter bank downsampled by M ,
followed by multiplication (convolution in Fourier domain), upsampling by M and
an N -channel synthesis filter bank, as shown in Figure 3.18.

For the details on computational complexity of the filter bank, refer to Sec-
tions 6.2.3 and 6.5.1. Also, note, that the filters used are based on the short-time
Fourier transform.

Overlap-Save Scheme Given a length-L filter, the overlap-save algorithm per-
forms the following: It takes N input samples, computes a circular convolution of
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Figure 3.18 N-channel analysis/synthesis filter bank with downsampling by
M and filtering of the channel signals. The downsampling by M is equiva-
lent to moving the input by M samples between successive computations of
the output. With filters based on the Fourier transform, and filtering of the
channels chosen to perform frequency-domain convolution, such a filter bank
implements overlap-save/add running convolution.

which N − L + 1 samples are valid linear convolution outputs and L − 1 samples
are wrap-around effects. These last L − 1 samples are discarded. The N − L + 1
valid ones are kept and the algorithm moves up by N − L+ 1 samples. The filter
bank implementation is similar to the overlap-add scheme, except that analysis and
synthesis filters are interchanged [317].

Generalizations The above two schemes are examples from a general class of
oversampled filter banks which compute running convolution. For example, the
pointwise multiplication in the above schemes can be replaced by a true convolu-
tion and will result in a longer overall convolution if adequately chosen. Another
possibility is to use analysis and synthesis filters based on fast convolution algo-
rithms other than Fourier ones. For more details, see [276, 317] and Section 6.5.1.

3.6 MULTIDIMENSIONAL FILTER BANKS

It seems natural to ask if the results we have seen so far on expansion of one-
dimensional discrete-time signals can be generalized to multiple dimensions. This is
both of theoretical interest as well as relevant in practice, since popular applications
such as image compression often rely on signal decompositions. One easy solution
to the multidimensional problem is to apply all known one-dimensional techniques
separately along one dimension at a time. Although a very simple solution, it suffers
from some drawbacks: First, only separable (for example, two-dimensional) filters
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are obtained in this way, leading to fairly constrained designs (nonseparable filters of
size N1×N2 would offer N1 ·N2 free design variables versus N1+N2 in the separable
case). Then, only rectangular divisions of the spectrum are possible, though one
might need divisions that would better capture the signal’s energy concentration
(for example, close to circular).

Choosing nonseparable solutions, while solving some of these problems, comes
at a price: the design is more difficult, and the complexity is substantially higher.

The first step toward using multidimensional techniques on multidimensional
signals is to use the same kind of sampling as before (that is, in the case of an im-
age, sample first along the horizontal and then along the vertical dimension), but use
nonseparable filters. A second step consists in using nonseparable sampling as well
as nonseparable filters. This calls for the development of a new theory that starts
by pointing out the major difference between one- and multidimensional cases —
sampling. Sampling in multiple dimensions is represented by lattices. An excellent
presentation of lattice sampling can be found in the tutorial by Dubois [86] (Ap-
pendix 3.B gives a brief overview). Filter banks using nonseparable downsampling
were studied in [11, 314]. The generalization of one-dimensional analysis methods
to multidimensional filter banks using lattice downsampling was done in [155, 325].
The topic has been quite active recently (see [19, 47, 48, 160, 257, 264, 288]).

In this section, we will give an overview of the field of multidimensional filter
banks. We will concentrate mostly on two cases: the separable case with down-
sampling by 2 in two dimensions, and the quincunx case, that is, the simplest
multidimensional nonseparable case with overall sampling density of 2. Both of
these cases are of considerable practical interest, since these are the ones mostly
used in image processing applications.

3.6.1 Analysis of Multidimensional Filter Banks

In Appendix 3.B, a brief account of multidimensional sampling is given. Using the
expressions given for sampling rate changes, analysis of multidimensional systems
can be performed in a similar fashion to their one-dimensional counterparts. Let
us start with the simplest case, where both the filters and the sampling rate change
are separable.

Example 3.13 Separable Case with Sampling by 2 in Two Dimensions

If one uses the scheme as in Figure 3.19 then all one-dimensional results are trivially extended
to two dimensions. However, all limitations appearing in one dimension, will appear in
two dimensions as well. For example, we know that there are no real two-channel perfect
reconstruction filter banks, being orthogonal and linear phase at the same time. This implies
that the same will hold in two dimensions if separable filters are used.

Alternatively, one could still sample separately (see Figure 3.20(a)) and yet use
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Figure 3.19 Separable filter bank in two dimensions, with separable downsam-
pling by 2. (a) Cascade of horizontal and vertical decompositions. (b) Division
of the frequency spectrum.
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Figure 3.20 Two often used lattices. (a) Separable sampling by 2 in two
dimensions. (b) Quincunx sampling.

nonseparable filters. In other words, one could have a direct four-channel implemen-
tation of Figure 3.19 where the four filters could be H0, H1, H2, H3. While before,
Hi(z1, z2) = Hi1(z1)Hi2(z2) where Hi(z) is a one-dimensional filter, Hi(z1, z2) is now a true
two-dimensional filter. This solution, while more general, is more complex to design and
implement. It is possible to obtain an orthogonal linear phase FIR solution [155, 156], which
cannot be achieved using separable filters (see Example 3.15 below).

Similarly to the one-dimensional case, one can define polyphase decompositions
of signals and filters. Recall that in one dimension, the polyphase decomposition of
the signal with respect to N was simply the subsignals which have the same indexes
modulo N . The generalization in multiple dimensions are cosets with respect to
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a downsampling lattice. There is no natural ordering such as in one dimension
but as long as all N cosets are included, the decomposition is valid. In separable
downsampling by 2 in two dimensions, we can take as coset representatives the
points {(0, 0), (1, 0), (0, 1), (1, 1)}. Then the signal X(z1, z2) can be written as

X(z1, z2) = X00(z
2
1 , z

2
2) + z−1

1 X10(z
2
1 , z

2
2) + z−1

2 X01(z
2
1 , z

2
2) + z−1

1 z−1
2 X11(z

2
1 , z

2
2),

(3.6.1)
where

Xij(z1, z2) =
∑

m

∑

n

z−m1 z−n2 x[2m+ i, 2n + j].

Thus, the polyphase component with indexes i, j corresponds to a square lattice
downsampled by 2, and with the origin shifted to (i, j). The recombination of
X(z1, z2) from its polyphase components as given in (3.6.1) corresponds to an in-
verse polyphase transform and its dual is therefore the forward polyphase transform.
The polyphase decomposition of analysis and synthesis filter banks follow similarly.

The synthesis filters are decomposed just as the signal (see (3.6.1)), while the
analysis filters have reverse phase. We shall not dwell longer on these decompo-
sitions since they follow easily from their one-dimensional counterparts but tend
to involve a bit of algebra. The result, as to be expected, is that the output of
an analysis/synthesis filter bank can be written in terms of the input polyphase
components times the product of the polyphase matrices.

The output of the system could also be written in terms of modulated versions
of the signal and filters. For example, downsampling by 2 in two dimensions, and
then upsampling by 2 again (zeroing out all samples except the ones where both
indexes are even) can be written in z-domain as

1

4
(X(z1, z2) +X(−z1, z2) +X(z1,−z2) +X(−z1,−z2)).

Therefore, it is easy to verify that the output of a four-channel filter bank with
separable downsampling by 2 has an output that can be written as

Y (z1, z2) =
1

4
gT (z1, z2) Hm(z1, z2) xm(z1, z2),

where

gT (z1, z2) =

(G0(z1, z2) G1(z1, z2) G2(z1, z2) G3(z1, z2) ) , (3.6.2)

Hm(z1, z2) =






H0(z1, z2) H0(−z1, z2) H0(z1,−z2) H0(−z1,−z2)
H1(z1, z2) H1(−z1, z2) H1(z1,−z2) H1(−z1,−z2)
H2(z1, z2) H2(−z1, z2) H2(z1,−z2) H2(−z1,−z2)
H3(z1, z2) H3(−z1, z2) H3(z1,−z2) H3(−z1,−z2)






, (3.6.3)



188 CHAPTER 3

xm(z1, z2) =

(X(z1, z2) X(−z1, z2) X(z1,−z2) X(−z1,−z2) ) .

Let us now consider an example involving nonseparable downsampling. We
examine quincunx sampling (see Figure 3.20(b)) because it is the simplest mul-
tidimensional nonseparable lattice. Moreover, it samples by 2, that is, it is the
counterpart of the one-dimensional two-channel case we discussed in Section 3.2.

Example 3.14 Quincunx Case

It is easy to verify that, given X(z1, z2), quincunx downsampling followed by quincunx
upsampling (that is, replacing the locations with empty circles in Figure 3.20(b) by 0)
results in a z-transform equal to 1/2(X(z1, z2) +X(−z1,−z2)). From this, it follows that
a two-channel analysis/synthesis filter bank using quincunx sampling has an input/output
relationship given by

Y (z1, z2) =
1

2

(

G0(z1, z2) G1(z1, z2)
)

(

H0(z1, z2) H0(−z1,−z2)
H1(z1, z2) H1(−z1,−z2)

)

(

X(z1, z2)
X(−z1,−z2)

)

.

Similarly to the one-dimensional case, it can be verified that the orthogonality of the system
is achieved when the lowpass filter satisfies

H0(z1, z2)H0(z
−1
1 , z−1

2 ) +H0(−z1,−z2)H0(−z−1
1 ,−z−1

2 ) = 2, (3.6.4)

that is, the lowpass filter is orthogonal to its shifts on the quincunx lattice. Then, a possible
highpass filter is given by

H1(z1, z2) = −z−1
1 H0(−z−1

1 ,−z−1
2 ). (3.6.5)

The synthesis filters are the same (within shift reversal, or Gi(z1, z2) = Hi(z
−1
1 , z−1

2 )). In
polyphase domain, define the two polyphase components of the filters as

Hi0(z1, z2) =
∑

(n1,n2)∈Z2

hi[n1 + n2, n1 − n2]z
−n1

1 z−n2

2 ,

Hi1(z1, z2) =
∑

(n1,n2)∈Z2

hi[n1 + n2 + 1, n1 − n2]z
−n1

1 z−n2

2 ,

with
Hi(z1, z2) = Hi0(z1z2, z1z

−1
2 ) + z−1

1 Hi1(z1z2, z1z
−1
2 ).

The results on alias cancellation and perfect reconstruction are very similar to
their one-dimensional counterparts. For example, perfect reconstruction with FIR
filters is achieved if and only if the determinant of the analysis polyphase matrix is
a monomial, that is,

Hp(z1, . . . , zn) = c · z−K1
1 · · · · z−Knn .
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Since the results are straightforward extensions of one-dimensional results, we rather
discuss two cases of interest in more detail, while the reader is referred to [48, 163,
308, 325] for a more in-depth discussion of multidimensional results.

3.6.2 Synthesis of Multidimensional Filter Banks

The design of nonseparable systems is more challenging than the one-dimensional
cases. Designs based on cascade structures as well as one- to multidimensional
transformations are discussed next.

Cascade Structures When synthesizing filter banks, one of the most obvious
approaches is to try to find cascade structures that would generate filters of the
desired form. This is because cascade structures (a) usually have low complexity,
(b) higher-order filters are easily derived from lower-order ones, and (c) the coef-
ficients can be quantized without affecting the desired form. However, unlike in
one dimension, there are very few results on completeness of cascade structures in
multiple dimensions.

While cascades of orthogonal building blocks (that is, orthogonal matrices and
diagonal delay matrices) obviously will yield orthogonal filter banks, producing
linear phase solutions needs more care. For example, one can make use of the
linear phase testing condition given in [155] or [163] to obtain possible cascades.
As one of the possible approaches consider the generalization of the linear phase
cascade structure proposed in [155, 156, 321]. Suppose that a linear phase system
has been already designed and a higher-order one is needed. Choosing

H
′′
p(z) = R D(z) H

′
p(z),

where D(z) = z−kJD(z−1)J and R is persymmetric (R = JRJ), another
linear phase system is obtained, where the filters have the same symmetry as in
H ′

p. Although this cascade is by no means complete, it can produce very useful
filters. Let us also point out that when building cascades in the polyphase domain,
one must bear in mind that using different sampling matrices for the same lattice
will greatly affect the geometry of the filters obtained.

Example 3.15 Separable Case

Let us first present a cascade structure, that will generate four linear phase/
orthogonal filters of the same size, where two of them are symmetric and the other two
antisymmetric [156]

Hp(z1, z2) =

[

1
∏

i=K−1

Ri D(z1, z2)

]

S0.



190 CHAPTER 3

In the above, D is the matrix of delays containing ( 1 z−1
1 z−1

2 (z1z2)
−1 ) along the

diagonal, and Ri and S0 are scalar persymmetric matrices, that is, they satisfy

Ri = JRiJ . (3.6.6)

Equation (3.6.6) along with the requirement that the Ri be unitary, allows one to design fil-
ters being both linear phase and orthogonal. Recall that in the two-channel one-dimensional
case these two requirements are mutually exclusive, thus one cannot design separable filters
satisfying both properties in this four-channel two-dimensional case. This shows how using
a true multidimensional solution offers greater freedom in design. To obtain both linear
phase and orthogonality, one has to make sure that, on top of being persymmetric, matrices
Ri have to be unitary as well. These two requirements lead to

Ri =
1

2

(

I

J

)(

I I

I −I

)(

R2i

R2i+1

)(

I I

I −I

)(

I

J

)

,

where R2i, R2i+1 are 2× 2 rotation matrices, and

S0 =

(

R0

R1

)(

I I

I −I

)(

I

J

)

.

This cascade is a two-dimensional counterpart of the one given in [275, 321], and will be
shown to be useful in producing regular wavelets being both linear phase and orthonormal
[165] (see Chapter 4).

Example 3.16 Quincunx Cascades

Let us first present a cascade structure that can generate filters being either orthogonal or
linear phase. It is obtained by the following:

Hp(z1, z2) =

[

1
∏

i=K−1

R2i

(

1 0
0 z−1

2

)

R1i

(

1 0
0 z−1

1

)

]

R0.

For the filters to be orthogonal the matrices Rji have to be unitary. To be linear, phase
matrices have to be symmetric. In the latter case the filters obtained will have opposite
symmetry. Consider, for example, the orthogonal case. The smallest lowpass filter obtained
from the above cascade would be

h0[n1, n2] =





−a1 −a0a1
−a2 −a0a2 −a0 1

a0a1a2 −a1a2



 , (3.6.7)

where ai are free variables, and h0[n1, n2] is denormalized for simplicity. The highpass filter
is obtained by modulation and time reversal (see (3.6.5)). This filter, with some additional
constraints, will be shown to be the smallest regular two-dimensional filter (the counterpart
of the Daubechies’ D2 filter [71]). Note that this cascade has its generalization in more than
two dimensions (its one-dimensional counterpart is the lattice structure given in (3.2.60)).
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One to Multidimensional Transformations Because of the difficulty of designing
good filters in multiple dimensions, transformations to map one-dimensional designs
into multidimensional ones have been used for some time, the most popular being
the McClellan transformation [88, 191].

For purely discrete-time purposes, the only requirement that we impose is that
perfect reconstruction be preserved when transforming a one-dimensional filter bank
into a multidimensional one. We will see later, that in the context of building
continuous-time wavelet bases, one needs to preserve the order of zeros at aliasing
frequencies. Two methods are presented: the first is based on separable polyphase
components and the second on the McClellan transformation.

Separable Polyphase Components A first possible transform is obtained by designing a
multidimensional filter having separable polyphase components,
given as products of the polyphase components of a one-dimensional filter [11,
47]. To be specific, consider the quincunx downsampling case. Start with a one-
dimensional filter having polyphase components H0(z) and H1(z), that is, a filter
with a z-transform H(z) = H0(z

2) + z−1H1(z
2). Derive separable polyphase com-

ponents
Hi(z1, z2) = Hi(z1) Hi(z2), i = 0, 1.

Then, the two-dimensional filter with respect to the quincunx lattice is given as (by
upsampling the polyphase components with respect to the quincunx lattice)

H(z1, z2) = H0(z1z2) H0(z1z
−1
2 ) + z−1

1 H1(z1z2) H1(z1z
−1
2 ).

It can be verified that an Nth-order zero at π in H(ejω), maps into an Nth-order
zero at (π, π) in H(ejω1 , ejω2) (we will come back to this property in Chapter 4).
However, an orthogonal filter bank is mapped into an orthogonal two-dimensional
bank, if and only if the polyphase components of the one-dimensional filter are
allpass functions (that is, Hi(e

jω)Hi(e
−jω) = c). Perfect reconstruction is thus

not conserved in general. Note that the separable polyphase components lead to
efficient implementations, reducing the number of operations from O[L2] to O[L]
per output, where L is the filter size.

McClellan Transformation [191] The second transformation is the well-known Mc-
Clellan transformation, which has recently become a popular way to design linear
phase multidimensional filter banks (see [47, 163, 257, 288] among others). The
Fourier transform of a zero-phase symmetric filter (h[n] = h[−n]), can be written
as a function of cos(nω) [211]

H(ω) =

L∑

n=−L
a[n] cos(nω),
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where a[0] = h[0] and a[n] = 2h[n], n 6= 0. Using Tchebycheff polynomials, one can
replace cos(nω) by Tn[cos(ω)], where Tn[.] is the nth Tchebycheff polynomial, and
thus H(ω) can be written as a polynomial of cos(ω)

H(ω) =

L∑

n=−L
a[n] Tn[cos(ω)].

The idea of the McClellan transformation is to replace cos(ω) by a zero-phase two-
dimensional filter F (ω1, ω2). This results in an overall zero-phase two-dimensional
filter [88, 191]

H(ω1, ω2) =
L∑

n=−L
a[n] Tn[F (ω1, ω2)].

In the context of filter banks, this transformation can only be applied to the
biorthogonal case (because of the zero-phase requirement). Typically, in the case
of quincunx downsampling, F (ω1, ω2) is chosen as [57]

F (ω1, ω2) =
1

2
(cos(ω1) + cos(ω2)). (3.6.8)

That the perfect reconstruction is preserved, can be checked by considering the
determinant of the polyphase matrix. This is a monomial in the one-dimensional
case since one starts with a perfect reconstruction filter bank. The transforma-
tion in (3.6.8) leads to a determinant which is also a monomial, and thus, perfect
reconstruction is conserved.

In addition to this, it is easy to see that pairs of zeroes at π (factors of the form
1 + cos(w)) map into zeroes of order two at (π, π) in the transformed domain (or
factors of the form 1 + cos(ω1)/2 + cos(ω2)/2).

Therefore, the McClellan transformation is a powerful method to map one-dim-
ensional biorthogonal solutions to multidimensional biorthogonal solutions, and this
while conserving zeroes at aliasing frequencies. We will show how important this is
in trying to build continuous-time wavelet bases.

Remarks We have given a rapid overview of multidimensional filter bank results
and relied on simple examples in order to give the intuition rather than developing
the full algebraic framework. We refer the interested reader to [47, 48, 160, 163, 308],
among others, for more details.

3.7 TRANSMULTIPLEXERS AND ADAPTIVE FILTERING IN SUBBANDS

3.7.1 Synthesis of Signals and Transmultiplexers

So far, we have been mostly interested in decomposing a given signal into com-
ponents, from which the signal can be recovered. This is essentially an analysis
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problem.
The dual problem is to start from some components and to synthesize a signal

from which the components can be recovered. This has some important appli-
cations, in particular in telecommunications. For example, several users share a
common channel to transmit information. Two obvious ways to solve the problem
are to either multiplex in time (each user receives a time slot out of a period) or
multiplex in frequency (each user gets a subchannel). In general, the problem can
be seen as one of designing (orthogonal) functions that are assigned to the different
users within a time window so that each user can use “his” function for signal-
ing (for example, by having it on or off). Since the users share the channel, the
functions are added together, but because of orthogonality,13 each user can mon-
itor “his” function at the receiving end. The next time period looks exactly the
same. Therefore, the problem is to design an orthogonal set of functions over a
window, possibly meeting some boundary constraints as well. Obviously, time- and
frequency-division multiplexing are just two particular cases.

Because of the fact that the system is invariant to shifts by a multiple of the
time window, it is also clear that, in discrete time, this is a multirate filter bank
problem. Below, we describe briefly the analysis of such systems, which is very
similar to its dual problem, as well as some applications.

Analysis of Transmultiplexers A device synthesizing a single signal from sev-
eral signals, followed by the inverse operation of recovering the initial signals, is
usually called a transmultiplexer. This is because a main application is in telecom-
munications for going from time-division multiplexing (TDM) to frequency-division
multiplexing (FDM) [25]. Such a device is shown in Figure 3.21.

It is clear that since this scheme involves multirate analysis and synthesis filter
banks, all the algebraic tools developed for analysis/synthesis systems can be used
here as well. We will not go through the details, since they are very similar to the
familiar case, but will simply discuss a few key results [316].

It is easiest to look at the polyphase decomposition of the two filter banks, shown
in Figure 3.21(b). The definitions of Hp(z) and Gp(z) are as given in Section 3.2.
Note that they are of sizes N ×M and M ×N , respectively. It is clear that the two
polyphase transforms in the middle of the system cancel each other, and therefore,
defining the input vector as

x(z) = (X0(z) X1(z) . . . XN−1(z))
T ,

and similarly the output vector as

x̃(z) =
(

X̃0(z) X̃1(z) . . . X̃N−1(z)
)T

,

13Orthogonality is not necessary, but makes the system simpler.
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Figure 3.21 Transmultiplexer. (a) General scheme. (b) Polyphase-domain
implementation.

we have the following input/output relationship:

x̃(z) = Hp(z) Gp(z) x(z). (3.7.1)

We thus immediately get the following result:

PROPOSITION 3.18

In a transmultiplexer with polyphase matrices Hp(z) andGp(z), the following
holds:

(a) Perfect reconstruction is achieved if and only if Hp(z)Gp(z) = I.

(b) There is no crosstalk between channels if and only if Hp(z)Gp(z) is
diagonal.
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The above result holds for anyM and N . One can show thatM ≥ N is a necessary
condition for crosstalk cancellation and perfect reconstruction. In the critical sam-
pling case, or M = N , there is a simple duality result between transmultiplexers
and analysis/synthesis systems seen earlier.

PROPOSITION 3.19

In the critically sampled case (number of channels equal to sampling rate
change), a perfect reconstruction subband coding system is equivalent to a
perfect reconstruction transmultiplexer.

PROOF

Since Gp(z)Hp(z) = I and they are square, it follows that Hp(z)Gp(z) = I as well.

Therefore, the design of perfect subband coding systems and of perfect transmul-
tiplexers is equivalent, at least in theory. A problem in the transmultiplexer case
is that the channel over which y is transmitted can be far from ideal. In order to
highlight the potential problem, consider the following simple case: Multiplex two
signals X0(z) and X1(z) by upsampling by 2, delaying the second one by 2 and
adding them. This gives a channel signal

Y (z) = X0(z
2) + z−1X1(z

2).

Obviously, X0(z) and X1(z) can be recovered by a polyphase transform (downsam-
pling Y (z) by 2 yields X0(z), downsampling zY (z) by 2 yields X1(z)). However,
if Y (z) has been delayed by z−1, then the two signals will be interchanged at the
output of the transmultiplexer. A solution to this problem is obtained if the signals
X0(z

2) and X1(z
2) are filtered by perfect lowpass and highpass filters, respectively,

and similarly at the reconstruction. Therefore, transmultiplexers usually use very
good bandpass filters. In practice, critical sampling is not attempted. Instead,
N signals are upsampled by M > N and filtered by good bandpass filters. This
higher upsampling rate allows guard bands to be placed between successive bands
carrying the useful signals and suppresses crosstalk between channels even without
using ideal filters. Note that all filter banks used in transmultiplexers are based on
modulation of a prototype window to an evenly spaced set of bandpass filters, and
can thus be very efficiently implemented using FFT’s [25] (see also Section 6.2.3).

3.7.2 Adaptive Filtering in Subbands

A possible application of multirate filter banks is in equalization problems. The
purpose is to estimate and apply an inverse filter (typically, a nonideal channel has
to be compensated). The reason to use a multirate implementation rather than a
direct time-domain version is related to computational complexity and convergence
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behavior. Since a filter bank computes a form of frequency analysis, subband adap-
tive filtering is a version of frequency-domain adaptive filtering. See [263] for an
excellent overview on the topic.

We will briefly discuss a simple example. Assume that a filter with z-transform
F (z) is to be implemented in the subbands of a two-channel perfect reconstruction
filter bank with critical sampling. Then, it can be shown that the channel transfer
function between the analysis and synthesis filter banks, C(z), is not diagonal in
general [112]. That is, one has to estimate four components, two direct channel
components, and two crossterms. These components can be relatively short (es-
pecially the crossterms) and run at half the sampling rate, and thus, the scheme
can be computationally attractive. Yet, the crossterms turn out to be difficult to
estimate accurately (they correspond to aliasing terms). Therefore, it is more in-
teresting to implement an oversampled system, that is, decompose into N channels
and downsample by M < N . Then, the matrix C(z) can be well approximated by
a diagonal matrix, making the estimation of the components easier. We refer to
[112, 263], and to references therein for more details and discussions of applications
such as acoustic echo cancellation.

APPENDIX 3.A L OSSLESS SYSTEMS

We have seen in (3.2.60) a very simple, yet powerful factorization yielding or-
thogonal solutions and pointed to the relation to lossless systems. Here, the aim
is to give a brief review of lossless systems and two-channel as well as N -channel
factorizations. Lossless systems have been thoroughly studied in classical circuit
theory. Many results, including factorizations of lossless matrices, can be found
in the circuit theory literature, for example in the text by Belevitch [23]. For a
description of this topic in the context of filter banks and detailed derivations of
factorizations, we refer to [308].

The general definition of a paraunitary matrix is [309]

H̃(z) H(z) = cI, c 6= 0,

where H̃(z) = HT
∗ (z

−1) and subscript ∗ means conjugation14 of the coefficients (but
not of z). If all entries are stable, such a matrix is called lossless. The interpretation
of losslessness, a concept very familiar in classical circuit theory [23], is that the
energy of the signals is conserved through the system given by H(z). Note that
the losslessness of H(z) implies that H(ejω) is unitary

H∗(ejω) H(ejω) = cI,

14Here we give the general definition, which includes complex-valued filter coefficients, whereas
we considered mostly the real case in the main text.
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where the superscript ∗ stands for hermitian conjugation (note that H∗(ejω) =
HT

∗ (e
−jω)). For the scalar case (single input/single output), lossless transfer func-

tions are allpass filters given by [211]

F (z) =
a(z)

z−ka∗(z−1)
, (3.A.1)

where k = deg(a(z)) (possibly, there is a multiplicative delay and scaling factor
equal to cz−k). Thus, to any zero at z = a corresponds a pole at z = 1/a∗, that
is, at a mirror location with respect to the unit circle. This guarantees a perfect
transmission at all frequencies (in amplitude) and only phase distortion. It is easy
to verify that (3.A.1) is lossless (assuming all poles inside the unit circle) since

F∗(z
−1) F (z) =

a∗(z−1)

zka(z)

a(z)

z−ka∗(z−1)
= 1.

Obviously, nontrivial scalar allpass functions are IIR, and are thus not linear phase.
Interestingly, matrix allpass functions exist that are FIR, and linear phase behavior
is possible. Trivial examples of matrix allpass functions are unitary matrices, as
well as diagonal matrices of delays.

3.A.1 Two-Channel Factorizations

We will first give an expression for the most general form of a 2×2 causal FIR lossless
system of an arbitrary degree. Then, based on this, we will derive a factorization
of a lossless system (already given in (3.2.60)).

PROPOSITION 3.20

The most general causal, FIR, 2 × 2 lossless system of arbitrary degree and
real coefficients, can be written in the form [309]

L(z) =

(
L0(z) L2(z)
L1(z) L3(z)

)

=

(
L0(z) cz−K L̃1(z)

L1(z) −cz−K L̃0(z)

)

, (3.A.2)

where L0(z) and L1(z) satisfy the power complementary property, c is a real
scalar constant with |c| = 1, and K is a large enough positive integer so as to
make the entries of the right column in (3.A.2) causal.

PROOF

Let us first demonstrate the following fact: If the polyphase matrix is orthogonal, then L0

and L1 are relatively prime. Similarly, L2 and L3 are relatively prime. Let us prove the
first statement (the second one follows similarly). Expand L̃(z)L(z) as follows:

L̃0(z)L0(z) + L̃1(z)L1(z) = 1, (3.A.3)

L̃0(z)L2(z) + L̃1(z)L3(z) = 0, (3.A.4)

L̃2(z)L0(z) + L̃3(z)L1(z) = 0, (3.A.5)

L̃2(z)L2(z) + L̃3(z)L3(z) = 1. (3.A.6)
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Suppose now that L0 and L1 are not coprime, and call their common factor P (z), that is,
L0(z) = P (z)L′

0(z), L1(z) = P (z)L′
1(z). Substituting this into (3.A.3)

P (z)P̃ (z) · (L̃′
0(z)L

′
0(z) + L̃′

1(z)L
′
1(z)) = 1,

which for all zeros of P (z) goes to 0, contradicting the fact the right side is identically 1.

Consider (3.A.4). Since L0 and L1, as well as L2 and L3 are coprime, we have that

L3(z) = C1z
−KL̃0(z) and L2(z) = C2z

−K′

L̃1(z) where K and K′ are large enough integers
to make L3 and L2 causal. Take now (3.A.5). This implies that K = K′ and C1 = −C2.
Finally, (3.A.3) or (3.A.6) imply that C1 = ±1.

To obtain a cascade-form realization of (3.A.2), we find such a realization for
the left column of (3.A.2) and then use it derive a cascade form of the whole matrix.
To that end, a result from [309] will be used. It states that for two, real-coefficient
polynomials PK−1 and QK−1 of degree (K−1), with pK−1(0) pK−1(K−1) 6= 0 (and
PK−1, QK−1 are power complementary), there exists another pair PK−2, QK−2 such
that (

PK−1(z)
QK−1(z)

)

=

(
cosα − sinα
sinα cosα

)(
PK−2(z)

z−1QK−2(z)

)

. (3.A.7)

Repeatedly applying the above result to (3.A.2) one obtains the lattice factorization
given in (3.2.60), that is,

(
L0(z) L2(z)
L1(z) L3(z)

)

=

(
cosα0 − sinα0

sinα0 cosα0

)

×
[
K−1∏

i=1

(
1

z−1

)(
cosαi − sinαi
sinαi cosαi

)]

.

A very important point is that the above structure is complete, that is, all orthog-
onal systems with filters of length 2K can be generated in this fashion. The lattice
factorization was given in Figure 3.6.

3.A.2 Multichannel Factorizations

Here, we will present a number of ways in which one can design N -channel or-
thogonal systems. Some of the results are based on lossless factorizations (for
factorizations of unitary matrices, see Appendix 2.B in Chapter 2).

Givens Factorization We have seen in Appendix 3.A.1 a lattice factorization for
the two-channel case. Besides delays, the key building blocks were 2 × 2 rotation
matrices, also called Givens rotations. An extension of that construction, holds in
the N -channel case as well. More precisely, a real lossless FIR matrix L(z) of size
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Figure 3.22 Factorization of a lossless matrix using Givens rotations (after
[306]). (a) General lossless transfer matrix H(z) of size N×N. (b) Constrained
orthogonal matrix for U1, . . . , UK−1, where each cross represents a rotation as
in (3.A.7).

N ×N can be written as [306]

L(z) = U0

[
K−1∏

i=1

Di(z)U i

]

, (3.A.8)

where U 1 . . .UK−1 are special orthogonal matrices as given in Figure 3.22(b) (each
cross is a rotation as in (3.A.7)). U0 is a general orthogonal matrix as given in
Figure 2.13 with n = N , and D(z) are delay matrices of the form

D(z) = diag(z−1 1 1 . . . 1).

Such a general, real, lossless, FIR, N -input N -output system, is shown in Fig-
ure 3.22(a). Figure 3.22(b) indicates the form of the matrices U 1 . . .UK−1. Note
that U0 is characterized by

(N
2

)
rotations [202] while the other orthogonal matrices
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are characterized by N − 1 rotations. Thus, a real FIR lossless system of degree
K − 1 has the following number of free parameters:

p = (K − 1)(N − 1) +

(
N

2

)

.

It is clear that these structures are lossless, and the completeness is demonstrated
in [85]. In order to obtain good filters, one can optimize the various angles in
the rotation matrices, derive the filters corresponding to the resulting polyphase
matrix, and evaluate an objective cost function measuring the quality of the filters
(such as the stopband energy).

Householder Factorization An alternative representation of FIR lossless sys-
tems based on products of Householder matrices, which turns out to be more con-
venient for optimization, was presented in [312]. There it is shown that an N ×N
causal FIR system of degree K − 1 is lossless if and only if it can be written in the
form

LN−1(z) = V K−1(z) · V K−2(z) · · ·V 1(z)L0,

where L0 is a general N ×N unitary matrix (see Appendix 2.B) and

V k(z) = (I − (1− z−1)vkv
∗
k),

with vk a size-N vector of unit norm (recall that superscript ∗ denotes hermitian
conjugation). It is easy to verify that V k(z) is lossless, since

V T
k∗(z

−1)V k(z) = (I − (1− z)vkv∗
k) · (I − (1− z−1)vkv

∗
k)

= I + vkv
∗
k((z − 1) + (z−1 − 1) + (1− z)(1− z−1))

= I,

where we used vkv
∗
kvkv

∗
k = vkv

∗
k, and for the completeness issues, we refer to

[312]. Note that these structures can be extended to the IIR case as well, sim-
ply by replacing the delay element z−1 with a first-order scalar allpass section
(1 − az−1)/(z−1 − a∗). Again, it is easy to verify that such structures are lossless
(assuming |a| > 1) and completeness can be demonstrated similarly to the FIR
case.

Orthogonal and Linear Phase Factorizations Recently, a factorization for a
large class of paraunitary, linear phase systems has been developed [275]. It is a
complete factorization for linear phase paraunitary filter banks with an even number
of channels N (N > 2) where the polyphase matrix is described by the following
[321] (see also (3.2.69))

Hp(z) = z−La Hp(z
−1) J , (3.A.9)
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where a is the diagonal matrix of symmetries (+1 for a symmetric filter and −1
for an antisymmetric filter), L is the filter length and J is an antidiagonal matrix.
Note that there exist linear phase systems which cannot be described by (3.A.9)
but many useful solutions do satisfy it. The cascade is given by

Hp(z) = S

[

P

1∏

i=K−1

W

(
U 2i

U2i+1

)

WD(z)

]

×W

(
U0

U1

)

WP ,

where

S =
1√
2

(
S0

S1

)(
I J

I −J

)

,

is a unitary matrix. S0, S1 are unitary matrices of size N/2,

P =

(
I

J

)

, W =
1√
2

(
I I

I −I

)

, D(z) =

(
I

z−1I

)

,

and U i are all size-(N/2) unitary matrices. Note that all subblocks in the above
matrices are of size N/2. In the same paper [275], the authors develop a cascade
structure for filter banks with an odd number of channels as well.

State-Space Description It is interesting to consider the lossless property in
state-space description. If we call v[n] the state vector, then a state space descrip-
tion is given by [150]

v[n+ 1] = Av[n] +Bx[n],

y[n] = Cv[n] +Dx[n],

where A is of size d × d (d ≥ K − 1, the degree of the system), D of size M ×N ,
C of size M × d and B of size d ×N . A minimal realization satisfies d = K − 1.
The transfer function matrix is equal to

H(z) = D +C(zI −A)−1B,

and the impulse response is given by

[D,CB,CAB,CA2B, . . .].

The fundamental nature of the losslessness property appears in the following result
[304, 309]: A stable transfer matrix H(z) is lossless if and only if there exists a
minimal realization such that

R =

(
A B

C D

)

,
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is unitary. This gives another way to parametrize lossless transfer function matrices.
In particular, H(z) will be FIR if A is lower triangular with a zero diagonal, and
thus, it is sufficient to find orthogonal matrices with an upper right triangular corner
of size K−1 with only zeros to find all lossless transfer matrices of a given size and
degree [85].

APPENDIX 3.B S AMPLING IN MULTIPLE DIMENSIONS AND MULTIRATE OPERATIONS

Sampling in multiple dimensions is represented by a lattice, defined as the set
of all linear combinations of n basis vectors a1,a2, . . . ,an, with integer coefficients
[42, 86], that is, a lattice is the set of all vectors generated by Dk, k ∈ Z

n , where
D is the matrix characterizing the sampling process. Note that D is not unique
for a given sampling pattern and that two matrices representing the same sampling
process are related by a linear transformation represented by a unimodular matrix
[42]. We will call input and output lattice the set of points reached by k and Dk,
respectively. The input lattice is often Z

n (like above) but need not be.

A separable lattice is a lattice that can be represented by a diagonal matrix
and it will appear when one-dimensional systems are used in a separable fashion
along each dimension. The unit cell is a set of points such that the union of copies
of the output lattice shifted to all points in the cell yields the input lattice. The
number of input lattice points contained in the unit cell represents the reciprocal
of the sampling density and is given by N = det(D). An important unit cell is
the fundamental parallelepiped Uc (the parallelepiped formed by n basis vectors).
In what follows UT

⌋ will denote the fundamental parallelepiped of the transposed
lattice. Shifting the origin of the output lattice to any of the points of the input
lattice yields a coset. Clearly there are exactly N distinct cosets obtained by shifting
the origin of the output lattice to all of the points of the parallelepiped. The union
of all cosets for a given lattice yields the input lattice.

Another important notion is that of the reciprocal lattice [42, 86]. This lattice
is actually the Fourier transform of the original lattice, and its points represent the
points of replicated spectrums in the frequency domain. If the matrix corresponding
to the reciprocal lattice is denoted by Dr, then DT

r D = I. Observe that the
determinant of the matrix D represents the hypervolume of any unit cell of the
corresponding lattice, as well as the reciprocal of the sampling density. One of the
possible unit cells is the Voronoi cell which is actually the set of points closer to the
origin than to any other lattice point. The meaning of the unit cell in the frequency
domain is extremely important since if the signal to be sampled is bandlimited to
that cell, no overlapping of spectrums will occur and the signal can be reconstructed
from its samples.

Let us now examine multidimensional counterparts of some operations involving
sampling that are going to be used later. First, downsampling will mean that the
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points on the sampling lattice are kept while all the others are discarded. The
time- and Fourier-domain expressions for the output of a downsampler are given
by [86, 325]

y[n] = x[Dn],

Y (ω) =
1

N

∑

k∈Utc

X((Dt)−i(ω − 2πk)),

where N = det(D), ω is an n-dimensional real vector, and n,k are n-dimensional
integer vectors.

Next consider upsampling, that is, the process that maps a signal on the input
lattice to another one that is nonzero only at the points of the sampling lattice

y[n] =

{
x[D−1n] if n = Dk,

0 otherwise,

Y (ω) = X(Dtω).

Let us finish this discussion with examples often encountered in practice.

Example 3.17 Separable Case: Sampling by 2 in Two Dimensions

Let us start with the separable case with sampling by 2 in each of the two dimensions. The
sampling process is then represented by the following matrix:

DS =

(

2 0
0 2

)

= 2I. (3.B.1)

The unit cell consists of the following points:

(n1, n2) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}.

In z-domain, these correspond to

{1, z−1
1 , z−1

2 , (z1z2)
−1}.

Its Voronoi cell is a square and the corresponding critically sampled filter bank will have
N = det(D) = 4 channels. This is the case most often used in practice in image coding,
since it represents separable one-dimensional treatment of an image. Looking at it this way
(in terms of lattices), however, will give us the additional freedom to design nonseparable
filters even if sampling is separable. The expression for upsampling in this case is

Y (ω1, ω2) = X(2ω1, 2ω2),

while downsampling followed by upsampling gives

Y (ω1, ω2) =
1

4
(X(ω1, ω2) +X(ω1 + π,ω2) +X(ω1, ω2 + π) +X(ω1 + π, ω2 + π)),

that is, samples where both n, and n2 are even are kept, while all others are put to zero.
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Example 3.18 Quincunx Sampling

Consider next the quincunx case, that is, the simplest multidimensional sampling structure
that is nonseparable. It is generated using, for example,

DQ =

(

1 1
1 −1

)

. (3.B.2)

Since its determinant equals 2, the corresponding critically sampled filter bank will have two
channels. The Voronoi cell for this lattice is a diamond (tilted square). Since the reciprocal
lattice for this case is again quincunx, its Voronoi cell will have the same diamond shape.
This fact has been used in some image and video coding schemes [12, 320] since, if restricted
to this region, (a) the spectrums of the signal and its repeated occurrences that appear due
to sampling will not overlap and (b) due to the fact that the human eye is less sensitive
to resolution along diagonals, it is more appropriate for the lowpass filter to have diagonal
cutoff. Note that the two vectors belonging to the unit cell are

n0 =

(

0
0

)

, n1 =

(

1
0

)

,

while their z-domain counterparts are 1 and z−1
1 and are the same for the unit cell of the

transposed lattice. Shifting the origin of the quincunx lattice to points determined by the
unit cell vectors yields the two cosets for this lattice. Obviously, their union gives back the
original lattice. Write now the expression for the output of an upsampler in Fourier domain

Y (ω1, ω2) = X(ω1 + ω2, ω1 − ω2).

Similarly, the output of a downsampler followed by an upsampler can be expressed as

Y (ω1, ω2) =
1

2
(X(ω1, ω2) +X(ω1 + π, ω2 + π)).

It is easy to see that all the samples at locations where (n1 + n2) is even are kept, while
where (n1 + n2) is odd, they are put to zero.
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PROBLEMS

3.1 Orthogonality and completeness of the sinc basis (Section 3.1.3):

(a) Prove the orthogonality relations (3.1.27) and (3.1.28).

(b) Prove that the set {ϕk} given in (3.1.24) is complete in l2(Z). Hint: Use the same
argument as in Proposition 3.1. Take first the even terms and find the Fourier trans-
form of 〈ϕ2k[n], x[n]〉 = 0. Do the same for the odd terms. Combining the two, you
should get ‖x‖ = 0 violating the assumption and proving completeness.

3.2 Show that g0[n] = 1/
√
2 sin((π/2)n)/((π/2)n) and g1[n] = (−1)ng0[−n] and their even

translates do not form an orthogonal basis for l2(Z), that is, the shift by 1 in (3.1.24) is
necessary for completeness. Hint: Show incompleteness by finding a counterexample based
on sin((π/2)n) with proper normalization.

3.3 Show that Proposition 3.3 does not hold in the nonorthogonal case, that is, there exist
nonorthogonal time-invariant expansions with frequency selectivity.

3.4 Prove the equivalences of (a)–(e) in Theorem 3.7.

3.5 Based on the fact that in an orthogonal FIR filter bank, the autocorrelation of the lowpass
filter satisfies P (z) + P (−z) = 2, show that the length of the filter has to be even.

3.6 For A(z) = (1+z)3(1+z−1)3, verify that B(z) = 1/256(3z2−18z+38−18z−1+3z−2) is the
solution such that P (z) = A(z) B(z) is valid. If you have access to adequate software (for
example, Matlab), do the spectral factorization (obviously, only B(z) needs to be factored).
Give the filters of this orthogonal filter bank.

3.7 Prove the equivalences (a)–(e) in Theorem 3.8.

3.8 Prove the three statements on the structure of linear phase solutions given in Proposition
3.11. Hint: Use P (z) = H0(z) G0(z) = z−kH0(z) H1(−z), and determine when it is valid.

3.9 Show that, when the filters H0(z) and H1(z) are of the same length and linear phase, the
linear phase testing condition given by (3.2.69), holds. Hint: Find out the form of the
polyphase components of each linear phase filter.

3.10 In Proposition 3.12, it was shown that there are no real symmetric/antisymmetric orthogonal
FIR filter banks.

(a) Show that if the filters can be complex valued, then solutions exist.

(b) For length-6 filters, find the solution with a maximum numbers of zeros at ω = π.
Hint: Refactor the P (z) that leads to the D3 filter into complex-valued symmet-
ric/antisymmetric filters.

3.11 Spectral factorization method for two-channel filter banks: Consider the factorization of P (z)
in order to obtain orthogonal or biorthogonal filter banks.

(a) Take
P (z) = −1/4z3 + 1/2z + 1 + 1/2z−1 − 1/4z−3.

Build an orthogonal filter bank based on this P (z). If the function is not positive on
the unit circle, apply an adequate correction (see Smith-Barnwell method in Section
3.2.3).
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(b) Alternatively, compute a linear phase factorization of P (z). In particular, choose
H0(z) = z + 1 + z−1. Give the other filters in this biorthogonal filter bank.

(c) Assume now that a particular P (z) was designed using the Parks-McClellan algorithm
(which leads to equiripple pass and stopbands). Show that if P (z) is not positive on
the unit circle, then the correction to make it greater or equal to zero places all
stopband zeros on the unit circle.

3.12 Using Proposition 3.13, prove that the filterH0(z) = (1+z−1)N has always a complementary
filter.

3.13 Prove that in the orthogonal lattice structure, the sum of angles has to be equal to π/4
or 5π/4 in order to have one zero at ω = π in H0(e

jω). Hint: There are several ways to
prove this, but an intuitive one is to consider the sequence x[n] = (−1)n at the input, or,
to consider z-transforms at z = ejω = −1. See also Example 3.3.

3.14 Interpolation followed by decimation: Given an input x[n], consider upsampling by 2, fol-
lowed by interpolation with a filter having z-transform H(z) for magnification of the signal.
Then, to recover the original signal size, apply filtering by a decimation filter G(z) followed
by downsampling by 2, in order to obtain a reconstruction x̂[n].

(a) What does the product filter P (z) = H(z) · G(z) have to satisfy in order for x̃[n] to
be a perfect replica of x[n] (possibly with a shift).

(b) Given an interpolation filter H(z), what condition does it have to satisfy so that one
can find a decimation filter G(z) in order to achieve perfect reconstruction. Hint:
This is similar to the complementary filter problem in Section 3.2.3.

(c) For the following two filters,

H ′(z) = 1 + z−1 + z−2 + z−3, H ′′(z) = 1 + z−1 + z−2 + z−3 + z−4,

give filters G′(z) and G′′(z) so that perfect reconstruction is achieved (if possible, give
shortest such filter, if not, say why).

3.15 Prove the orthogonality relations (3.3.16) and (3.3.17) for an octave-band filter bank, using
similar arguments as in the proof of (3.3.15).

3.16 Consider tree-structured orthogonal filter banks as discussed in Example 3.10, and in par-
ticular the full tree of depth 2.

(a) Assume ideal sinc filters, and give the frequency response magnitude of G
(2)
i0 (ejω), i =

0, . . . , 3. Note that this is not the natural ordering one would expect.

(b) Now take the Haar filters, and give g
(2)
i [n], i = 0, . . . , 3. These are the discrete-time

Walsh-Hadamard functions of length 4.

(c) Given that {g0[n], g1[n]} is an orthogonal pair, prove orthogonality for any of the
equivalent filters with respect to shifts by 4.

3.17 In the general case of a full-grown binary tree of depth J , define the equivalent filters such
that their indexes increase as the center frequency increases. In Example 3.10, it would
mean interchanging G

(2)
3 with G

(2)
2 (see (3.3.23)).
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3.18 Show that in a filter bank with linear phase filters, the iterated filters are also linear phase.
In particular, consider the case where h0[n] and h1[n] are of even length, symmetric and
antisymmetric respectively. Consider a four-channel bank, with Ha(z) = H0(z)H0(z

2),
Hb(z) = H0(z)H1(z

2), Hc(z) = H1(z)H0(z
2), and Hd(z) = H1(z)H1(z

2). What are the
lengths and symmetries of these four filters?

3.19 Consider a general perfect reconstruction filter bank (not necessary orthogonal). Build a
tree-structured filter bank. Give and prove the biorthogonality relations for the equivalent
impulse responses of the analysis and synthesis filters. For simplicity, consider a full tree of
depth 2 rather than an arbitrary tree. Hint: The method is similar to the orthogonal case,
except that now analysis and synthesis filters are involved.

3.20 Prove that the number of wavelet packet bases generated from a depth-J binary tree is
equal to (3.3.25).

3.21 Prove that the perfect reconstruction condition given in terms of the modulation matrix for
the N-channel case, is equivalent to the system being biorthogonal. Hint: Mimic the proof
for the two-channel case given in Section 3.2.1.

3.22 Give the relationship between Gp(z) and Gm(z), which is similar to (3.4.9), as well as
between Hp(z) and Hm(z) and this in the general N-channel case.

3.23 Consider a modulated filter bank with filters H0(z) = H(z), H1(z) = H(W3z), and H2(z) =
H(W 2

3 z). The modulation matrix Hm(z) is circulant. (Note that W3 = e−j2π/3).

(a) Show how to diagonalize Hm(z).

(b) Give the form of the determinant det(Hm(z)).

(c) Relate the above to the special form of Hp(z).

3.24 Cosine modulated filter banks:

(a) Prove that (3.4.5–3.4.6) hold for the cosine modulated filter bank with filters given in
(3.4.18) and hpr[n] = 1, n = 0, . . . , 2N − 1.

(b) Prove that in this case (3.4.23) holds as well.

Hint: Show that left and right tails are symmetric/antisymmetric, and thus the tails are
orthogonal.

3.25 Orthogonal pyramid: Consider a pyramid decomposition as discussed in Section 3.5.2 and
shown in Figure 3.17. Now assume that h[n] is an “orthogonal” filter, that is, 〈h[n], h[n −
2l]〉 = δl. Perfect reconstruction is achieved by upsampling the coarse version, filtering it
by h̃, and adding it to the difference signal.

(a) Analyze the above system in time domain and in z-transform domain, and show
perfect reconstruction.

(b) Take h[n] = (1/
√
2)[1, 1]. Show that y1[n] can be filtered by (1/

√
2)[1, −1] and

downsampled by 2 while still allowing perfect reconstruction.

(c) Show that (b) is equivalent to a two-channel perfect reconstruction filter bank with
filters h0[n] = (1/

√
2)[1, 1] and h1[n] = (1/

√
2)[1, −1].
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(d) Show that (b) and (c) are true for general orthogonal lowpass filters, that is, y1[n] can
be filtered by g[n] = (−1)nh[−n+ L− 1] and downsampled by 2, and reconstruction
is still perfect using an appropriate filter bank.

3.26 Verify Parseval’s formula (3.5.3) in the tight frame case given in Section 3.5.1.

3.27 Consider a two-dimensional two-channel filter bank with quincunx downsampling. Assume
that H0(z1, z2) and H1(z1, z2) satisfy (3.6.4–3.6.5). Show that their impulse responses with
shifts on a quincunx lattice form an orthonormal basis for l2(Z

2).

3.28 Linear phase diamond-shaped quincunx filters: We want to construct a perfect reconstruc-
tion linear phase filter bank for quincunx sampling and the matrix

D =

(

1 1
1 −1

)

.

To that end, we start with the following filters h0[n1, n2] and h1[n1, n2]:

h0[n1, n2] =





b
1 a 1

b



 ,

h1[n1, n2] =











1
b+ c

a
a b+ c

a
bc
a

c d c bc
a

b+ c
a

a b+ c
a

1











,

where the origin is where the leftmost coefficient is.

(a) Using the sampling matrix above, identify the polyphase components and verify that
perfect FIR reconstruction is possible (the determinant of the polyphase matrix has
to be a monomial).

(b) Instead of only having top-bottom, left-right symmetry, impose circular symmetry on
the filters. What are b, c? If a = −4, d = −28, what type of filters do we obtain
(lowpass/highpass)?



4

Series Expansions Using Wavelets
and Modulated Bases

“All this time, the guard was looking at her,
first through a telescope,
then through a microscope,
and then through an opera glass”

— Lewis Carroll, Through the Looking Glass

Series expansions of continuous-time signals of functions go back at least to
Fourier’s original expansion of periodic functions. The idea of representing a signal
as a sum of elementary basis functions or equivalently, to find orthonormal bases
for certain function spaces, is very powerful. However, classic approaches have lim-
itations, in particular, there are no “good” local Fourier series that have both good
time and frequency localization.

An alternative is the Haar basis where, in addition to time shifting, one uses
scaling instead of modulation in order to obtain an orthonormal basis for L2(R)
[126]. This interesting construction was somewhat of a curiosity (together with
a few other special constructions) until wavelet bases were found in the 1980’s
[71, 180, 194, 21, 22, 175, 283]. Not only are there “good” orthonormal bases, but
there also exist efficient algorithms to compute the wavelet coefficients. This is due
to a fundamental relation between the continuous-time wavelet series and a set of
(discrete-time) sequences. These correspond to a discrete-time filter bank which
can be used, under certain conditions, to compute the wavelet series expansion.
These relations follow from multiresolution analysis; a framework for analyzing
wavelet bases [180, 194]. The emphasis of this chapter is on the construction of
wavelet series. We also discuss local Fourier series and the construction of local
cosine bases, which are “good” modulated bases [61]. Note that in this chapter we

209
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construct bases for L2(R); however, these bases have much stronger characteristics
as they are actually unconditional bases for Lp spaces, 1 < p <∞ [73].

The development of wavelet orthonormal bases has been quite explosive in the
last decade. While the initial work focused on the continuous wavelet transform
(see Chapter 5), the discovery of orthonormal bases by Daubechies [71], Meyer
[194], Battle [21, 22], Lemarié [175], Stromberg [283], and others, lead to a wealth
of subsequent work.

Compactly supported wavelets, following Daubechies’ construction, are based
on discrete-time filter banks, and thus many filter banks studied in Chapter 3
can lead to wavelets. We list below, without attempting to be exhaustive, a few
such constructions. Cohen, Daubechies and Feaveau [58] and Vetterli and Her-
ley [318, 319] considered biorthogonal wavelet bases. Bases with more than one
wavelet were studied by Zou and Tewfik [343, 344], Steffen, Heller, Gopinath and
Burrus [277], and Soman, Vaidyanathan and Nguyen [275], among others. Mul-
tidimensional, nonseparable wavelets following from filter banks were constructed
by Cohen and Daubechies [57] and Kovačević and Vetterli [163]. Recursive filter
banks leading to wavelets with exponential decay were derived by Herley and Vet-
terli [133, 130]. Rioul studied regularity of iterated filter banks [239], complexity of
wavelet decomposition algorithms [245], and design of “good” wavelet filters [246].
More constructions relating filter banks and wavelets can be found, for example, in
the work of Akansu and Haddad [3, 4], Blu [33], Cohen [55], Evangelista [96, 95],
Gopinath [115], Herley [130], Lawton [170, 171], Rioul [240, 242, 243, 244] and
Soman and Vaidyanathan [274].

The study of the regularity of the iterated filter that leads to wavelets was done
by Daubechies and Lagarias [74, 75], Cohen [55], and Rioul [239] and is related to
work on recursive subdivision schemes which was done independently of wavelets
(see [45, 80, 87, 92]). The regularity condition and approximation property occur-
ring in wavelets are related to the Strang-Fix condition first derived in the context
of finite-element methods [282].

Direct wavelet constructions followed the work of Meyer [194], Battle [21, 22]
and Lemarié [175]. They rely on the multiresolution framework established by
Mallat [181, 179, 180] and Meyer [194]. In particular, the case of wavelets related
to splines was studied by Chui [52, 49, 50] and by Aldroubi and Unser [7, 296, 297].
The extension of the wavelet construction for rational rather than integer dilation
factors was done by Auscher [16] and Blu [33]. Approximation properties of wavelet
expansions have been studied by Donoho [83], and DeVore and Lucier [82]. These
results have interesting consequences for compression.

The computation of the wavelet series coefficients using filter banks was studied
by Mallat [181, 179] and Shensa [261], among others. Wavelet sampling theorems
are given by Aldroubi and Unser [6], Walter [328] and Xia and Zhang [340]. Local
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cosine bases were derived by Coifman and Meyer [61] (see also [17]). The wave-
let framework has also proven useful in the context of analysis and synthesis of
stochastic processes, see for example [20, 178, 338, 339].

The material in this chapter is covered in more depth in Daubechies’ book [73]
to which we refer for more details. Our presentation is less formal and based mostly
on signal processing concepts.

The outline of the chapter is as follows: First, we discuss series expansions in
general and the need for structured series expansion with good time and frequency
localization. In particular, the local Fourier series is contrasted with the Haar
expansion and a proof that the Haar system is an orthonormal basis for L2(R) is
given. In Section 4.2, we introduce multiresolution analysis and show how a wavelet
basis can be constructed. As an example, the sinc (or Littlewood-Paley) wavelet is
derived. Section 4.3 gives wavelet bases constructions in the Fourier domain, using
the Meyer and Battle-Lemarié wavelets as important examples. Section 4.4 gives
the construction of wavelets based on iterated filter banks. The regularity (condi-
tions under which filter banks generate wavelet bases) of the discrete-time filters is
studied. In particular, the Daubechies’ family of compactly supported wavelets is
given. Section 4.5 discusses some of the properties of orthonormal wavelet series
expansions as well as the computation of the expansion coefficients. Variations on
the theme of wavelets from filter banks are explored in Section 4.6, where biorthog-
onal bases, wavelets based on IIR filter banks and wavelets with integer dilation
factors greater than 2 are given. Section 4.7 discusses multidimensional wavelets
obtained from multidimensional filter banks. Finally, Section 4.8 gives an interest-
ing alternative to local Fourier series in the form of local cosine bases which have
better time-frequency behavior than their Fourier counterparts.

4.1 DEFINITION OF THE PROBLEM

4.1.1 Series Expansions of Continuous-Time Signals

In the last chapter orthonormal bases were built for discrete-time sequences, that is,
sets of orthogonal sequences {ϕk[n]}k∈Z were found such that any signal x[n] ∈ l2(Z)
could be written as

x[n] =
∞∑

k=−∞
〈ϕk[m], x[m]〉 ϕk[n],

where

〈ϕk[m], x[m]〉 =

∞∑

m=−∞
ϕ∗
k[m] x[m].

In this chapter the aim is to represent continuous-time functions in terms of a
series expansion. We intend to find sets of orthonormal continuous-time functions
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{ϕk(t)} such that signals f(t) belonging to a certain class (for example, L2(R)) can
be expressed as

f(t) =
∞∑

k=−∞
〈ϕk(u), f(u)〉 ϕk(t),

where

〈ϕk(u), f(u)〉 =

∫ ∞

−∞
ϕ∗
k(u) f(u) du.

In other words, f(t) can be written as the sum of its orthogonal projections onto
the basis vectors ϕk(t). Beside having to meet orthonormality constraints, or

〈ϕk(u), ϕl(u)〉 = δ[k − l],

the set {ϕk(t)} has also to be complete. Its span has to cover the space of functions
to be represented.

We start by briefly reviewing two standard series expansions that were studied
in Section 2.4. The better-known series expansion is certainly the Fourier series.
A periodic function, f(t+ nT ) = f(t), can be written as a linear combination of
sines and cosines or complex exponentials, as

f(t) =

∞∑

k=−∞
F [k] ej(2πkt)/T , (4.1.1)

where the F [k]’s are the Fourier coefficients obtained as

F [k] =
1

T

∫ T/2

−T/2
e−j(2πkt)/T f(t) dt, (4.1.2)

that is, the Fourier transform of one period evaluated at integer multiples of ω0 =
2π/T . It is easy to see that the set of functions {ej(2πkt)/T , k ∈ Z, t ∈ [−T/2, T/2]}
is an orthogonal set, that is,

〈ej(2πkt)/T , ej(2πlt)/T 〉[−T/2,T/2] = Tδ[k − l].

Since the set is also complete, it is an orthonormal basis for functions belonging to
L2([−T/2, T/2]) (up to a scale factor of 1/

√
T ).

The other standard series expansion is that of bandlimited signals (see also
Section 2.4.5). Provided that |X(ω)| = 0 for |ω| ≥ ωs/2 = π/T , then sampling
x(t) by multiplying with Dirac impulses at integer multiples of T leads to the
function xs(t) given by

xs(t) =

∞∑

n=−∞
x(nT ) δ(t− nT ).
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The Fourier transform of xs(t) is periodic with period ωs and is given by (see Section
2.4.5)

Xs(ω) =
1

T

∞∑

k=−∞
X(ω − kωs). (4.1.3)

From (4.1.3) it follows that the Fourier transforms of x(t) and xs(t) coincide over the
interval (−ωs/2, ωs/2) (up to a scale factor), that is, X(ω) = TXs(ω), |ω| < ωs/2.
Thus, to reconstruct the original signal X(ω), we have to window the sampled signal
spectrum Xs(ω), or X(ω) = G(ω)Xs(ω), where G(ω) is the window function

G(ω) =

{
T |ω| < ωs/2,
0 otherwise.

Its inverse Fourier transform,

g(t) = sincT (t) =
sin(πt/T )

πt/T
, (4.1.4)

is called the sinc function.1 In time domain, we convolve the sampled function xs(t)
with the window function g(t) to recover x(t):

x(t) = xs(t) ∗ g(t) =

∞∑

n=−∞
x(nT ) sincT (t− nT ). (4.1.5)

This is usually referred to as the sampling theorem (see Section 2.4.5). Note that
the interpolation functions {sincT (t− nT )}n∈Z, form an orthogonal set, that is

〈sincT (t−mT ), sincT (t− nT )〉 = T δ[m− n].

Then, since x(t) is bandlimited, the process of sampling at times nT can be written
as

x(nT ) =
1

T
〈sincT (u− nT ), x(u)〉,

or convolving x(t) with sincT (−t) and sampling the resulting function at times nT .
Thus, (4.1.5) is an expansion of a signal into an orthogonal basis

x(t) =
1

T

∞∑

n=−∞
〈sincT (u− nT ), x(u)〉 sincT (t− nT ). (4.1.6)

Moreover, if a signal is not bandlimited, then (4.1.6) performs an orthogonal pro-
jection onto the space of signals bandlimited to (−ωs/2, ωs/2) (see Section 2.4.5).

1The standard definition from the digital signal processing literature is used here, even if it
would make sense to divide the sinc by 1/

√
T to make it of unit norm.
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4.1.2 Time and Frequency Resolution of Expansions

Having seen two possible series expansions (Fourier series and sinc expansion), let us
discuss some of their properties. First, both cases deal with a limited signal space —
periodic or bandlimited. In what follows, we will be interested in representing more
general signals. Then, the basis functions, while having closed-form expressions,
have poor decay in time (no decay in the Fourier series case, 1/t decay in the sinc
case). Local effects spread over large regions of the transform domain. This is often
undesirable if one wants to detect some local disturbance in a signal which is a
classic task in nonstationary signal analysis.

In this chapter, we construct alternative series expansions, mainly based on
wavelets. But first, let us list a few desirable features of basis functions [238]:

(a) Simple characterization.

(b) Desirable localization properties in both time and frequency, that is, appro-
priate decay in both domains.

(c) Invariance under certain elementary operations (for example, shifts in time).

(d) Smoothness properties (continuity, differentiability).

(e) Moment properties (zero moments, see Section 4.5).

However, some of the above requirements conflict with each other and ultimately,
the application at hand will greatly influence the choice of the basis.

In addition, it is often desirable to look at a signal at different resolutions, that
is, both globally and locally. This feature is missing in classical Fourier analysis.
Such amultiresolution approach is not only important in many applications (ranging
from signal compression to image understanding), but is also a powerful theoretical
framework for the construction and analysis of wavelet bases as alternatives to
Fourier bases.

In order to satisfy some of the above requirements, let us first review how one
can modify Fourier analysis so that local signal behavior in time can be seen even
in the transform domain. We thus reconsider the short-time Fourier (STFT) or
Gabor transform introduced in Section 2.6. The idea is to window the signal (that
is, multiply the signal by an appropriate windowing function centered around the
point of interest), and then take its Fourier transform. To analyze the complete
signal, one simply shifts the window over the whole time range in sufficiently small
steps so as to have substantial overlap between adjacent windows. This is a very
redundant representation (the signal has been mapped into an infinite set of Fourier
transforms) and thus it can be sampled. This scheme will be further analyzed in
Section 5.3.
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As an alternative, consider a “local Fourier series” obtained as follows: Starting
with an infinite and arbitrary signal, divide it into pieces of length T and expand
each piece in terms of a Fourier series. Note that at the boundary between two
intervals the expansion will in general be incorrect because the periodization cre-
ates a discontinuity. However, this error has zero energy, and therefore this simple
scheme is a possible orthogonal expansion which has both a frequency index (cor-
responding to multiples of ω0 = 2π/T ) and a time index (corresponding to the
interval number, or the multiple of the interval length T ). That is, we can expand
x(t) as (following (4.1.1), (4.1.2))

x̂(t) =

∞∑

m=−∞

∞∑

n=−∞
〈ϕm,n(u), x(u)〉 ϕm,n(t), (4.1.7)

where

ϕm,n(u) =

{
1/
√
Tej2πn(u−mT )/T u ∈ [mT − T/2,mT + T/2),

0 otherwise.

The 1/
√
T factor makes the basis functions of unit norm. The expansion x̂(t)

is equal to x(t) almost everywhere (except at t = (m + 1/2)T ) and thus, the L2

norm of the difference x(t)− x̂(t) is equal to zero. We call this transform a piecewise
Fourier series.

Consider what has been achieved. The expansion in (4.1.7) is valid for arbitrary
functions. Then, instead of an integral expansion as in the Fourier transform, we
have a double-sum expansion, and the set of basis functions is orthonormal and
complete. Time locality is now achieved and there is some frequency localization
(not very good, however, because the basis functions are rectangular windowed
sinusoids and therefore discontinuous; their Fourier transforms decay only as 1/ω).
In terms of time-frequency resolution, we have the rectangular tiling of the time-
frequency plane that is typical of the short-time Fourier transform (as was shown
in Figure 2.12(b)).

However, there is a price to be paid. The size of the interval T (that is, the
location of the boundaries) is arbitrary and leads to problems. The reconstruction
x̂(t) has singular points even if x(t) is continuous and the transform of x(t) can have
infinitely many “high frequency” components even if x(t) is a simple sinusoid (for
example, if its period Ts is such that Ts/T is irrational). Therefore, the expansion
will converge slowly to the function. In other words, if one wants to approximate
the signal with a truncated series, the quality of the approximation will depend on
the choice of T . In particular, the convergence at points of discontinuity (created
by periodization) is poor due to the Gibbs phenomenon [218]. Finally, a shift of
the signal can lead to completely different transform coefficients and the transform
is thus time-variant.
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In short, we have gained the flexibility of a double-indexed transform indicating
time and frequency, but we have lost time invariance and convergence is sometimes
poor. Note that some of these problems are inherent to local Fourier bases and can
be solved with local cosine bases discussed in Section 4.8.

4.1.3 Haar Expansion

We explore the Haar expansion because it is the simplest example of a wavelet
expansion, yet it contains all the ingredients of such constructions. It also addresses
some of the problems we mentioned for the local Fourier series. The arbitrariness
of a single window of fixed length T , as discussed, is avoided by having a variable
size window. Time invariance is not obtained (actually, requiring locality in time
implies time variance). The Haar wavelet, or prototype basis function, has finite
support in time and 1/ω decay in frequency. Note that it has its dual in the so-
called sinc wavelet (discussed in Section 4.2) which has finite support in frequency
and 1/t decay in time. We will see that the Haar and sinc wavelets are two extreme
examples and that all the other examples of interest will have a behavior that lies
in between.

The Haar wavelet is defined as

ψ(t) =







1 0 ≤ t < 1
2 ,

−1 1
2 ≤ t < 1,

0 otherwise,
(4.1.8)

and the whole set of basis functions is obtained by dilation and translation as

ψm,n(t) = 2−m/2ψ(2−mt− n), m, n ∈ Z. (4.1.9)

We call m the scale factor, since ψm,n(t) is of length 2m, while n is called the shift
factor, and the shift is scale dependent (ψm,n(t) is shifted by 2mn). The normal-
ization factor 2−m/2 makes ψm,n(t) of unit norm. The Haar wavelet is shown in
Figure 4.1(c) (part (a) shows the scaling function which will be introduced shortly).
A few of the basis functions are shown in Figure 4.2(a). It is easy to see that the set
is orthonormal. At a given scale, ψm,n(t) and ψm,n′(t) have no common support.
Across scales, even if there is common support, the larger basis function is constant
over the support of the shorter one. Therefore, the inner product amounts to the
average of the shorter one which is zero (see Figure 4.2(b)). Therefore,

〈ψm,n(t), ψm′,n′(t)〉 = δ[m−m′] δ[n − n′].

The advantage of these basis functions is that they are well localized in time (the
support is finite). Actually, as m → −∞, they are arbitrarily sharp in time, since
the length goes to zero. That is, a discontinuity (for example, a step in a function)
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Figure 4.1 The Haar scaling function and wavelet, given in Table 4.1. (a) The
scaling function ϕ(t). (b) Fourier transform magnitude |Φ(ω)|. (c) Wavelet
ψ(t). (d) Fourier transform magnitude |Ψ(ω)|.

will be localized with arbitrary precision. However, the frequency localization is not
very good since the Fourier transform of (4.1.8) decays only as 1/ω when ω →∞.
The basis functions are not smooth, since they are not even continuous.

One of the fundamental characteristics of the wavelet type expansions which we
will discuss in more detail later is that they are series expansions with a double
sum. One is for shifts, the other is for scales and there is a trade-off between time
and frequency resolutions. This resolution is what differentiates this double-sum
expansion from the one given in (4.1.7). Now, long basis functions (for m large and
positive) are sharp in frequency (with corresponding loss of time resolution), while
short basis functions (for negative m with large absolute value) are sharp in time.
Conceptually, we obtain a tiling of the time-frequency plane as was shown in Figure
2.12(d), that is, a dyadic tiling rather than the rectangular tiling of the short-time
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Figure 4.2 The Haar basis. (a) A few of the Haar basis functions. (b) Haar
wavelets are orthogonal across scales since the inner product is equal to the
average of the shorter one.

Fourier transform shown in Figure 2.12(b).

In what follows, the proof that the Haar system is a basis for L2(R) is given
using a multiresolution flavor [73]. Thus, it has more than just technical value;
the intuition gained and concepts introduced will be used again in later wavelet
constructions.

THEOREM 4.1

The set of functions {ψm,n(t)}m,n∈Z, with ψ(t) and ψm,n(t) as in (4.1.8–4.1.9),
is an orthonormal basis for L2(R).

PROOF

The idea is to consider functions which are constant on intervals [n2−m0 , (n+1)2−m0 ) and
which have finite support on [−2m1 , 2m1), as shown in Figure 4.3(a). By choosing m0 and
m1 large enough, one can approximate any L2(R) function arbitrarily well. Call such a
piecewise constant function f (−m0)(t). Introduce a unit norm indicator function for the
interval [n2−m0 , (n+ 1)2−m0 )

ϕ−m0,n(t) =

{

2
m0
2 n2−m0 ≤ t < (n+ 1)2−m0 ,
0 otherwise.

(4.1.10)
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Figure 4.3 Haar wavelet decomposition of a piecewise continuous function. Here,
m0 = 0 and m1 = 3. (a) Original function f (0). (b) Average function f (1). (c)
Difference d(1) between (a) and (b). (d) Average function f (2). (e) Difference
d(2). (f) Average function f (3).

This is called the scaling function in the Haar case. Obviously, f (−m0)(t) can be written as
a linear combination of indicator functions from (4.1.10)

f (−m0)(t) =

N−1
∑

n=−N
f (−m0)
n ϕ−m0,n(t), (4.1.11)

where N = 2m0+m1 , and f
(−m0)
n = 2−m0/2f (−m0)(n · 2−m0). Now comes the key step:

Examine two intervals [2n · 2−m0 , (2n+ 1)2−m0) and [(2n + 1) · 2−m0 , (2n+ 2)2−m0 ). The
function over these two intervals is from (4.1.11)

f
(−m0)
2n ϕ−m0,2n(t) + f

(−m0)
2n+1 ϕ−m0,2n+1(t). (4.1.12)

However, the same function can be expressed as the average over the two intervals plus the
difference needed to obtain (4.1.12). The average is given by

f
(−m0)
2n + f

(−m0)
2n+1

2
·
√
2 · ϕ−m0+1,n(t),

while the difference can be expressed with the Haar wavelet as

f
(−m0)
2n − f (−m0)

2n+1

2
·
√
2 · ψ−m0+1,n(t).

Note that here we have used the wavelet and the scaling function of twice the length. Their
support is from [n · 2−m0+1, (n + 1)2−m0+1) = [2n · 2−m0 , (2n + 2)2−m0 ). Also note that
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the factor
√
2 is due to ψ−m0+1,n(t) and ϕ−m0+1,n(t) having height 2(m0−1)/2 = 2m0/2/

√
2,

instead of 2m0/2 with which we started. Calling now

f (−m0+1)
n =

1√
2
(f

(−m0)
2n + f

(−m0)
2n+1 ),

and

d(−m0+1)
n =

1√
2
(f

(−m0)
2n − f (−m0)

2n+1 ),

we can rewrite (4.1.12) as

f (−m0+1)
n ϕ−m0+1,n(t) + d(−m0+1)

n ψ−m0+1,n(t).

Applying the above to the pairs of intervals of the whole function, we finally obtain

f (−m0)(t) = f (−m0+1)(t) + d(−m0+1)(t)

=

N
2
−1
∑

n=−N
2

f (−m0+1)
n ϕ−m0+1,n(t) +

N
2
−1
∑

n=−N
2

d(−m0+1)
n ψ−m0+1,n(t).

This decomposition in local “average” and “difference” is shown in Figures 4.3(b) and (c)
respectively. In order to obtain f (−m0+2)(t) plus some linear combination of ψ−m0+2,n(t),
one can iterate the averaging process on the function f (−m0+1)(t) exactly as above (see
Figures 4.3(d),(e)). Repeating the process until the average is over intervals of length 2m1

leads to

f (−m0)(t) = f (m1)(t) +

m1
∑

m=−m0+1

2m1−m−1
∑

n=−2m1−m

d(m)
n ψm,n(t). (4.1.13)

The function f (m1)(t) is equal to the average of f (−m0)(t) over the intervals [−2m1 , 0) and

[0, 2m1 ), respectively (see Figure 4.3(f)). Consider the right half, which equals f
(m1)
0 from

0 to 2m1 . It has L2 norm equal to |f (m1)
0 |2m1/2. This function can further be decom-

posed as the average over the interval [0, 2m1+1) plus a Haar function. The new average

function has norm (|f (m1)
0 |2m1/2/

√
2 = |f (m1)

0 |2(m1−1)/2 (since there is no contribution from
[2m1 , 2m1+1)). Iterating thisM times shows that the norm of the average function decreases

as (|f (m1)
0 |2m1/2)/2M/2 = |f (m1)

0 |2(m1−M)/2. The same argument holds for the left side as
well and therefore, f (−m0)(t) can be approximated from (4.1.13), as

f (−m0)(t) =

m1+M
∑

m=−m0+1

2m1−m−1
∑

n=−2m1−m

d(m)
n ψm,n(t) + εM ,

where ‖εM‖ = (|f (m1)
−1 | + |f

(m1)
0 |) · 2(m1−M)/2. The approximation error ǫM can thus be

made arbitrarily small since |f (m1)
n |, n = −1, 0, are bounded andM can be made arbitrarily

large. This, together with the fact that m0 and m1 can be arbitrarily large completes the
proof that any L2(R) function can be represented as a linear combination of Haar wavelets.

The key in the above proof was the decomposition into a coarse approximation
(the average) and a detail (the difference). Since the norm of the coarse version
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goes to zero as the scale goes to infinity, any L2(R) function can be represented
as a succession of multiresolution details. This is the crux of the multiresolution
analysis presented in Section 4.2 and will prove to be a general framework, of which
the Haar case is a simple but enlightening example.

Let us point out a few features of the Haar case above. First, we can define
spaces Vm of piecewise constant functions over intervals of length 2m. Obviously,
Vm is included in Vm−1, and an orthogonal basis for Vm is given by ϕm and its shifts
by multiples of 2m. Now, call Wm the orthogonal complement of Vm in Vm−1. An
orthogonal basis for Wm is given by ψm and its shifts by multiples of 2m. The proof
above relied on decomposing V−m0 into V−m0+1 and W−m0+1, and then iterating
the decomposition again on V−m0+1 and so on. It is important to note that once
we had a signal in V−m0 , the rest of the decomposition involved only discrete-time
computations (average and difference operations on previous coefficients). This is
a fundamental and attractive feature of wavelet series expansions which holds in
general, as we shall see.

4.1.4 Discussion

As previously mentioned, the Haar case (seen above) and the sinc case (in Section
4.2.3) are two extreme cases, and the purpose of this chapter is to construct “in-
termediate” solutions with additional desirable properties. For example, Figure 4.4
shows a wavelet constructed first by Daubechies [71] which has finite (compact)
support (its length is L = 3, that is, less local than the Haar wavelet which has
length 1) but is continuous and has better frequency resolution than the Haar wave-
let. While not achieving a frequency resolution comparable to the sinc wavelet, its
time resolution is much improved since it has finite length. This is only one of many
possible wavelet constructions, some of which will be shown in more detail later.

We have shown that it is possible to construct series expansions of general
functions. The resulting tiling of the time-frequency plane is different from that
of a local Fourier series. It has the property that high frequencies are analyzed
with short basis functions, while low frequencies correspond to long basis functions.
While this trade-off is intuitive for many “natural” functions or signals, it is not the
only one; therefore, alternative tilings will also be explored. One elegant property
of wavelet type bases is the self-similarity of the basis functions, which are all
obtained from a single prototype “mother” wavelet using scaling and translation.
This is unlike local Fourier analysis, where modulation is used instead of scaling.
The basis functions and the associated tiling for the local Fourier analysis (short-
time Fourier transform) were seen in Figures 2.12 (a) and (b). Compare these to the
wavelet-type tiling and the corresponding basis functions given in Figures 2.12(c)
and (d) where scaling has replaced modulation. One can see that a dyadic tiling
has been obtained.



222 CHAPTER 4

FIGURE 4.4 fignew4.1.4
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Figure 4.4 Scaling function and wavelet obtained from iterating Daubechies’
4-tap filter. (a) Scaling function ϕ(t). (b) Fourier transform magnitude |Φ(ω)|.
(c) Wavelet ψ(t). (d) Fourier transform magnitude |Ψ(ω)|.

4.2 MULTIRESOLUTION CONCEPT AND ANALYSIS

In this section, we analyze signal decompositions which rely on successive approxi-
mation (the Haar case is a particular example). A given signal will be represented
by a coarse approximation plus added details. We show that the coarse and detail
subspaces are orthogonal to each other. In other words, the detail signal is the
difference between the fine and the coarse version of the signal. By applying the
successive approximation recursively, we will see that the space of input signals
L2(R) can be spanned by spaces of successive details at all resolutions. This follows
because, as the detail resolution goes to infinity, the approximation error goes to
zero.

Note that this multiresolution approach, pioneered by Mallat [180] and Meyer
[194], is not only a set of tools for deriving wavelet bases, but also a mathematical
framework which is very useful in conceptualizing problems linked to wavelet and
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subband decompositions of signals. We will also see that multiresolution analysis
leads to particular orthonormal bases, with basis functions being self-similar at
different scales. We will also show that a multiresolution analysis leads to the two-
scale equation property and that some special discrete-time sequences play a special
role in that they are equivalent to the filters in an orthogonal filter bank.

4.2.1 Axiomatic Definition of Multiresolution Analysis

Let us formally define multiresolution analysis. We will adhere to the choice of
axioms as well as the ordering of spaces adopted by Daubechies in [73].

DEFINITION 4.2

Amultiresolution analysis consists of a sequence of embedded closed subspaces

. . . V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 . . . (4.2.1)

such that

(a) Upward Completeness
⋃

m∈Z
Vm = L2(R). (4.2.2)

(b) Downward Completeness
⋂

m∈Z
Vm = {0}. (4.2.3)

(c) Scale Invariance

f(t) ∈ Vm ⇐⇒ f(2mt) ∈ V0. (4.2.4)

(d) Shift Invariance

f(t) ∈ V0 =⇒ f(t− n) ∈ V0, for all n ∈ Z. (4.2.5)

(e) Existence of a Basis There exists ϕ ∈ V0, such that

{ϕ(t− n) | n ∈ Z} (4.2.6)

is an orthonormal basis for V0.
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Remarks

(a) If we denote by ProjVm [f(t)], the orthogonal projection of f(t) onto Vm, then
(4.2.2) states that limm→−∞ ProjVm [f(t)] = f(t).

(b) The multiresolution notion comes into play only with (4.2.4), since all the
spaces are just scaled versions of the central space V0 [73].

(c) As seen earlier for the Haar case, the function ϕ(t) in (4.2.6) is called the
scaling function.

(d) Using the Poisson formula, the orthonormality of the family {ϕ(t − n)}n∈Z
as given in (4.2.6) is equivalent to the following in the Fourier domain (see
(2.4.31)):

∞∑

k=−∞
|Φ(ω + 2kπ)|2 = 1. (4.2.7)

(e) Using (4.2.4–4.2.6), one obtains that {2m/2ϕ(2mt − n) | n ∈ Z} is a basis for
V−m.

(f) The orthogonality of ϕ(t) is not necessary, since a nonorthogonal basis (with
the shift property) can always be orthogonalized [180] (see also Section 4.3.2).

As an example, define Vm as the space of functions which are piecewise constant
over intervals of length 2m and define ϕ(t) as the indicator function of the unit
interval. Then, it is easy to verify that the Haar example in the previous section
satisfies the axioms of multiresolution analysis (see Example 4.1 below).

Because of the embedding of spaces (4.2.1) and the scaling property (4.2.4), we
can verify that the scaling function ϕ(t) satisfies a two-scale equation. Since V0
is included in V−1, ϕ(t), which belongs to V0, belongs to V−1 as well. As such, it
can be written as a linear combination of basis functions from V−1. However, we
know that {

√
2ϕ(2t − n) | n ∈ Z} is an orthonormal basis for V−1; thus, ϕ(t) can

be expressed as

ϕ(t) =
√
2

∞∑

n=−∞
g0[n] ϕ(2t− n). (4.2.8)

Note that with the above normalization, ‖g0[n]‖ = 1 and g0[n] =
√
2·

〈ϕ(2t − n), ϕ(t)〉 (see Problem 4.2). Taking the Fourier transform of both sides,
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we obtain

Φ(ω) =

∫

ϕ(t)e−jωtdt =
√
2

∫ ∞∑

n=−∞
g0[n] ϕ(2t− n)e−jωt dt

=
√
2

∞∑

n=−∞
g0[n]

1

2

∫

ϕ(t)e−jωt/2e−jωn/2 dt

=
1√
2

∞∑

n=−∞
g0[n] e

−j(ω/2)n
∫

ϕ(t)e−j(ω/2)t dt

=
1√
2
G0(e

jω/2) Φ(ω/2), (4.2.9)

where
G0(e

jω) =
∑

n∈Z
g0[n] e

−jωn.

It will be shown that this function characterizes a multiresolution analysis. It is
obviously 2π-periodic and can be viewed as a discrete-time Fourier transform of a
discrete-time filter g0[n]. This last observation links discrete and continuous time,
and allows one to construct continuous-time wavelet bases starting from discrete
iterated filters. It also allows one to compute continuous-time wavelet expansions
using discrete-time algorithms.

An important property of G0(e
jω) is the following:

|G0(e
jω)|2 + |G0(e

j(ω+π))|2 = 2. (4.2.10)

Note that (4.2.10) was already given in (3.2.54) (again a hint that there is a strong
connection between discrete and continuous time). Equation (4.2.10) can be proven
by using (4.2.7) for 2ω:

∞∑

k=−∞
|Φ(2ω + 2kπ)|2 = 1. (4.2.11)

Substituting (4.2.9) into (4.2.11)

1 =
1

2

∑

k

|G0(e
j(ω+kπ))|2|Φ(ω + kπ)|2

=
1

2

∑

k

|G0(e
j(ω+2kπ))|2|Φ(ω + 2kπ)|2

+
1

2

∑

k

|G0(e
j(ω+(2k+1)π))|2|Φ(ω + (2k + 1)π)|2
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=
1

2
|G0(e

jω)|2
∑

k

|Φ(ω + 2kπ)|2 + 1

2
|G0(e

j(ω+π))|2
∑

k

|Φ(ω + (2k + 1)π)|2

=
1

2
(|G0(e

jω)|2 + |G0(e
j(ω+π))|2),

which completes the proof of (4.2.10). With a few restrictions on the Fourier trans-
form Φ(ω) (bounded, continuous in ω = 0, and Φ(0) 6= 0), it can be shown that
G0(e

jω) satisfies

|G0(1)| =
√
2

G0(−1) = 0

(see Problem 4.3). Note that the above restrictions on Φ(ω) are always satisfied in
practice.

4.2.2 Construction of the Wavelet

We have shown that a multiresolution analysis is characterized by a 2π-periodic
function G0(e

jω) with some additional properties. The axioms (4.2.1–4.2.6) guar-
antee the existence of bases for approximation spaces Vm. The importance of mul-
tiresolution analysis is highlighted by the following theorem. We outline the proof
and show how it leads to the construction of wavelets.

THEOREM 4.3

Whenever the sequence of spaces satisfy (4.2.1–4.2.6), there exists an or-
thonormal basis for L2(R):

ψm,n(t) = 2−m/2ψ(2−mt− n), m, n ∈ Z,

such that {ψm,n}, n ∈ Z is an orthonormal basis for Wm, where Wm is the
orthogonal complement of Vm in Vm−1.

PROOF

To prove the theorem, let us first establish a couple of important facts. First, we defined
Wm as the orthogonal complement of Vm in Vm−1. In other words

Vm−1 = Vm ⊕Wm.

By repeating the process and using (4.2.2) we obtain that

L2(R) =
⊕

m∈Z

Wm. (4.2.12)

Also, due to the scaling property of the Vm spaces (4.2.4), there exists a scaling property
for the Wm spaces as well:

f(t) ∈ Wm ⇐⇒ f(2mt) ∈ W0. (4.2.13)
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Our aim here is to explicitly construct2 a wavelet ψ(t) ∈ W0, such that ψ(t − n), n ∈ Z is
an orthonormal basis for W0. If we have such a wavelet ψ(t), then by the scaling property
(4.2.13), ψm,n(t), n ∈ Z will be an orthonormal basis for Wm. On the other hand, (4.2.12)
together with upward/downward completeness properties (4.2.2–4.2.3), imply that {ψm,n},
m,n ∈ Z is an orthonormal basis for L2(R), proving the theorem. Thus, we start by
constructing the wavelet ψ(t), such that ψ ∈W0 ⊂ V−1. Since ψ ∈ V−1

ψ(t) =
√
2
∑

n∈Z

g1[n]ϕ(2t − n). (4.2.14)

Taking the Fourier transform one obtains

Ψ(ω) =
1√
2
G1(e

jω/2) · Φ
(ω

2

)

, (4.2.15)

where G1(e
jω) is a 2π-periodic function from L2([0, 2π]). The fact that ψ(t) belongs to W0,

which is orthogonal to V0, implies that

〈ϕ(t− k), ψ(t)〉 = 0, for all k.

This can also be expressed as (in the Fourier domain)

∫

Ψ(ω) Φ∗(ω) ejωk = 0,

or equivalently,
∫ 2π

0

ejωkdω
∑

l

Ψ(ω + 2πl) Φ∗(ω + 2πl) = 0.

This further implies that

∑

l

Ψ(ω + 2πl)Φ∗(ω + 2πl) = 0. (4.2.16)

Now substitute (4.2.9) and (4.2.15) into (4.2.16) and split the sum over l into two sums over
even and odd l’s

1

2

∑

l

G1(e
j(ω/2+2lπ)) Φ(ω/2 + 2lπ) G∗

0(e
j(ω/2+2lπ)) Φ∗(ω/2 + 2lπ)

+
1

2

∑

l

G1(e
j(ω/2+(2l+1)π)) Φ(ω/2 + (2l + 1)π) G∗

0(e
j(ω/2+(2l+1)π)) Φ∗(ω/2 + (2l + 1)π)

= 0.

However, since G0 and G1 are both 2π-periodic, substituting Ω for ω/2 gives

G1(e
jΩ) G∗

0(e
jΩ)
∑

l

|Φ(Ω + 2lπ)|2 +G1(e
j(Ω+π)) G∗

0(e
j(Ω+π))

∑

l

|Φ(Ω + (2l + 1)π)|2 = 0.

2Note that the wavelet we construct is not unique.
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Using now (4.2.7), the sums involving Φ(ω) become equal to 1, and thus

G1(e
jΩ) G∗

0(e
jΩ) +G1(e

j(Ω+π)) G∗
0(e

j(Ω+π)) = 0. (4.2.17)

Note how (4.2.17) is the same as (3.2.48) in Chapter 3 (on the unit circle). Again, this dis-
plays the connection between discrete and continuous time. Since G∗

0(e
jω) and G∗

0(e
j(ω+π))

cannot go to zero at the same time (see (4.2.10)), it means that

G1(e
jω) = λ(ejω) G∗

0(e
j(ω+π)),

where λ(ejω) is 2π-periodic and

λ(ejω) + λ(ej(ω+π)) = 0.

We can choose λ(ejω) = −e−jω to obtain

G1(e
jω) = −e−jωG∗

0(e
j(ω+π)), (4.2.18)

or, in time domain

g1[n] = (−1)n g0[−n+ 1].

Finally, the wavelet is obtained as (see (4.2.15))

Ψ(ω) = − 1√
2
e−jω/2 G∗

0(e
j(ω/2+π)) Φ(ω/2), (4.2.19)

ψ(t) =
√
2
∑

n∈Z

(−1)n g0[−n+ 1] ϕ(2t− n).

To prove that this wavelet, together with its integer shifts, indeed generates an orthonormal
basis for W0, one would have to prove the orthogonality of basis functions ψ0,n(t) as well as
completeness; that is, that any f(t) ∈ W0 can be written as f(t) =

∑

n αnψ0,n. This part
is omitted here and can be found in [73], pp. 134-135.

4.2.3 Examples of Multiresolution Analyses

In this section we will discuss two examples: Haar, which we encountered in Sec-
tion 4.1, and sinc, as a dual of the Haar case. The aim is to indicate the embedded
spaces in these two example cases, as well as to show how to construct the wavelets
in these cases.

Example 4.1 Haar Case

Let us go back to Section 4.1.3. Call Vm the space of functions which are constant over
intervals [n2m, (n+ 1)2m). Using (4.1.10), one has

f (m) ∈ Vm ⇔ f (m) =

∞
∑

n=−∞
f (m)
n ϕm,n(t).
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The process of taking the average over two successive intervals creates a function f (m+1) ∈
Vm+1 (since it is a function which is constant over intervals [n2m+1, (n+1)2m+1)). Also, it
is clear that

Vm+1 ⊂ Vm.

The averaging operation is actually an orthogonal projection of f (m) ∈ Vm onto Vm+1, since
the difference d(m+1) = f (m) − f (m+1) is orthogonal to Vm+1 (the inner product of d(m+1)

with any function from Vm+1 is equal to zero). In other words, d(m+1) belongs to a space
Wm+1 which is orthogonal to Vm+1. The space Wm+1 is spanned by translates of ψm+1,n(t)

d(m+1) ∈Wm+1 ⇔ d(m+1) =

∞
∑

n=−∞
d(m+1)
n ψm+1,n(t).

This difference function is again the orthogonal projection of f (m) onto Wm+1. We have
seen that any function f (m) can be written as an “average” plus a “difference” function

f (m)(t) = f (m+1)(t) + d(m+1)(t). (4.2.20)

Thus, Wm+1 is the orthogonal complement of Vm+1 in Vm. Therefore,

Vm = Vm+1 ⊕Wm+1

and (4.2.20) can be written as

f (m)(t) = ProjVm+1
[f (m)(t)] + ProjWm+1

[f (m)(t)].

Repeating the process (decomposing Vm+1 into Vm+2 ⊕Wm+2 and so on), the following is
obtained:

Vm = Wm+1 ⊕Wm+2 ⊕Wm+3 ⊕ · · ·

Since piecewise constant functions are dense in L2(R), as the step size goes to zero (4.2.2) is
satisfied as well as (4.2.12), and thus the Haar wavelets form a basis for L2(R). Now, let us
see how we can construct the Haar wavelet using the technique from the previous section.
As we said before, the basis for V0 is {ϕ(t− n)}n∈Z with

ϕ(t) =

{

1 0 ≤ t < 1,
0 otherwise.

To find G0(e
jω), write

ϕ(t) = ϕ(2t) + ϕ(2t − 1),

hence

Φ(ω) =
1√
2

1 + e−jω/2√
2

Φ
(ω

2

)

,

from which

G0(e
jω) =

1√
2
(1 + e−jω).

Then by using

G1(e
jω) = −e−jω G0(e

j(ω+π)) = −e−jω 1 + ej(ω+π)√
2

=
1− e−jω√

2
,
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one obtains

Ψ(ω) =
1√
2
G1(e

jω/2) Φ
(ω

2

)

.

Finally
ψ(t) = ϕ(2t)− ϕ(2t− 1),

or

ψ(t) =







1 0 ≤ t < 1
2
,

−1 1
2
≤ t < 1,

0 otherwise.

The Haar wavelet and scaling function, as well as their Fourier transforms, were given in
Figure 4.1.

Example 4.2 Sinc Case

In order to derive the sinc wavelet,3 we will start with the sequence of embedded spaces.
Instead of piecewise constant functions, we will consider bandlimited functions. Call V0 the
space of functions bandlimited to [−π, π] (to be precise, V0 includes cos(πt) but not sin(πt)).
Thus, V−1 is the space of functions bandlimited to [−2π, 2π]. Then, call W0 the space of
functions bandlimited to [−2π,−π] ∪ [π, 2π] (again, to be precise, W0 includes sin(πt) but
not cos(πt)). Therefore

V−1 = V0 ⊕W0,

since V0 is orthogonal toW0 and together they span the same space as V−1 (see Figure 4.5).
Obviously, a projection of a function f (−1) from V−1 onto V0 will be a lowpass approximation
f (0), while the difference d(0) = f (−1) − f (0) will exist in W0. Repeating the above
decomposition leads to

V−1 =
∞
⊕

m=0

Wm,

as shown in Figure 4.5. This is an octave-band decomposition of V−1. It is also called a
constant-Q filtering, since each band has a constant relative bandwidth. It is clear that an
orthogonal basis for V0 is given by {sinc1(t− n)} (see (4.1.4), or

ϕ(t) =
sin πt

πt
,

which is thus the scaling function for the sinc case and the space V0 of functions bandlimited
to [−π, π]. Using (4.2.9) one gets that

g0[n] =
1√
2

sin(πn/2)

πn/2
, (4.2.21)

that is,

G0(e
jω) =

{ √
2 −π

2
≤ ω ≤ π

2
,

0 otherwise,

or, G0(e
jω) is an ideal lowpass filter. Then G1(e

jω) becomes (use (4.2.18))

G1(e
jω) =

{

−
√
2e−jω ω ∈ [−π,−π

2
] ∪ [π

2
, π],

0 otherwise,

3In the mathematical literature, this is often referred to as the Littlewood-Paley wavelet [73].
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fignew4.2.1FIGURE 4.5
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Figure 4.5 Decomposition of V0 into successive octave bands. Actually, there
is a scaling factor for Vj and Wj by 2j/2 to make the subspaces of unit norm.

which is an ideal highpass filter with a phase shift. The sequence g1[n] is then

g1[n] = (−1)ng0[−n+ 1], (4.2.22)

whereupon

ψ(t) =
√
2
∑

n

(−1)−n+1g0[n] ϕ(2t+ n− 1).

Alternatively, we can construct the wavelet directly by taking the inverse Fourier transform
of the indicator function of the intervals [−2π,−π] ∪ [π, 2π]:

ψ(t) =
1

2π

∫ −π

−2π

ejωtdω +
1

2π

∫ 2π

π

ejωtdω = 2
sin(2πt)

2πt
− sin(πt)

πt
=

sin(πt/2)

πt/2
cos(3πt/2).

(4.2.23)
This function is orthogonal to its translates by integers, or 〈ψ(t), ψ(t − n)〉 = δ[n], as
can be verified using Parseval’s formula (2.4.11). To be coherent with our definition of W0

(which excludes cos(πt)), we need to shift ψ(t) by 1/2, and thus {ψ(t − n − 1/2)}, n ∈ Z,
is an orthogonal basis for W0. The wavelet basis is now given by

ψm,n(t) =
{

2−m/2ψ(2−mt− n− 1/2)
}

, m, n ∈ Z,

where ψm,n(t), n ∈ Z, is a basis for functions supported on

[−2−m+1π,−2−mπ] ∪ [2−mπ, 2−m+1π].

Since m can be arbitrarily large (positive or negative), it is clear that we have a basis for
L2(R) functions. The wavelet, scaling function, and their Fourier transforms are shown in
Figure 4.6. The slow decay of the time-domain function (1/t as t→∞) can be seen in the
figure, while the frequency resolution is obviously ideal.

To conclude this section, we summarize the expressions for the scaling function and
the wavelet as well as their Fourier transforms in Haar and sinc cases in Table 4.1.
The underlying discrete-time filters were given in Table 3.1.
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FIGURE 4.6 fignew4.2.2
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Figure 4.6 Scaling function and the wavelet in the sinc case. (a) Scaling
function ϕ(t). (b) Fourier transform magnitude |Φ(ω)|. (c) Wavelet ψ(t). (d)
Fourier transform magnitude |Ψ(ω)|.

4.3 CONSTRUCTION OF WAVELETS USING FOURIER TECHNIQUES

What we have seen until now, is the conceptual framework for building orthonormal
bases with the specific structure of multiresolution analysis, as well as two particular
cases of such bases: Haar and sinc. We will now concentrate on ways of building
such bases in the Fourier domain. Two constructions are indicated, both of which
rely on the multiresolution framework derived in the previous section. First, Meyer’s
wavelet is derived, showing step by step how it verifies the multiresolution axioms.
Then, wavelets for spline spaces are constructed. In this case, one starts with
the well-known spaces of piecewise polynomials and shows how to construct an
orthonormal wavelet basis.
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Table 4.1 Scaling functions, wavelets and their Fourier
transforms in the Haar and sinc cases. The underlying
discrete-time filters are given in Table 3.1.

Haar Sinc

ϕ(t)

{
1 0 ≤ t < 1,
0 otherwise.

sinπt
πt

ψ(t)







1 0 ≤ t < 1
2 ,

−1 1
2 ≤ t < 1,

0 otherwise.

sin(π(t/2−1/4))
π(t/2−1/4) cos(3π(t/2− 1/4))

Φ(ω) e−jω/2 sinω/2
ω/2

{
1 |ω| < π,
0 otherwise.

Ψ(ω) je−jω/2 (sinω/4)2

ω/4

{
−e−jω/2 π ≤ |ω| < 2π,

0 otherwise.

θ(x)

1
x

1
2
---

1
2
---

1

FIGURE 4.7 fignew4.3.1

π−π
ω

Φ(ω)

4π
3

------
4π
3

------–
2π
3

------
2π
3

------–

θ 2
3ω
2π-------+ 

  θ 2
3ω
2π-------– 

 

2
2

-------

(a) (b)

Figure 4.7 Construction of Meyer’s wavelet. (a) General form of the function
θ(x). (b) |Φ(ω)| in Meyer’s construction.

4.3.1 Meyer’s Wavelet

The idea behind Meyer’s wavelet is to soften the ideal — sinc case. Recall that
the sinc scaling function and the wavelet are as given in Figure 4.6. The idea of
the proof is to construct a scaling function ϕ(t) that satisfies the orthogonality and
scaling requirements of the multiresolution analysis and then construct the wavelet
using the standard method. In order to soften the sinc scaling function, we find a
smooth function (in frequency) that satisfies (4.2.7).

We are going to show the construction step by step, leading first to the scaling
function and then to the associated wavelet.

(a) Start with a nonnegative function θ(x) that is differentiable (maybe several
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2π π−2π −π
ω

Φ(ω)

3π−3π 4π
3

------
4π
3
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2π
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------–8π
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10π
3

---------–
10π

3
---------

8π
3

------

Φ(ω + 2π) Φ(ω − 2π)

FIGURE 4.8 fignew4.3.2Figure 4.8 Pictorial proof that {ϕ(t− n)}n∈Z form an orthonormal family in L2(R).

times) and such that (see Figure 4.7(a))

θ(x) =

{
0 x ≤ 0,
1 1 ≤ x. (4.3.1)

and satisfying θ(x) + θ(1− x) = 1 for 0 ≤ x ≤ 1. There exist various choices
for θ(x), one of them being

θ(x) =







0 x ≤ 0,
3x2 − 2x3 0 ≤ x ≤ 1,

1 1 ≤ x.
(4.3.2)

(b) Construct the scaling function Φ(ω) such that (see Figure 4.7(b))

Φ(ω) =







√

θ(2 + 3ω
2π ) ω ≤ 0,

√

θ(2− 3ω
2π ) 0 ≤ ω.

To show that Φ(ω) is indeed a scaling function with a corresponding multires-
olution analysis, one has to show that (4.2.1–4.2.6) hold. As a preliminary
step, let us first demonstrate the following:

(c) {ϕ(t − n)}n∈Z is an orthonormal family from L2(R). To that end, we use the
Poisson formula and instead show that (see (4.2.7))

∑

k∈Z
|Φ(ω + 2kπ)|2 = 1. (4.3.3)

From Figure 4.8 it is clear that for ω ∈ [−(2π/3) − 2nπ, (2π)/3 − 2nπ]

∑

k

|Φ(ω + 2kπ)|2 = |Φ(ω + 2nπ)|2 = 1.
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The only thing left is to show (4.3.3) holds in overlapping regions. Thus, take
for example, ω ∈ [(2π)/3, (4π)/3]:

Φ(ω)2 +Φ(ω − 2π)2 = θ

(

2− 3ω

2π

)

+ θ

(

2 +
3(ω − 2π)

2π

)

= θ

(

2− 3ω

2π

)

+ θ

(

−1 + 3ω

2π

)

= θ

(

2− 3ω

2π

)

+ θ

(

1−
(

2− 3ω

2π

))

= 1.

The last equation follows from the definition of θ (see (4.3.2)).

(d) Define as V0 the subspace of L2(R) generated by ϕ(t − n) and define as Vm’s
those satisfying (4.2.4).

Now we are ready to show that the Vm’s form a multiresolution analysis. Until
now, by definition, we have taken care of (4.2.4–4.2.6), those left to be shown
are (4.2.1–4.2.3).

4π2π 3π ω

Φ(ω)

π 4π
3

------
2π
3

------

3π 2ππ2π
3

------
π
3
--- 4π ω

G0(ejω)

3π 2ππ2π
3

------
π
3
--- 4π ω

Φ(ω) G0(ejω)/

Φ(2ω − 4π) Φ(2ω − 8π)

FIGURE 4.9 fignew4.3.3

2 22

2Φ(2ω)

Φ(2ω)

Figure 4.9 Pictorial proof of (4.2.9).

(e) Prove (4.2.1): It is enough to show that V1 ⊂ V0, or ϕ (t/2) =
∑

n cnϕ(t− n).
This is equivalent to saying that there exists a periodic function G0(e

jω) ∈
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L2([0, 2π]) such that Φ(2ω) = (1/
√
2)G0(e

jω)Φ(ω) (see 4.2.9). Then choose

G0(e
jω) =

√
2
∑

k∈Z
Φ(2ω + 4kπ). (4.3.4)

A pictorial proof is given in Figure 4.9.

(f) Show (4.2.2): In this case, it is enough to show that if

〈f, ϕm,n〉 = 0, m, n ∈ Z⇒ f = 0,

then
〈f, ϕm,n〉 = 0 ⇐⇒

∑

k∈Z
F (2m(ω + 2kπ)) Φ∗(ω + 2kπ) = 0.

Take for example, ω ∈ [−(2π)/3, (2π)/3]. Then for any k

F (2m(ω + 2kπ)) Φ(ω + 2kπ) = 0,

and for k = 0
F (2mω) Φ(ω) = 0.

For any m
F (2mω) = 0, ω ∈ [−2π

3 ,
2π
3 ] ,

and thus
F (ω) = 0, ω ∈ R,

or
f = 0.

(g) Show (4.2.3): If f ∈ ⋂m∈Z Vm then F ∈ ⋂m∈Z F{Vm} where F{Vm} is the

Fourier transform of Vm with the basis 2m/2e−jkω2
−m

Φ(2−mω). Since Φ(2−mω)
has its support in the interval

I =

[

−4π

3
2m,

4π

3
2m
]

,

it follows that I → {0} as m→ −∞.

In other words,

F (ω) ∈
⋂

m∈Z
F{Vm} = 0,

or
f(t) = 0.
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Figure 4.10 Pictorial construction of Meyer’s wavelet.

(h) Finally, one just has to find the corresponding wavelet using (4.2.19): Ψ(ω) =
−(1/

√
2) e−jω/2 G∗

0(e
j(ω/2+π)) Φ(ω/2).

Thus using (4.3.4) one gets

Ψ(ω) = − 1√
2
e−jω/2

∑

k∈Z
Φ(ω + (4k + 1)π) Φ

(ω

2

)

.

Hence Ψ(ω) is defined as follows (see Figure 4.10):

Ψ(ω) =







0 0 ≤ ω ≤ 2π
3 ,

−1√
2
e−jω/2Φ(ω − 2π) 2π

3 ≤ ω ≤ 4π
3 ,

−1√
2
e−jω/2Φ(ω2 )

4π
3 ≤ ω ≤ 8π

3 ,

0 8π
3 ≤ ω,

(4.3.5)

and Ψ(ω) is an even function of ω (except for a phase factor e−jw/2). Note
that (see Problem 4.4)

∑

k∈Z
|Ψ(2kω)|2 = 1. (4.3.6)

An example of Meyer’s scaling function and wavelet is shown in Figure 4.11. A
few remarks can be made on Meyer’s wavelet. The time-domain function, while of
infinite support, can have very fast decay. The discrete-time filter G0(e

jω) which is
involved in the two-scale equation, corresponds (by inverse Fourier transform) to a
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Figure 4.11 Meyer’s scaling function and the wavelet. (a) Scaling function
ϕ(t). (b) Fourier transform magnitude |Φ(ω)|. (c) Wavelet ψ(t). (d) Fourier
transform magnitude |Ψ(ω)|.

sequence g0[n] which has similarly fast decay. However, G0(e
jω) is not a rational

function of ejω and thus, the filter g0[n] cannot be efficiently implemented. Thus,
Meyer’s wavelet is more of theoretical interest.

4.3.2 Wavelet Bases for Piecewise Polynomial Spaces

Spline or Piecewise Polynomial Spaces Spaces which are both interesting and
easy to characterize are the spaces of piecewise polynomial functions. To be more
precise, they are polynomials of degree l over fixed length intervals and at the knots
(the boundary between intervals) they have continuous derivatives up to order l−1.
Two characteristics of such spaces make them well suited for the development of
wavelet bases. First, there is a ladder of spaces as required for a multiresolution
construction of wavelets. Functions which are piecewise polynomial of degree l over
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intervals [k2i, (k + 1)2i) are obviously also piecewise polynomial over subintervals
[k2j , (k + 1)2j ], j < i. Second, there exist simple bases for such spaces, namely the
B-splines. Call:

V
(l)
i =







functions which are piecewise polynomial of degree l
over intervals [k2i, (k + 1)2i) and having l − 1
continuous derivatives at k2i, k ∈ Z






.

For example, V
(1)
−1 is the space of all functions which are linear over half-integer

intervals and continuous at the interval boundaries. Consider first, the spaces with

unit intervals, that is, V
(l)
0 . Then, bases for these spaces are given by the B-splines

[76, 255]. These are obtained by convolution of box functions (indicator functions
of the unit interval) with themselves. For example, the hat function, which is a
box function convolved with itself, is a (nonorthogonal) basis for piecewise linear

functions over unit intervals, that is V
(1)
0 .

The idea of the wavelet construction is to start with these nonorthogonal bases

for the V
(l)
0 ’s and apply a suitable orthogonalization procedure in order to get an

orthogonal scaling function. Then, the wavelet follows from the usual construction.
Below, we follow the approach and notation of Unser and Aldroubi [6, 298, 299, 296].
Note that the relation between splines and digital filters has also been exploited in
[118].

Call I(t) the indicator function of the interval [−1/2, 1/2] and I(k)(t) the k-time
convolution of I(t) with itself, that is, I(k)(t) = I(t) ∗ I(k−1)(t), I(0)(t) = I(t).
Denote by β(N)(t) the B-spline of order N where

(a) for N odd:

β(N)(t) = I(N)(t), (4.3.7)

B(N)(ω) =

(
sin(ω/2)

ω/2

)N+1

, (4.3.8)

(b) and for N even:

β(N)(t) = I(N)

(

t− 1

2

)

, (4.3.9)

B(N)(ω) = e−jω/2
(
sin(ω/2)

ω/2

)N+1

. (4.3.10)

The shift by 1/2 in (4.3.9) is necessary so that the nodes of the spline are at integer
intervals. The first few examples, namely N = 0 (constant spline), N = 1 (linear
spline), and N = 2 (quadratic spline) are shown in Figure 4.12.
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Figure 4.12 B-splines, for N = 0, 1, 2. (a) Constant spline. (b) Linear spline.
(c) Quadratic spline.

Orthogonalization Procedure While the B-spline β(N)(t) and its integer trans-

lates form a basis for V
(N)
0 , it is not an orthogonal basis (except for N = 0).

Therefore, we have to apply an orthogonalization procedure. Recall that a function
f(t) that is orthogonal to its integer translates satisfies (see (4.2.7))

〈f(t), f(t− n)〉n∈Z = δ[n] ⇐⇒
∑

k∈Z
|F (ω + 2kπ)|2 = 1.

Starting with a nonorthogonal β(N)(t), we can evaluate the following 2π-periodic
function:

B(2N+1)(ω) =
∑

k∈Z
|B(N)(ω + 2kπ)|2. (4.3.11)
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In this case4 B(2N+1)(ω) is the discrete-time Fourier transform of the discrete-time
B-spline b(2N+1)[n], which is the sampled version of the continuous-time B-spline
[299],

b(2N+1)[n] = β(2N+1)(t)
∣
∣
∣
t=n

. (4.3.12)

Because {β(N)(t−n)} is a basis for V
(N)
0 , one can show that there exist two positive

constants A and C such that [71]

0 < A ≤ B(2N+1)(ω) ≤ C <∞. (4.3.13)

One possible choice for a scaling function is

Φ(ω) =
B(N)(ω)

√

B(2N+1)(ω)
. (4.3.14)

Because of (4.3.13), Φ(ω) is well defined. Obviously

∑

k

|Φ(ω + 2kπ)|2 =
1

B(2N+1)(ω)

∑

k

|B(N)(ω + 2kπ)|2 = 1,

and thus, the set {ϕ(t − n)} is orthogonal. That it is a basis for V
(N)
0 follows

from the fact that (from (4.3.14)) β(N)(t) can be written as a linear combination of

ϕ(t−n) and therefore, since any f(t) ∈ V
(N)
0 can be written in terms of β(N)(t−n),

it can be expressed in terms of ϕ(t− n) as well.
Now, both β(N)(t) and ϕ(t) satisfy a two-scale equation because they belong to

V
(N)
0 and thus V

(N)
−1 ; therefore, they can be expressed in terms of β(N)(2t− n) and

ϕ(2t− n), respectively. In Fourier domain we have

B(N)(ω) = M
(ω

2

)

B(N)
(ω

2

)

, (4.3.15)

Φ(ω) =
1√
2
G0(e

jω/2) Φ
(ω

2

)

, (4.3.16)

where we used (4.2.9) for Φ(ω). Using (4.3.14) and (4.3.15), we find that

Φ(ω) =
B(N)(ω)

√

B(2N+1)(ω)
=

M(ω/2)
√

B(2N+1)(ω/2)Φ(ω/2)
√

B(2N+1)(ω)
(4.3.17)

=
1√
2
G0(e

jω/2) Φ
(ω

2

)

,

4Note that β(N)(t) has a Fourier transform B(N)(ω). On the other hand, b(2N+1)[n] has a
discrete-time Fourier transform B(2N+1)(ω). B(N)(ω) and B(2N+1)(ω) should not be confused.
Also, B(2N+1)(ω) is a function of ejω.
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that is,

G0(e
jω) =

√
2
M(ω)

√

B(2N+1)(ω)
√

B(2N+1)(2ω)
. (4.3.18)

Then, following (4.2.19), we have the following expression for the wavelet:

Ψ(ω) = − 1√
2
e−jω/2 G∗

0

(

ej(ω/2+π)
)

Φ
(ω

2

)

. (4.3.19)

Note that the orthogonalization method just described is quite general and can be
applied whenever we have a multiresolution analysis with nested spaces and a basis
for V0. In particular, it indicates that in Definition 4.2, ϕ(t) in (4.2.6) need not be
from an orthogonal basis since it can be orthogonalized using the above method.
That is, given g(t) which forms a (nonorthogonal) basis for V0 and satisfies a two-
scale equation, compute a 2π-periodic function D(ω)

D(ω) =
∑

k∈Z
|G(ω + 2kπ)|2, (4.3.20)

where G(ω) is the Fourier transform of g(t). Then

Φ(ω) =
G(ω)
√

D(ω)

corresponds to an orthogonal scaling function for V0 and the rest of the procedure
follows as above.

Orthonormal Wavelets for Spline Spaces We will apply the method just de-
scribed to construct wavelets for spaces of piecewise polynomial functions intro-
duced at the beginning of this section. This construction was done by Battle [21, 22]
and Lemarié [175], and the resulting wavelets are often called Battle-Lemarié wave-
lets. Earlier work by Stromberg [283, 284] also derived orthogonal wavelets for
piecewise polynomial spaces. We will start with a simple example of the linear
spline, given by

β(1)(t) =

{
1− |t| |t| ≤ 1,

0 otherwise.

It satisfies the following two-scale equation:

β(1)(t) =
1

2
β(1)(2t+ 1) + β(1)(2t) +

1

2
β(1)(2t− 1). (4.3.21)

The Fourier transform, from (4.3.7), is

B(1)(ω) =

(
sin(ω/2)

ω/2

)2

. (4.3.22)
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In order to find B(2N+1)(ω) (see (4.3.11)), we note that its inverse Fourier transform
is equal to

b(2N+1) =
1

2π

∫ 2π

0
ejnω

∑

k∈Z
|B(N)(ω + 2πk)|2 dω

=
1

2π

∫ ∞

−∞
ejnw|B(N)(ω)|2 dω

=

∫ ∞

−∞
β(N)(t) β(N)(t− n) dt, (4.3.23)

by Parseval’s formula (2.4.11). In the linear spline case, we find b(3)[0] = 2/3 and
b(3)[1] = b(3)[−1] = 1/6, or

B(3)(ω) =
2

3
+

1

6
ejω +

1

6
e−jω =

2

3
+

1

3
cos(ω) = 1− 2

3
sin2

(ω

2

)

,

which is the discrete-time cubic spline [299]. From (4.3.14) and (4.3.22), one gets

Φ(ω) =
sin2(ω/2)

(ω/2)2(1− (2/3) sin2(ω/2))1/2
,

which is an orthonormal scaling function for the linear spline space V
(1)
0 .

Observation of the inverse Fourier transform of the 2π-periodic function
(1− (2/3) sin2(ω/2))1/2, which corresponds to a sequence {αn}, indicates that ϕ(t)
can be written as a linear combination of {β(1)(t− n)}:

ϕ(t) =
∑

n∈Z
αnβ

(1)(t− n).

This function is thus piecewise linear as can be verified in Figure 4.13(a). Taking
the Fourier transform of the two-scale equation (4.3.21) leads to

B(1)(ω) =

(
1

4
e−j

ω
2 +

1

2
+

1

4
ejω/2

)

B(1)
(ω

2

)

=
1

2

(

1 + cos
(ω

2

))

B(1)
(ω

2

)

,

and following the definition of M(ω) in (4.3.15), we get

M(ω) =
1

2
(1 + cos (ω)) = cos2

(ω

2

)

.

Therefore, G0(e
jω) is equal to (following (4.3.18)),

G0(e
jω) =

√
2
cos2(ω/2)(1 − (2/3) sin2(ω/2))1/2

(1− (2/3) sin2(ω))1/2
,
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Figure 4.13 Linear spline basis. (a) Scaling function ϕ(t). (b) Fourier trans-
form magnitude |Φ(ω)|. (c) Wavelet ψ(t). (d) Fourier transform magnitude
|Ψ(ω)|.

and the wavelet follows from (4.3.19) as

Ψ(ω) = −e−jω/2 sin2(ω/4)(1 − (2/3) cos2(ω/4))1/2

(1− (2/3) sin2(ω/2))1/2
· Φ (ω/2) ,

or

Ψ(ω) = −e−jω/2 sin4(ω/4)

(ω/4)2

(

1− (2/3) cos2(ω/4)

(1− (2/3) sin2(ω2 ))(1 − (2/3) sin2(ω4 ))

)1/2

.

(4.3.24)
Rewrite the above as

Ψ(ω) =
sin2(ω/4)

(ω/4)2
Q(ω) (4.3.25)
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where the definition of Q(ω), which is 4π-periodic, follows from (4.3.24). Taking
the inverse Fourier transform of (4.3.25) leads to

ψ(t) =
∑

n∈Z
q[n] β(1)(2t− n),

with the sequence {q[n]} being the inverse Fourier transform of Q(ω). Therefore,
ψ(t) is piecewise linear over half-integer intervals, as can be seen in Figure 4.13(b).

In this simple example, the multiresolution approximation is particularly clear.

As said at the outset, V
(1)
0 is the space of functions piecewise linear over integer

intervals, and likewise, V
(1)
−1 has the same property but over half-integer intervals.

Therefore, W
(1)
0 (which is the orthogonal complement to V

(1)
0 in V

(1)
−1 ) contains

the difference between a function in V
(1)
−1 and its approximation in V

(1)
0 . Such a

difference is obviously piecewise linear over half-integer intervals.

With the above construction, we have obtained orthonormal bases for V
(1)
0 and

W
(1)
0 as the sets of functions {ϕ(t−n)} and {ψ(t−n)} respectively. What was given

up, however, is the compact support that β(N)(t) has. But it can be shown that the
scaling function and the wavelet have exponential decay. The argument begins with
the fact that ϕ(t) is a linear combination of functions β(N)(t−n). Because β(N)(t)
has compact support, a finite number of functions from the set {β(N)(t − n)}n∈Z
contribute to ϕ(t) for a given t (for example, two in the linear spline case). That
is, |ϕ(t)| is of the same order as |∑L−1

l=0 αk+l| where k = ⌊t⌋. Now, {αk} is the
impulse response of a stable filter (noncausal in general) because it has no poles
on the unit circle (this follows from (4.3.13)). Therefore, the sequence αk decays
exponentially and so does ϕ(t). The same argument holds for ψ(t) as well. For a
formal proof of this result, see [73]. While the compact support of β(N)(t) has been
lost, the fast decay indicates that ϕ(t) and ψ(t) are concentrated around the origin,
as is clear from Figures 4.13(a) and (c). The above discussion on orthogonalization
was limited to the very simple linear spline case. However, it is clear that it works
for the general B-spline case since it is based on the orthogonalization (4.3.14). For
example, the quadratic spline, given by

B(2)(ω) = e−jω/2
(
sin(ω/2)

(ω/2)

)3

, (4.3.26)

leads to a function B(5)(ω) (see 4.3.11) equal to

B(5)(ω) = 66 + 26(ejω + e−jω) + ej2ω + e−j2ω, (4.3.27)

which can be used to orthogonalize B(2)(ω) (see Problem 4.7).
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Note that instead of taking a square root of B(2N+1)(ω) in the orthogonaliza-
tion of B(N)(ω) (see (4.3.14)), one can use spectral factorization which leads to
wavelets based on IIR filters [133, 296] (see also Section 4.6.2 and Problem 4.8).
Alternatively, it is possible to give up intrascale orthogonality (but keep interscale
orthogonality). See [299] for such a construction where a possible scaling function
is a B-spline. One advantage of keeping a scaling function that is a spline is that,
as the order increases, its localization in time and frequency rapidly approaches the
optimum since it tends to a Gaussian [297].

An interesting limiting result occurs in the case of orthogonal wavelets for B-
spline space. As the order of splines goes to infinity, the scaling function tends to
the ideal lowpass or sinc function [7, 175]. In our B-spline construction with N = 0
and N →∞, we thus recover the Haar and sinc cases discussed in Section 4.2.3 as
extreme cases of a multiresolution analysis.

4.4 WAVELETS DERIVED FROM ITERATED FILTER BANKS AND REGULARITY

In the previous section, we constructed orthonormal families of functions where each
function was related to a single prototype wavelet through shifting and scaling.
The construction was a direct continuous-time approach based on the axioms of
multiresolution analysis. In this section, we will take a different, indirect approach
that also leads to orthonormal families derived from a prototype wavelet. Instead
of a direct continuous-time construction, we will start with discrete-time filters.
They can be iterated and under certain conditions will lead to continuous-time
wavelets. This important construction, pioneered by Daubechies [71], produces
very practical wavelet decomposition schemes, since they are implementable with
finite-length discrete-time filters.

In this section, we will first review the Haar and sinc wavelets as limits of
discrete-time filters. Then we extend this construction to general orthogonal fil-
ters, showing how to obtain a scaling function ϕ and a wavelet ψ as limits of an
appropriate graphical function. This will lead to a discussion of basic properties of
ϕ and ψ, namely orthogonality and two-scale equations. It will be indicated that
the function system {2−m/2ϕ(2mt− n)}, m,n ∈ Z, forms an orthonormal basis for
L2(R).

A key property that the discrete-time filter has to satisfy is the regularity con-
dition, which we explore first by way of examples. A discrete-time filter will be
called regular if it converges (through the iteration scheme we will discuss) to a
scaling function and wavelet with some degree of regularity (for example, piece-
wise smooth, continuous, or derivable). We show conditions that have to be met
by the filter and describe regularity testing methods. Then, Daubechies’ family of
maximally regular filters will be derived.
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FIGURE 4.14 fignew4.4.1Figure 4.14 Filter bank iterated on the lowpass channel: connection between
discrete- and continuous-time cases.

4.4.1 Haar and Sinc Cases Revisited

As seen earlier, the Haar and sinc cases are two particular examples which are duals
of each other, or two extreme cases. Both are useful to explain the iterated filter
bank construction. The Haar case is most obvious in time domain, while the sinc
case is immediate in frequency domain.

Haar Case Consider the discrete-time Haar filters (see also Section 4.1.3). The
lowpass is the average of two neighboring samples, while the highpass is their dif-
ference. The corresponding orthogonal filter bank has filters g0[n] = [1/

√
2, 1/
√
2]

and g1[n] = [1/
√
2,−1/

√
2] which are the basis functions of the discrete-time Haar

expansion. Now consider what happens if we iterate the filter bank on the lowpass
channel, as shown in Figure 4.14. In order to derive an equivalent filter bank, we
recall the following result from multirate signal processing (Section 2.5.3): Filtering
by g0[n] followed by upsampling by two is equivalent to upsampling by two, followed
by filtering by g′0[n], where g

′
0[n] is the upsampled version of g0[n].

Using this equivalence, we can transform the filter-bank tree into one equivalent
to the one depicted in Figure 3.8 where we assumed three stages and Haar filters. It
is easy to verify that this corresponds to an orthogonal filter bank (it is the cascade
of orthogonal filter banks). This is a size-8 discrete Haar transform on successive
blocks of 8 samples. Iterating the lowpass channel in Figure 4.14 i times, will lead
to the equivalent last two filters

g
(i)
0 [n] =

{
2−i/2 n = 0, . . . , 2i − 1,
0 otherwise,
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g
(i)
1 [n] =







2−i/2 n = 0, . . . , 2i−1 − 1,

−2−i/2 n = 2i−1, . . . , 2i − 1,
0 otherwise,

where g
(i)
0 [n] is a lowpass filter and g

(i)
1 [n] a bandpass filter. Note also that g

(1)
0 [n] =

g0[n] and g
(1)
1 [n] = g1[n]. As we can see, as i becomes large the length grows

exponentially and the coefficients go to zero.

Let us now define a continuous-time function associated with g
(i)
0 [n] and g

(i)
1 [n]

in the following way:

ϕ(i)(t) = 2i/2g
(i)
0 [n] n

2i
≤ t < n+1

2i
, (4.4.1)

ψ(i)(t) = 2i/2g
(i)
1 [n] n

2i
≤ t < n+1

2i
.

These functions are piecewise constant and because the interval diminishes at

the same speed as the length of g
(i)
0 [n] and g

(i)
1 [n] increases, their lengths remain

bounded.
For example, ϕ(3)(t) and ψ(3)(t) (the functions associated with the two bottom

filters of Figure 3.8) are simply the indicator functions of the [0, 1] interval and
the difference between the indicator functions of [0, 12 ] and [12 , 1], respectively. Of

course, in this particular example, it is clear that ϕ(i)(t) and ψ(i)(t) are all identical,
regardless of i. What is also worth noting is that ϕ(i)(t) and ψ(i)(t) are orthogonal
to each other and to their translates. Note that

ϕ(i)(t) = 21/2(g0[0] ϕ
(i−1)(2t) + g0[1] ϕ

(i−1)(2t− 1))

or, because ϕ(i)(t) = ϕ(i−1)(t) in this particular example,

ϕ(t) = 21/2(g0[0] ϕ(2t) + g0[1] ϕ(2t− 1)).

Thus, the scaling function ϕ(t) satisfies a two-scale equation.

Sinc Case Recall the sinc case (see Example 4.2). Take an orthogonal filter bank
where the lowpass and highpass filters are ideal half-band filters. The impulse
response of the lowpass filter is

g0[n] =
1√
2

sin(π/2n)

π/2n
, (4.4.2)

(see also (4.2.21)) which is orthogonal to its even translates and of norm 1. Its 2π-
periodic Fourier transform is equal to

√
2 for |ω| ≤ π/2, and 0 for π/2 < |ω| < π. A

perfect half-band highpass can be obtained by modulating g0[n] with (−1)n, since
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this shifts the passband by π. For completeness, a shift by one is required as well.
Thus (see (4.2.22))

g1[n] = (−1)(n)g0[−n+ 1].

Its 2π-periodic Fourier transform is

G1(e
jω) =

{
−
√
2e−jω π/2 ≤ |ω| ≤ π,
0 0 ≤ |ω| < π/2.

(4.4.3)

Now consider the iterated filter bank as in Figure 4.14 with ideal filters. Upsampling
the filter impulse response by 2 (to pass it across the upsampler) leads to a filter
g′0[n] with discrete-time Fourier transform (see Section 2.5.3)

G′
0(e

jω) = G0(e
j2ω),

which is π-periodic. It is easy to check that G′
0(e

jω)G0(e
jω) is a quarter-band filter.

Similarly, with G′
1(e

jω) = G1(e
j2ω), it is clear that G′

1(e
jω)G0(e

jω) is a bandpass
filter with a passband from π/4 to π/2. Figure 4.15 shows the amplitude frequency
responses of the equivalent filters for a three-step division.

Let us emulate the Haar construction with g
(i)
0 [n] and g

(i)
1 [n] which are the

lowpass and bandpass equivalent filters for the cascade of i-banks. In Figures 4.15(c)

and (d), we have thus the frequency responses of g
(3)
1 [n] and g

(3)
0 [n], respectively.

Then, we define ϕ(i)(t) as in (4.4.1). The procedure for obtaining ϕ(i)(t) can be
described by the following two steps:

(a) Associate with g
(i)
0 [n] a sequence of weighted Dirac pulses spaced 2−i apart.

This sequence has a 2i2π-periodic Fourier transform.

(b) Convolve this pulse sequence with an indicator function for the interval [0, 2−i]
of height 2i/2 (so it is of norm 1).

Therefore the Fourier transform of ϕ(i)(t) is

Φ(i)(ω) = 2−i/2 G(i)
0 (ejω/2

i
) e−jω/2

i+1 sin(ω/2i+1)

ω/2i+1
.

Now,

G
(i)
0 (ejω) = G0(e

jω) G0(e
j2ω) · · ·G0(e

j2i−1ω). (4.4.4)

We introduce the shorthand

M0(ω) =
1√
2
G0(e

jω). (4.4.5)
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2

Figure 4.15 Amplitude frequency response of a three-step iterated filter bank
with ideal half-band low and highpass filters. (a) |G1(e

jω)|, (b) |G0(e
jω)

G1(e
j2ω)|, (c) |G0(e

jω) G0(e
j2ω) G1(e

j4ω)|, (d) |G0(e
jω) G0(e

j2ω) G0(e
j4ω)|.

Note that M0(0) = 1. We can rewrite Φ(i)(ω) as

Φ(i)(ω) =

[
i∏

k=1

M0

( ω

2k

)
]

· e−jω/2i+1 sin(ω/2i+1)

ω/2i+1
. (4.4.6)

The important part in (4.4.6) is the product inside the square brackets (the rest
is just a phase factor and the interpolation function). In particular, as i becomes
large, the second part tends toward 1 for any finite ω. Thus, let us consider the
product involving M0(ω) in (4.4.6). Because of the definitions of M0(ω) in (4.4.5)
and of G0(e

jω) following (4.4.2), we get

M0

( ω

2k

)

=

{
1 (2l − 1

2)2
kπ ≤ ω ≤ (2l + 1

2 )2
kπ, l ∈ Z

0 otherwise.
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The product

M0

(ω

2

)

M0

(ω

4

)

· · ·M0

(ω

2i

)

,

is 2i2π periodic and equal to 1 for ω between −π and π, 0 elsewhere. Therefore, as
i goes to infinity, we are left with a perfect lowpass from −π to π, that is

lim
i→∞

ϕ(i)(t) =
sin(πt)

πt
,

or a sinc scaling function. What happens to the function ψ(i)(t)? The iterated filter
becomes

G
(i)
1 (ejω) = G0(e

jω) · · ·G0(e
j2i−2ω) G1(e

j2i−1ω),

where G1(e
jω) is given by (4.4.3). The Fourier transform of the wavelet is thus

Ψ(i)(ω) = M1

(ω

2

)
[

i∏

k=2

M0

( ω

2k

)
]

e−jω/2
i+1 sin(ω/2i+1)

ω/2i+1
, (4.4.7)

where, similarly to (4.4.5),

M1(ω) =
1√
2
G1(e

jω). (4.4.8)

Suppose that we have i = 3. Note that M1(ω/2) produces, following (4.4.3), a
phase shift of e−jω/2 or a time-domain delay of 1/2. It is clear that as i goes to
infinity, Ψ(i)(ω) converges to the indicator function of the interval [π, 2π] (with a
phase shift of e−jω/2). Thus

lim
i→∞

ψ(i)(t) = 2
sin(2π(t− 1

2))

2π(t− 1
2 )

− sin(π(t− 1
2 ))

π(t− 1
2)

.

This is of course the sinc wavelet we had introduced in Section 4.2 (see (4.2.23)).
What we have just seen seems a cumbersome way to rederive a known result.
However, it is an instance of a general construction and some properties can be
readily seen. For example, assuming that the infinite product converges, the scaling
function satisfies (from (4.4.6))

Φ(ω) = lim
i→∞

Φ(i)(ω) =
∞∏

k=1

M0

( ω

2k

)

= M0

(ω

2

)

Φ
(ω

2

)

,

or, in time domain

ϕ(t) =
√
2

∞∑

n=−∞
g0[n] ϕ(2t− n),
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and similarly, the wavelet satisfies

ψ(t) =
√
2

∞∑

n=−∞
g1[n] ϕ(2t− n).

That is, the two-scale equation property is implicit in the construction of the iter-
ated function. The key in this construction is the behavior of the infinite product of
the M0(ω/2

k)’s. This leads to the fundamental regularity property of the discrete-
time filters involved, which will be studied below. But first, we formalize the iterated
filter bank construction.

4.4.2 Iterated Filter Banks

We will now show that the above derivation of the Haar and sinc wavelets using
iterated filter banks can be used in general to obtain wavelet bases, assuming that
the filters satisfy some regularity constraints. In our discussion, we will concentrate
mainly on the well-behaved cases, namely when the graphical function ϕ(i)(t) (asso-

ciated with the iterated impulse response g
(i)
0 [n]) converges in L2(R) to a piecewise

smooth5 function ϕ(t) (possibly with more regularity, such as continuity). In this
case, the Fourier transform Φ(i)(ω) converges in L2(R) to Φ(ω) (the Fourier trans-
form of ϕ(t)). That is, one can study the behavior of the iteration either in time
or in frequency domain. A counter-example to this “nice” behavior is discussed in
Example 4.3 below.

To demonstrate the construction, we start with a two-channel orthogonal filter
bank as given in Section 3.2. Let g0[n] and g1[n] denote lowpass and highpass
filters, respectively. Similarly to the Haar and sinc cases, the filter bank is iterated
on the branch with the lowpass filter (see Figure 4.14) and the process is iterated to
infinity. The constructions in the previous section indicate how to proceed. First,
express the two equivalent filters after i steps of iteration as (use the fact that
filtering with Gi(z) followed by upsampling by 2 is equivalent to upsampling by 2
followed by filtering with Gi(z

2))

G
(i)
0 (z) =

i−1∏

k=0

G0

(

z2
k
)

, (4.4.9)

G
(i)
1 (z) = G1(z

2i−1
)

i−2∏

k=0

G0

(

z2
k
)

, i = 1, 2, . . .

5This is more restrictive than necessary, but makes the treatment easier.
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These filters are preceded by upsampling by 2i (note that G
(0)
0 (z) = G

(0)
1 (z) = 1).

Then, associate the discrete-time iterated filters g
(i)
0 [n], g

(i)
1 [n] with the continuous-

time functions ϕ(i)(t), ψ(i)(t) as follows:

ϕ(i)(t) = 2i/2g
(i)
0 [n], n/2i ≤ t < n+1

2i
, (4.4.10)

ψ(i)(t) = 2i/2g
(i)
1 [n], n/2i ≤ t < n+1

2i
. (4.4.11)

Note that the elementary interval is divided by 1/2i. This rescaling is necessary
because if the length of the filter g0[n] is L then the length of the iterated filter

g
(i)
0 [n] is

L(i) = (2i − 1)(L− 1) + 1

which will become infinite as i → ∞. Thus, the normalization ensures that the
associated continuous-time function ϕ(i)(t) stays compactly supported (as i → ∞,
ϕ(i)(t) will remain within the interval [0, L − 1]). The factor 2i/2 which multi-

plies g
(i)
0 [n] and g

(i)
1 [n] is necessary to preserve the L2 norm between discrete and

continuous-time cases. If ‖g(i)0 [n]‖ = 1, then ‖ϕ(i)(t)‖ = 1 as well, since each

piecewise constant block has norm |g(i)0 [n]|.
In Figure 4.16 we show the graphical function for the first four iterations of a

length-4 filter. This indicates the piecewise constant approximation and the halving
of the interval.

In Fourier domain, using M0(ω) = G0(e
jω)/
√
2 and M1(ω) = G1(e

jω)/
√
2, we

can write (4.4.10) and (4.4.11) as (from (4.4.6))

Φ(i)(ω) =

[
i∏

k=1

M0

( ω

2k

)
]

Θ(i)(ω),

where

Θ(i)(ω) = e−jω/2
i+1 sin(ω/2i+1)

ω/2i+1
,

as well as (from (4.4.7)

Ψ(i)(ω) = M1

(ω

2

)
[

i∏

k=2

M0

( ω

2k

)
]

Θ(i)(ω).

A fundamental question is: To what, if anything, do the functions ϕ(i)(t) and ψ(i)(t)
converge as i→∞? We will proceed by assuming convergence to piecewise smooth
functions in L2(R):

ϕ(t) = lim
i→∞

ϕ(i)(t), (4.4.12)
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Figure 4.16 Graphical functions corresponding to the first four iterations of
an orthonormal 4-tap filter with two zeros at ω = π. The filter is given in the
first column of Table 4.3. (a) ϕ(1)(t). (b) ϕ(2)(t). (c) ϕ(3)(t). (d) ϕ(4)(t).

ψ(t) = lim
i→∞

ψ(i)(t). (4.4.13)

In Fourier domain, the above equations become

Φ(ω) = lim
i→∞

Φ(i)(ω) =
∞∏

k=1

M0

( ω

2k

)

, (4.4.14)

Ψ(ω) = lim
i→∞

Ψ(i)(ω) = M1

(ω

2

) ∞∏

k=2

M0

( ω

2k

)

, (4.4.15)

since Θ(i)(ω) becomes 1 for any finite ω as i→∞. Next, we demonstrate that
the functions ϕ(t) and ψ(t), obtained as limits of discrete-time iterated filters, are
actually a scaling function and a wavelet, and that they carry along an underlying
multiresolution analysis.
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Two-Scale Equation Property Let us show that the scaling function ϕ(t) satisfies
a two-scale equation, as required by (4.2.8). Following (4.4.9), one can write the
equivalent filter after i steps in terms of the equivalent filter after (i− 1) steps as

g
(i)
0 [n] =

∑

k

g0[k] g
(i−1)
0 [n− 2i−1k]. (4.4.16)

Using (4.4.10), express the previous equation in terms of iterated functions:

g
(i)
0 [n] = 2−

i
2 ϕ(i)(t), (4.4.17)

g
(i−1)
0 [n− 2i−1k] = 2−(i−1)/2 ϕ(i−1)(2t− k), (4.4.18)

both for n/2i ≤ t < (n + 1)/2i. Substituting (4.4.17) and (4.4.18) into (4.4.16)
yields

ϕ(i)(t) =
√
2
∑

k

g0[k] ϕ
(i−1)(2t− k). (4.4.19)

By assumption, the iterated function ϕ(i)(t) converges to the scaling function ϕ(t).
Hence, take limits on both sides of (4.4.19) to obtain

ϕ(t) =
√
2
∑

k

g0[k] ϕ(2t − k), (4.4.20)

that is, the limit of the discrete-time iterated filter (4.4.12) satisfies a two-scale
equation. Similarly,

ψ(t) =
√
2
∑

k

g1[k] ϕ(2t− k).

These relations also follow directly from the Fourier-domain expressions Φ(ω) and
Ψ(ω), since, for example, from (4.4.14) we get

Φ(ω) =

∞∏

k=1

M0

( ω

2k

)

= M0

(ω

2

) ∞∏

k=2

M0

( ω

2k

)

= M0

(ω

2

)

Φ
(ω

2

)

=
1√
2
G0

(

ejω/2
)

Φ
(ω

2

)

.

Orthogonality and Completeness of the Wavelet Basis We want to show that
the wavelets constitute a basis for L2(R). To that end, we will have to prove the
orthogonality as well as the completeness of the basis functions. First, however, let
us recall a few facts that are going to be used in our discussion. We will assume that
we have an orthonormal filter bank as seen in Section 3.2.3. We will also assume
the following:
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(a) 〈g0[k], g1[k +2n]〉 = 0, 〈g0[k], g0[k+ 2n]〉 = 〈g1[k], g1[k+ 2n]〉 = δ[n], that
is, filters g0 and g1 are orthogonal to each other and their even translates as
given in Section 3.2.3.

(b) G0(z)|z=1 =
√
2, G0(z)|z=−1 = 0, that is, the lowpass filter has a zero at

the aliasing frequency π (see also the next section).

(c) The filters are FIR.

(d) g1[n] = (−1)ng0[−n+ 1], as given in Section 3.2.3.

(e) The scaling function and the wavelet are given by (4.4.12) and (4.4.13).

In the Haar case, it was shown that the scaling function and the wavelet were
orthogonal to each other. Using appropriate shifts and scales, it was shown that
the wavelets formed an orthonormal set. Here, we demonstrate these relations in
the general case, starting from discrete-time iterated filters. The proof is given only
for the first fact, the others would follow similarly.

PROPOSITION 4.4 Orthogonality Relations for the Scaling Function and Wavelet

(a) The scaling function is orthogonal to its appropriate translates at a given
scale

〈ϕ(2mt− n), ϕ(2mt− n′)〉 = 2−mδ[n − n′].

(b) The wavelet is orthogonal to its appropriate translates at all scales

〈ψ(2mt− n), ψ(2mt− n′)〉 = 2−mδ[n − n′].

(c) The scaling function is orthogonal to the wavelet and its integer shifts

〈ϕ(t), ψ(t − n)〉 = 0.

(d) Wavelets are orthogonal across scales and with respect to shifts

〈ψ(2mt− n), ψ(2m′
t− n′)〉 = 2−m−m′

δ[m−m′] δ[n − n′].

PROOF

To prove the first fact, we use induction on ϕ(i) and then take the limit (which exists by
assumption). For clarity, this fact will be proven only for scale 0 (scale m would follow
similarly). The first step 〈ϕ(0)(t), ϕ(0)(t− l)〉 = δ[n] is obvious since, by definition, ϕ(0)(t)
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is just the indicator function of the interval [0, 1). For the inductive step, write

〈ϕ(i+1)(t), ϕ(i+1)(t− l)〉 = 〈
√
2
∑

k

g0[k] ϕ
(i)(2t− k),

√
2
∑

m

g0[m] ϕ(i)(2t− 2l −m)〉

= 2
∑

k

∑

m

g0[k] g0[m] 〈ϕ(i)(2t− k), ϕ(i)(2t− 2l −m)〉

=
∑

m

g0[m] g0[2l +m] = 〈g0[m], g0[2l +m]〉 = δ[l],

where the orthogonality relations between discrete-time filters, given at the beginning of
this subsection, were used. Taking the limits of both sides of the previous equation, the first
fact is obtained. The proofs of the other facts follow similarly.

We have thus verified that

S = {2−m
2 ψ(2−mt− n) | m,n ∈ Z, t ∈ R},

is an orthonormal set. The only remaining task is to show that the members of the
set S constitute an orthonormal basis for L2(R), as stated in the following theorem.

THEOREM 4.5 [71]

The orthonormal set of functions S = {ψm,n | m,n ∈ Z, t ∈ R} where
ψm,n(t) = 2−

m
2 ψ(2−mt−n) is a basis for L2(R), that is, for every f ∈ L2(R)

∑

m,n∈Z
|〈ψm,n, f〉|2 = ‖f‖2.

Since the proof is rather technical and does not have an immediate intuitive in-
terpretation, an outline is given in Appendix 4.A. For more details, the reader is
referred to [71, 73]. Note that the statement of the theorem is nothing else but the
Parseval’s equality as given by (d) in Theorem 2.4.

4.4.3 Regularity

We have seen that the conditions under which (4.4.12–4.4.13) exist are critical. We
will loosely say that they exist and lead to piecewise smooth functions if the filter
g0[n] is regular. In other words, a regular filter leads, through iteration, to a scaling
function with some degree of smoothness or regularity.

Given a filter G0(z) and an iterated filter bank scheme, the limit function ϕ(t)
depends on the behavior of the product

i∏

k=1

M0

( ω

2k

)

, (4.4.21)
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for large i, where M0(ω) = G0(e
jω)/G0(1) so that M0(0) = 1. This normalization

is necessary since otherwise either the product blows up at ω = 0 (if M0(0) > 1) or
goes to zero (if M0(0) < 1) which would mean that ϕ(t) is not a lowpass function.

Key questions are: Does the product converge (and in what sense)? If it con-
verges, what are the properties of the limit function (continuity, differentiability,
etc.)? It can be shown that if |M0(ω)| ≤ 1 and M0(0) = 1, then we have pointwise
convergence of the infinite product to a limit function Φ(ω) (see Problem 4.12). In
particular, if M0(ω) corresponds to the normalized lowpass filter in an orthonor-
mal filter bank, then this condition is automatically satisfied. However, pointwise
convergence is not sufficient. To build orthonormal bases we need L2 convergence.
This can be obtained by imposing some additional constraints on M0(ω). Finally,
beyond mere L2 convergence, we would like to have a limit Φ(ω) corresponding to
a smooth function ϕ(t). This can be achieved with further constraints of M0(ω).
Note that we will concentrate on the regularity of the lowpass filter, which leads
to the scaling function ϕ(t) in iterated filter bank schemes. The regularity of the
wavelet ψ(t) is equal to that of the scaling function when the filters are of finite
length since ψ(t) is a finite linear combination of ϕ(2t − n).

First, it is instructive to reconsider a few examples. In the case of the perfect
half-band lowpass filter, the limit function associated with the iterated filter con-
verged to sin(πt)/πt in time. Note that this limit function is infinitely differentiable.
In the Haar case, the lowpass filter, after normalization, gives

M0(ω) =
1 + e−jω

2
,

which converged to the box function, that is, it converged to a function with two
discontinuous points. In other words, the product in (4.4.21) converges to

∞∏

k=1

M0

( ω

2k

)

=
∞∏

k=1

(

1 + e−jω/2
k

2

)

= e−jω/2
sin(ω/2)

ω/2
. (4.4.22)

For an alternative proof of this formula, see Problem 4.11. Now consider a filter
with impulse response [12 , 1,

1
2 ], that is, the Haar lowpass filter convolved with itself.

The corresponding M0(ω) is

M0(ω) =
1 + 2e−jω + e−j2ω

4
=

(
1 + e−jω

2

)2

. (4.4.23)

The product (4.4.21) can thus be split into two parts; each of which converges to
the Fourier transform of the box function. Therefore, the limit function ϕ(t) is
the convolution of two boxes, or, the hat function. This is a continuous function
and is differentiable except at the points t = 0, 1 and 2. It is easy to see that
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if we have the Nth power instead of the square in (4.4.23), the limit function
will be the (N−1)-time convolution of the box with itself. This function is (N−1)-
times differentiable (except at integers where it is once less differentiable). These are
the well-known B-spline functions [76, 255] (see also Section 4.3.2). An important
fact to note is that each additional factor (1 + ejω)/2 leads to one more degree of
regularity. That is, zeros at ω = π in the discrete-time filter play an important role.
However, zeros at ω = π are not sufficient to insure regularity. We can see this in
the following counter-example [71]:

Example 4.3 Convergence Problems

Consider the orthonormal filter g0[n] = [1/
√
2, 0, 0, 1/

√
2] or M0(ω) = (1+e−j3ω)/2. The

infinite product in frequency becomes, following (4.4.22),

Φ(ω) =

∞
∏

k=1

M0

( ω

2k

)

= e−j3ω/2
sin(3ω/2)

3ω/2
, (4.4.24)

which is the Fourier transform of 1/3 times the indicator function of the interval [0, 3]. This
function is clearly not orthogonal to its integer translates, even though every finite iteration
of the graphical function is. That is, (4.2.21) is not satisfied by the limit. Also, while every
finite iteration is of norm 1, the limit is not. Therefore, we have failure of L2 convergence
of the infinite product.

Looking at the time-domain graphical function (see Figure 4.17), it is easy to check
that ϕ(i)(t) takes only the values 0 or 1, and therefore, there is no pointwise convergence
on the interval [0, 3]. Note that ϕ(i)(t) is not of bounded variation as i → ∞. Thus, even
though ϕ(i)(t) and Φ(i)(ω) are valid Fourier transform pairs for any finite i, their limits are
not; since ϕ(t) does not exist while Φ(ω) is given by (4.4.24). This simple example indicates
that the convergence problem is nontrivial.

A main point of the previous example is that failure of L2 convergence indicates
a breakdown of the orthonormal basis construction that is based on iterated filter
banks. Several sufficient conditions for L2 convergence have been given. Mallat
shows in [180] that a sufficient condition is

|M0(ω)| > 0, |ω| < π

2
.

It is easy to verify that the above example does not meet it since M0(π/3) = 0.
Another sufficient condition by Daubechies also allows one to impose regularity.
This will be discussed in Proposition 4.7. Necessary and sufficient conditions for
L2 convergence are more involved, and were derived by Cohen [55] and Lawton
[169, 170] (see [73] for a discussion of these conditions).

The next example considers the orthogonal filter family that was derived in
Section 3.2.3. It shows that very different behavior can be obtained within a family.
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ϕ(i)(t)

FIGURE 4.16 fignew4.4.6

(c)

(b)

(a)

. . .

. . .

Figure 4.17 Counter-example to convergence. The discrete-time filter has im-
pulse response [1/

√
2, 0, 0, 1/

√
2]. (a) ϕ(1)(t). (b) ϕ(2)(t). (c) ϕ(i)(t).

Example 4.4 Iteration of Length-4 Orthogonal Family

Consider a 4-tap orthogonal filter bank. From the cascade structure discussed in Sec-
tion 3.2.3 (Example 3.3) the 4-tap lowpass filter has the impulse response

g0[n] = [cosα0 cosα1, cosα1 sinα0,− sinα0 sinα1, cosα0 sinα1]. (4.4.25)

In order to force this filter to have a zero at ω = π, it is necessary that α0 + α1 = π/4.
Choosing α0 = π/3 and α1 = −π/12 leads to a double zero at ω = π and corresponds to
a Daubechies’ filter of length 4. In Figure 4.18, we show iterates of the orthogonal filter in
(4.4.25) from α0 = π/3 (the Daubechies’ filter) to α0 = π/2 (the Haar filter), with α1 being
equal to π/4−α0. As can be seen, iterated filters around the Daubechies’ filter look regular
as well. The continuity of the Daubechies’ scaling function will be shown below.

The above example should give an intuition for the notion of regularity. The Haar
filter, leading to a discontinuous function, is less regular than the Daubechies filter.
In the literature, regularity is somewhat loosely defined (continuity in [194], conti-
nuity and differentiability in [181]). As hinted in the spline example, zeros at the
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fignew4.4.8FIGURE 4.18
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Figure 4.18 Iterated orthogonal lowpass filters of length 4 with one zero at
ω = π (or α1 = π/4−α0). For α0 = π/3, there are two zeros at π and this leads
to a regular iterated filter of length 4. This corresponds to the Daubechies’
scaling function. The sixth iteration is shown.

aliasing frequency ω = π (or z = −1) play a key role for the regularity of the filter.
First, let us show that a zero at ω = π is necessary for the limit function to exist.
There are several proofs of this result (for example in [92]) and we follow Rioul’s
derivation [239].

Given a lowpass filter G0(z) and its iteration G
(i)
0 (z) (see (4.4.9)), consider the

associated graphical function ϕ(i)(t) (see (4.4.10)).

PROPOSITION 4.6 Necessity of a Zero at Aliasing Frequency

For the limit ϕ(t) = limi→∞ ϕ(i)(t) to exist, it is necessary that G0(−1) = 0.

PROOF

For the limit of ϕ(i)(t) to exist it is necessary that, as i increases, the even and odd samples

of g
(i)
0 [n] tend to the same limit sequence. This limit sequence has an associated limit

function ϕ(2t). Use the fact that (see 4.4.4)

G
(i)
0 (z) = G0(z) G

(i−1)
0 (z2) = (Ge(z

2) + z−1Go(z
2)) G

(i−1)
0 (z2),

where the subscripts e and o stand for even and odd-indexed samples of g0[n], respectively.

We can write the even and odd-indexed samples of g
(i)
0 [n] in z-transform domain as

G(i)
e (z) = Ge(z) G

(i−1)
0 (z),

G(i)
o (z) = Go(z) G

(i−1)
0 (z),
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FIGURE 4.19 fignew4.4.9
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Figure 4.19 Eighth iteration of the filter which fails to converge because of
the absence of an exact zero at ω = π. The filter is a Smith and Barnwell filter
of length 8 [271] (see Table 3.2).

or, in time domain

g
(i)
0 [2n] =

∑

k

g0[2k] g
(i−1)
0 [n− k], (4.4.26)

g
(i)
0 [2n+ 1] =

∑

k

g0[2k + 1] g
(i−1)
0 [n− k]. (4.4.27)

When considering the associated continuous function ϕ(i)(t) and its limit as i goes to infinity,
the left side of the above two equations tends to ϕ(2t). For the right side, note that k is
bounded while n is not. Because the intervals for the interpolation diminish as 1/2i, the

shift by k vanishes as i goes to infinity and g
(i−1)
0 [n−k] leads also to ϕ(2t). That is, (4.4.26)

and (4.4.27) become equal and

[

∑

k

g0[2k]

]

ϕ(2t) =

[

∑

k

g0[2k + 1]

]

ϕ(2t),

which, assuming that ϕ(2t) is not zero for some t, leads to

∑

k

g0[2k] =
∑

k

g0[2k + 1].

Since G0(e
jω)|ω=π =

∑

k g0[2k] −
∑

k g0[2k + 1], we have verified that if ϕ(t) is to exist,
the filter has necessarily a zero at ω = π.

Note that a zero at ω = π is not sufficient, as demonstrated by the filter with
impulse response [1/

√
2, 0, 0, 1/

√
2] (see Example 4.3). Another interpretation of

the above result can be made in Fourier domain, when considering the product in
(4.4.21). This product is 2π · 2i-periodic. Consider its value at ω = π2i:

i∏

k=1

M0(π2
(i−k)) = M0(π)

i−1∏

k=1

M0(2π2
(i−k−1)) = M0(π),
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since M0(ω) is 2π-periodic and M0(0) = 1. That is, unless M0(π) is exactly
zero, there is a nonzero Fourier component at an arbitrary high frequency. This

indicates that g
(i)
0 [n] and g

(i)
0 [2n+1] will never be the same. This results in highest

frequency “wiggles” in the iterated impulse response. As an example, we show, in
Figure 4.19, the iteration of a filter which is popular in subband coding [271], but
which does not have an exact zero at ω = π. The resulting iterated function has
small wiggles and will not converge. Note that most filters designed for subband
coding have high (but maybe not infinite) attenuation at ω = π, thus the problem
is usually minor.

A Sufficient Condition for Regularity In [71], Daubechies studies the regularity
of iterated filters in detail and gives a very useful sufficient condition for an iterated
filter and its associated graphical function to converge to a continuous function.
Factor M0(ω) as

M0(ω) =

(
1 + ejω

2

)N

R(ω).

Because of the above necessary condition, we know that N has to be at least equal
to 1. Define B as

B = supω∈[0,2π]|R(ω)|.
Then the following result due to Daubechies holds [71]:

PROPOSITION 4.7

If
B < 2N−1, (4.4.28)

then the limit function ϕ(i)(t) as i→∞ converges pointwise to a continuous
function ϕ(t) with the Fourier transform

Φ(ω) =

∞∏

k=1

M0

( ω

2k

)

. (4.4.29)

PROOF

It is sufficient to show that for a large enough ω, the decay of Φ(ω) is faster than C(1+|ω|)−1.
This indicates that ϕ(t) will be continuous. Rewrite (4.4.29) as follows:

∞
∏

k=1

M0

( ω

2k

)

=
∞
∏

k=1

(

1 + ejω/2
k

2

)N ∞
∏

k=1

R
( ω

2k

)

.

In the above, the first product on the right side is a smoothing part and equals

(

sin(ω/2)

ω/2

)N

,
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which leads to a decay of the order of C′(1 + |ω|)−N . But then, there is the effect of the
remainder R(ω). Recall that |R(0)| = 1. Now, |R(ω)| can be bounded above by 1+ c|ω|, for
some c, and thus |R(ω)| ≤ ec|ω|. Consider now ∏∞

k=1R
(

ω/2k
)

, for |ω| < 1. In particular,

sup|ω|<1

∞
∏

k=1

∣

∣

∣
R
( ω

2k

)∣

∣

∣
≤

∞
∏

k=1

ec(ω/2
k) = ecω(1/2+1/4+...) ≤ ec.

Thus, for |ω| < 1, we have an upper bound. For any ω, |ω| > 1, there exists J ≥ 1 such
that 2J−1 ≤ |ω| < 2J . Therefore, split the infinite product into two parts:

∞
∏

k=1

∣

∣

∣
R
( ω

2k

)∣

∣

∣
=

J
∏

k=1

∣

∣

∣
R
( ω

2k

)∣

∣

∣

∞
∏

k=1

∣

∣

∣
R
( ω

2J2k

)∣

∣

∣
.

Since |ω| < 2J , we can bound the second product by ec. The first product is smaller than,
or equal to BJ . Thus

∞
∏

k=1

∣

∣

∣R
( ω

2k

)∣

∣

∣ ≤ BJec.

Now, B < 2N−1 thus,

BJec < c′2J(N−1−ǫ) < c′′(1 + |ω|)N−1−ǫ.

Putting all this together, we finally get

∞
∏

k=1

M0

( ω

2k

)

< (1 + |ω|)−1−ǫ.

Let us check the Haar filter, or M0(ω) =
1
2(1+e

jω)×1. Here, N = 1 and the supre-
mum of the remainder is one. Therefore, the inequality (4.4.28) is not satisfied.
Since the bound in (4.4.28) is sufficient but not necessary, we cannot infer discon-
tinuity of the limit. However, we know that the Haar function is discontinuous at
two points. On the other hand, the length-4 Daubechies’ filter (see Example 4.4)
yields

M0(ω) =
1

4
(1 + e−jw)2

1

2
(1 +

√
3 + (1−

√
3)e−jw)

and the maximum of |R(ω)|, attained at ω = π, is B =
√
3. Since N = 2, the

bound (4.4.28) is met and continuity of the limit function ϕ(t) is proven.

A few remarks are in place. First, there are variations in using the above
sufficient condition. For example, one can test the cascade of l filters with respect
to upsampling by 2l. Calling Bl the following supremum,

Bl = supω∈[0,2π]

∣
∣
∣
∣
∣

l−1∏

k=0

R(2kω)

∣
∣
∣
∣
∣
,
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the bound (4.4.28) becomes
Bl < 2l(N−1).

Obviously, as l becomes large, we get a better approximation since the cascade
resembles the iterated function. Another variation consists in leaving some of the
zeros at ω = π in the remainder, so as to attenuate the supremum B. If there is a
factorization that meets the bound, continuity is shown.

Then, additional zeros at ω = π (beyond the one to ensure that the limit exists)
will ensure continuity, differentiability and so on. More precisely if, instead of
(4.4.28), we have

B < 2N−1−l, l = 1, 2, . . .

then ϕ(t) is l-times continuously differentiable.

Other Methods for Investigating Regularity Daubechies’ sufficient condition
might fail and the filter might still be regular. Another criterion will give a lower
bound on regularity. It is the Cohen’s fixed-point method [55] which we describe
briefly with an example.

ω
2π 4π 6π 8π4π/3

ω
2π 4π 6π 8π8π/3

ω
2π 4π 6π 8π

16π/3

16π/3

| M0(ω/2) |

| M0(ω/4) |

| M0(ω/8) |

16π/3

FIGURE 4.20 fignew4.4.11
Figure 4.20 Critical frequencies used in Cohen’s fixed point method (the shape
of the Fourier transform is only for the sake of example).

When evaluating the product (4.4.21), certain critical frequencies will align.
These are fixed points of the mapping ω 7→ 2ω modulo 2π. For example, ω = ±2π/3
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is a critical frequency. This can be seen in Figure 4.20 where we show M0(ω/2),
M0(ω/4) and M0(ω/8). It is clear from this figure that the absolute value of the
product of M0(ω/2), M0(ω/4) and M0(ω/8) evaluated at ω = 16π/3 is equal to
|M0(2π/3)|3. In general

i∏

k=1

∣
∣
∣M0

( ω

2k

)∣
∣
∣

∣
∣
∣
∣
∣
ω=2iπ/3

=

∣
∣
∣
∣
M0

(
2π

3

)∣
∣
∣
∣

i

.

From this, it is clear that if |M0 (2π/3)| is larger than 1/2, the decay of the Fourier
transform will not be of the order of 1/ω and continuity would be disproved. Be-
cause it involves only certain values of the Fourier transform, the fixed-point method
can be used to test large filters quite easily. For a thorough discussion of the fixed-
point method, we refer to [55, 57].

Another possible method for studying regularity uses L × L matrices corre-
sponding to a length-L filter downsampled by 2 (that is, the rows contain the
filter coefficients but are shifted by 2). By considering a subset of eigenvalues of
these matrices, it is possible to estimate the regularity of the scaling function using
Littlewood-Paley theory (which divides the Fourier domain into dyadic blocks and
uses norms on these dyadic blocks to characterize, for example, continuity). These
methods are quite sophisticated and we refer to [57, 73] for details.

Finally, Rioul [239, 242] derived direct regularity estimates on the iterated filters
which not only give sharp estimates but are quite intuitive. The idea is to consider

iterated filters g
(i)
0 [n] and the maximum difference between successive coefficients.

For continuity, it is clear that this difference has to go to zero. The normalization is
now different because we consider the discrete-time sequences directly. Normalizing
G0(z) such that G0(1) = 2 and requiring again the necessary condition G0(−1) = 0,
we have

lim
i→∞

max
n

∣
∣
∣g

(i)
0 [n+ 1]− g(i)0 [n]

∣
∣
∣ = 0,

where g
(i)
0 [n] is the usual iterated sequence. For the limit function ϕ(t) to be

continuous, Rioul shows that the convergence has to be uniform in n and that the
following bound has to be satisfied for a positive α:

max
∣
∣
∣g

(i)
0 [n+ 1]− g(i)0 [n]

∣
∣
∣ ≤ C2−iα.

Taking higher-order differences leads to testing differentiability as well [239, 242].
The elegance of this method is that it deals directly with the iterated sequences,
and associates discrete successive differences with continuous-time derivatives in an
intuitive manner. Because it is computationally oriented, it can be run easily on
large filters.
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4.4.4 Daubechies’ Family of Regular Filters and Wavelets

To conclude the discussion of iterated filters and regularity, we give the explicit
construction of Daubechies’ family of orthonormal wavelets. For more details, the
reader is referred to [71, 73]. Note that this is another derivation of the maximally
flat orthogonal filters studied in Chapter 3. Recall that perfect reconstruction
together with orthogonality can be expressed as (see Section 3.2.3)

|M0(e
jω)|2 + |M0(e

j(ω+π))|2 = 1, (4.4.30)

where M0(e
jω) = G0(e

jω)/
√
2 is normalized so that M0(1) = 1 and we assume

M0(π) = 0. For regularity, the following is imposed on M0(e
jω):

M0(e
jω) =

[
1

2
(1 + ejω)

]N

R(ejω)

where N ≥ 1. Note that R(1) = 1 and that |M0(e
jω)|2 can be written as

|M0(e
jω)|2 =

[

cos2
ω

2

]N
|R(ejω)|2. (4.4.31)

Since |R(ejω)|2 = R(ejω) · R∗(ejω) = R(ejω)R(e−jω), it can be expressed as a
polynomial in cosω or of sin2 ω/2 = (1 − cosω)/2. Using the shorthands y =
cos2(ω/2) and P (1− y) = |R(ejω)|2, we can write (4.4.30) using (4.4.31) as

yNP (1− y) + (1− y)NP (y) = 1, (4.4.32)

where

P (y) ≥ 0 for y ∈ [0, 1]. (4.4.33)

Suppose that we have a polynomial P (y) satisfying (4.4.32) and (4.4.33) and more-
over

supω|R(ejω)| = supy∈[0,1]|P (y)|
1
2 < 2N−1.

Then, there exists an orthonormal basis associated with G0(e
jω), since the iterated

filter will converge to a continuous scaling function (following Proposition 4.7) from
which a wavelet basis can be obtained (Theorem 4.5).

Thus, the problem becomes to find P (y) satisfying (4.4.32) and (4.4.33) fol-
lowed by extracting R(ejω) as the “root” of P . Daubechies shows [71, 73] that any
polynomial P solving (4.4.32) is of the form

P (y) =
N−1∑

j=0

(
N − 1 + j

j

)

yj + yNQ(y), (4.4.34)
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where Q is an antisymmetric polynomial. For the specific family in question,
Daubechies constructs filters of minimum order, that is, with Q ≡ 0 (see also
Problem 4.13). Note that such maximally flat filters (they have a maximum num-
ber of zeros at ω = π) have been derived long before filter banks and wavelets by
Herrmann [134], in the context of FIR filter design.

With such a P , the remaining task is to determine R. Using spectral factor-
ization, one can construct such a R from a given P as explained in Section 2.5.2.
Systematically choosing zeros inside the unit circle for R(ejω) one obtains the min-
imum phase solution for G0(e

jω). Choosing zeros inside and outside the unit circle
leads to mixed phase filters. There is no linear phase solution (except the Haar case
when N = 1 and R(ejω) = 1).

Example 4.5

Let us illustrate the construction for the case N = 2. Using (4.4.34) with N = 2, Q = 0,

P (y) = 1 + 2y.

From (4.4.32),

|R(ejω)|2 = P (1− y) = 3− 2 cos2(ω/2) = 2− cosω = 2− 1

2
ejw − 1

2
e−jw,

where we used y = cos2 ω/2 = 1/2(1 + cosω). Now take the spectral factorization of
|R(ejω)|2. The roots are r1 = 2 +

√
3 and r2 = 2−

√
3 = 1/r1. Thus

|R(ejω)|2 =
1

4− 2
√
3
[ejω − (2−

√
3)][e−jω − (2−

√
3)].

A possible R(ejω) is therefore,

R(ejω) =
1√
3− 1

[ejω − (2−
√
3)] =

1

2
[(1 +

√
3)ejω + 1−

√
3]

and the resulting M0(e
jω) is

M0(e
jω) =

[

1

2
(1 + ejω)

]2
1

2
[(1 +

√
3)ejw + 1−

√
3]

=
1

8
[(1 +

√
3)ej3ω + (3 +

√
3)ej2ω + (3−

√
3)ejω + 1−

√
3].

This filter is the 4-tap Daubechies’ filter (within a phase shift to make it causal and a scale
factor of 1/

√
2). That is, by computing the iterated filters and the associated continuous-

time functions (see (4.4.12)- (4.4.13)), one obtains the D2 wavelet and scaling function as
shown in Figure 4.4. The regularity (continuity) of this filter was discussed after Proposi-
tion 4.7.
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Figure 4.21 gives the iterated graphical functions for N = 3, . . . , 6 (the eighth
iteration is plotted and they converge to their corresponding scaling functions).
Recall that the case N = 2 is given in Figure 4.4. Table 4.2 gives the R(z) functions
for N = 2, . . . , 6, which can be factored into maximally regular filters. The lowpass
filters obtained by a minimum phase factorization are given in Table 4.3. Table 4.4
gives the regularity of the first few Daubechies’ filters.
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Figure 4.21 Daubechies’ iterated graphical functions for N = 3, . . . , 6 (eighth
iteration is plotted and they converge to their corresponding scaling functions).
Their regions of support are from 0 to 2N − 1 and thus only for N = 3, 4, they
are plotted in their entirety. For N = 5, 6, after t = 7.0, their amplitude is
negligible. Recall that the case N = 2 is given in Figure 4.4. (a) N = 3. (b)
N = 4. (c) N = 5. (d) N = 6.

This concludes our discussion of iterated filter bank constructions leading to
wavelet bases. Other variations are possible by looking at other filter banks such
as biorthogonal filter banks or IIR filter banks. Assuming regularity, they lead to
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Table 4.2 Minimum degree remainder polynomials R(z) such that
P (z) = 2−2N+1 (1 + z)N (1 + z−1)N R(z) is valid.

N Coefficients of R(z)

2 2−1[−1, 4,−1]
3 2−3[3,−18, 38,−18, 3]
4 2−4[−5, 40,−131, 208,−131, 40,−5]
5 2−7[35,−350, 1520,−3650, 5018,−3650, 1520,−350, 35]
6 2−8[−63, 756,−4067, 12768,−25374, 32216,−25374, 12768,−4067, 756,−63]

Table 4.3 First few maximally flat Daubechies’ filters. N is the number of zeros at
ω = π and equals L/2 where L is the length of the filter. The lowpass filter g0[n]
is given and the highpass filter can be obtained as g1[n] = (−1)ng0[−n+2N − 1].
These are obtained from a minimum phase factorization of P (z) corresponding
to Table 4.2.

g0[n] N = 2 N = 3 N = 4 N = 5 N = 6

g0[0] 0.48296291 0.33267 0.230377813309 0.16010239 0.111540743350
g0[1] 0.8365163 0.806891 0.714846570553 0.60382926 0.494623890398
g0[2] 0.22414386 0.459877 0.630880767930 0.724308528 0.751133908021
g0[3] -0.129409522 -0.135011 -0.027983769417 0.13842814 0.315250351709
g0[4] -0.08544 -0.187034811719 -0.24229488 -0.226264693965
g0[5] 0.03522 0.030841381836 -0.03224486 -0.129766867567
g0[6] 0.032883011667 0.07757149 0.097501605587
g0[7] -0.010597401785 -0.00624149 0.027522865530
g0[8] -0.01258075 -0.031582039318
g0[9] 0.003335725 0.000553842201
g0[10] 0.004777257511
g0[11] -0.001077301085

biorthogonal wavelet bases with compact support and wavelets with exponential
decay (see Section 4.6 for more details).

4.5 WAVELET SERIES AND ITS PROPERTIES

Until now, we have seen ways of building orthonormal bases with structure. It was
shown how such bases arise naturally from the multiresolution framework. We also
discussed ways of constructing these bases; both directly, in the Fourier domain,
and starting from discrete-time bases — filter banks.

The aim in this section is to define the wavelet series expansion together with its
properties, enumerate some general properties of the basis functions, and demon-
strate how one computes wavelet series expansion of a function.
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Table 4.4 Hölder regularity estimates
for the first few Daubechies’ filters
(from [73]). The estimates given be-
low are lower bounds. For example,
for N = 3, finer estimates show that
the function is actually differentiable
[73].

N α(N)

2 0.500
3 0.915
4 1.275
5 1.596
6 1.888

4.5.1 Definition and Properties

DEFINITION 4.8

Assuming a multiresolution analysis defined by Axioms (4.2.1–4.2.6) and the
mother wavelet ψ(t) given in (4.2.14), any function f ∈ L2(R) can be ex-
pressed as

f(t) =
∑

m,n∈Z
F [m,n] ψm,n(t), (4.5.1)

where

F [m,n] = 〈ψm,n(t), f(t)〉 =

∫ ∞

−∞
ψm,n(t) f(t)dt. (4.5.2)

We have assumed a real wavelet (otherwise, a conjugate is necessary). Equation
(4.5.2) is the analysis and (4.5.1) the synthesis formula. We will list several impor-
tant properties of the wavelet series expansion.

Linearity Suppose that the operator T is defined as

T [f(t)] = F [m,n] = 〈ψm,n(t), f(t)〉.

Then for any a, b ∈ R

T [a f(t) + b g(t)] = a T [f(t)] + b T [g(t)],

that is, the wavelet series operator is linear. Its proof follows from the linearity of
the inner product.
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Shift Recall that the Fourier transform has the following shift property: If a signal
and its Fourier transform pair are denoted by f(t) and F (ω) respectively, then the
signal f(t− τ) will have e−jωτF (ω) as its Fourier transform (see Section 2.4.2).

Consider now what happens in the wavelet series case. Suppose that the function
and its transform coefficient are denoted by f(t) and F [m,n] respectively. If we
shift the signal by τ , that is, f(t− τ),

F ′[m,n] =

∫ ∞

−∞
ψm,n(t) f(t− τ)dt

=

∫ ∞

−∞
2−m/2ψ(2−mt− n+ 2−mτ) f(t)dt.

For the above to be a coefficient from the original transform F [m,n], one must have
that

2−mτ ∈ Z,

or τ = 2mk, k ∈ Z. Therefore, the wavelet series expansion possesses the following
shift property: If a signal and its transform coefficient are denoted by f(t) and
F [m,n], then the signal f(t−τ), τ = 2mk, k ∈ Z, will have F [m′, n−2−m

′
τ ], m′ ≤

m as its transform coefficient, that is,

f(t− 2mk) ←→ F [m′, n− 2m−m′
k], k ∈ Z, m′ ≤ m.

Thus, if a signal has a scale-limited expansion

f(t) =
∑

n∈Z

M2∑

m=−∞
F [m,n] ψm,n(t),

then this signal will possess the weak shift property with respect to the shifts by
2M2k, that is

f(t− 2M2k) ←→ F [m,n − 2M2−mk], −∞ ≤ m ≤M2.

Scaling Recall the scaling property of the Fourier transform: If a signal and its
Fourier transform pair are denoted by f(t) and F (ω), then the scaled version of the
signal f(at) will have (1/|a|) · F (ω/a) as its transform (see Section 2.4.2).

The wavelet series expansion F ′[m,n] of f ′(t) = f(at), a > 0, is

F ′[m,n] =

∫ ∞

−∞
ψm,n(t) f(at) dt

=
1

a

∫ ∞

−∞
2−m/2ψ

(
2−mt
a
− n

)

f(t) dt.
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FIGURE 4.22 fignew4.5.1
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Figure 4.22 Dyadic sampling of the time-frequency plane in the wavelet series
expansion. The dots indicate the center of the wavelets ψm,n(t).

Thus, when 2−m/a = 2−p, p ∈ Z, or a = 2−k, k ∈ Z, then F ′[m,n] can be
obtained from F [m,n], the wavelet transform of f(t):

f(2−kt)←→ 2k/2F [m− k, n], k ∈ Z.

Scaling by factors which are not powers of two require reinterpolation. That is,
either one reinterpolates the signal and then takes the wavelet expansion, or some
interpolation of the wavelet series coefficients is made. The former method is more
immediate.

Parseval’s Identity The Parseval’s identity, as seen for the Fourier-type expan-
sions (see Section 2.4), holds for the wavelet series as well. That is, the orthonormal
family {ψm,n} satisfies (see Theorem 4.5)

∑

m,n∈Z
|〈ψm,n, f〉|2 = ‖f‖2, f ∈ L2(R).

Dyadic Sampling and Time-Frequency Tiling When considering a series ex-
pansion, it is important to locate the basis functions in the time-frequency plane.
The sampling in time, at scale m, is done with a period of 2m, since ψm,n(t) =
ψm,0(t − 2mn). In scale, powers of two are considered. Since frequency is the
inverse of scale, we find that if the wavelet is centered around ω0, then Ψm,n(ω)
is centered around ω0/2

m. This leads to a dyadic sampling of the time-frequency
plane, as shown in Figure 4.22. Note that the scale axis (or inverse frequency) is
logarithmic. On a linear scale, we have the equivalent time-frequency tiling as was
shown in Figure 2.12(d).
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fignew4.5.2FIGURE 4.23
Figure 4.23 (a) Region of coefficients F [m,n] which will be influenced by the
value of the function at t0. (b) Region of influence of the Fourier component
F (ω0).

Localization One of the reasons why wavelets are so popular is due to their ability
to have good time and frequency localization. We will discuss this next.

Time Localization Suppose that one is interested in the signal around t = t0. Then
a valid question is: Which values F [m,n] will carry some information about the
signal f(t) at t0, that is, which region of the (m,n) grid will give information about
f(t0)?

Suppose a wavelet ψ(t) is compactly supported on the interval [−n1, n2]. Thus,
ψm,0(t) is supported on [−n12m, n22m] and ψm,n(t) is supported on [(−n1 + n)2m,
(n2 + n)2m]. Therefore, at scale m, wavelet coefficients with index n satisfying

(−n1 + n)2m ≤ t0 ≤ (n2 + n)2m,

will be influenced. This can be rewritten as

2−mt0 − n2 ≤ n ≤ 2−mt0 + n1.

Figure 4.23(a) shows this region on the (m,n) grid.

The converse question is: Given a point F [m0, n0] in the wavelet series expan-
sion, which region of the signal contributed to it? From the support of ψm,n(t), it
follows that f(t) for t satisfying

(−n1 + n0)2
mo ≤ t ≤ (n2 + n0)2

m0

influences F [m0, n0].
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Frequency Localization Suppose we are interested in localization, but now in the
frequency domain. Since the Fourier transform of ψm,n(t) = 2−m/2ψ(2−mt − n) is
2m/2 ·Ψ(2mω) · e−j2mnω, we can write F [m,n] using Parseval’s formula as

F [m,n] =

∫ ∞

−∞
ψm,n(t) f(t) dt

=
1

2π
2m/2

∫ ∞

−∞
F (ω) Ψ∗(2mω) ej2

mnω dω.

Now, suppose that a wavelet ψ(t) vanishes in the Fourier domain outside the region
[ωmin, ωmax].

6 At scale m, the support of Ψm,n(ω) will be [ωmin/2
m, ωmax/2

m].
Therefore, a frequency component at ω0 influences the wavelet series at scale m if

ωmin

2m
≤ ω0 ≤

ωmax

2m

is satisfied or if the following range of scales is influenced:

log2

(
ωmin

ω0

)

≤ m ≤ log2

(
ωmax

ω0

)

.

This is shown in Figure 4.23(b). Conversely, given a scale m0, all frequencies of the
signal between ωmin/2

m0 and ωmax/2
m0 will influence the expansion at that scale.

Existence of Scale-Limited Signals Because of the importance of bandlimited
signals in signal processing, a natural question is: Are there any scale-limited sig-
nals? An easy way to construct such a signal would be to add, for example, Haar
wavelets from a range of scales m0 ≤ m ≤ m1. Thus, the wavelet series expansion
will posses a limited number of scales; or transform coefficients F [m,n] will exist
only for m0 ≤ m ≤ m1.

However, note what happens with the signal f(t − ε), for ε not a multiple of
2m1 . The scale-limitedness property is lost, and the expansion can have an infinite
number of coefficients. For more details, see [116] and Problem 4.1. Note that the
sinc wavelet expansion does not have this problem, since it is intrinsically band/scale
limited.

Characterization of Singularities The Fourier transform and Fourier series can
be used to characterize the regularity of a signal by looking at the decay of the
transform or series coefficients (see Appendix 2.C.2). One can use the wavelet
transform and the wavelet series behavior in a similar way. There is one notable

6Therefore, the wavelet cannot be compactly supported. However, the discussion holds approx-
imately for wavelets which have most of their energy in the band [ωmin, ωmax].
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FIGURE 4.24 fignew4.5.3

0.5 1.0 1.5 2.0 2.5 3.0

Time

0

0.5

1

1.5

A
m
p
l
i
t
u
d
e

Figure 4.24 Two-scale equation for the D2 scaling function given in Figure 4.4(a).

advantage over the Fourier case, however, in that one can characterize local regular-
ity. Remember that the Fourier transform gives a global characterization only. The
wavelet transform and the wavelet series, because of the fact that high frequency
basis functions become arbitrarily sharp in time, allow one to look at the regular-
ity at a particular location independent of the regularity elsewhere. This property
will be discussed in more detail for the continuous-time wavelet transform in Chap-
ter 5. The basic properties of regularity characterization carry over to the wavelet
series case since it is a sampled version of the continuous wavelet transform, and
since the sampling grid becomes arbitrarily dense at high frequencies (we consider
“well-behaved” functions only, that is, of bounded variation).

In a dual manner, we can make statements about the decay of the wavelet series
coefficients depending on the regularity of the analyzed signal. This gives a way to
quantify the approximation property of the wavelet series expansion for a signal of
a given regularity. Again, the approximation property is local (since regularity is
local).

Note that in all these discussions, one assumes that the wavelet is more regular
than the signal (otherwise, the wavelet’s regularity interferes). Also, because of the
sampling involved in the wavelet series, one might have to go to very fine scales in
order to get good estimates. Therefore, it is easier to use the continuous wavelet
transform or a highly oversampled discrete-time wavelet transform (see Chapter 5
and [73]).

4.5.2 Properties of Basis Functions

Let us summarize some of the important properties of the wavelet series basis
functions. While some of them (such as the two-scale equation property) have been
seen earlier, we will summarize them here for completeness.
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Two-Scale Equation Property The scaling function can be built from itself (see
Figure 4.24). Recall the definition of a multiresolution analysis. The scaling func-
tion ϕ(t) belongs to V0. However, since V0 ⊂ V−1, ϕ(t) belongs to V−1 as well.
We know that ϕ(t− n) is an orthonormal basis for V0 and thus,

√
2ϕ(2t− n) is an

orthonormal basis for V−1. This means that any function from V0, including ϕ(t),
can be expressed as a linear combination of the basis functions from V−1, that is,
ϕ(2t− n). This leads to the following two-scale equation

ϕ(t) =
√
2
∑

n

g0[n] ϕ(2t − n). (4.5.3)

On the other hand, using the same argument for the wavelet ψ(t) ∈W0 ⊂ V−1, one
can see that

ψ(t) =
√
2
∑

n

g1[n] ϕ(2t− n). (4.5.4)

These two relations can be expressed in the Fourier domain as

Φ(ω) =
1√
2

∑

n

g0[n]e
−jn(ω/2) Φ

(ω

2

)

= M0

(ω

2

)

Φ
(ω

2

)

, (4.5.5)

Ψ(ω) =
1√
2

∑

n

g1[n]e
−jn(ω/2) Φ

(ω

2

)

= M1

(ω

2

)

Φ
(ω

2

)

. (4.5.6)

As an illustration, consider the two-scale equation in the case of the Daubechies’
scaling function. Figure 4.24 shows how the D2 scaling function is built using four
scaled and shifted versions of itself.

The functionsM0(ω) andM1(ω) in (4.5.5) and (4.5.6) are 2π-periodic functions
and correspond to scaled versions of filters g0[n], g1[n] (see (4.4.5) and (4.4.8)) which
can be used to build filter banks (see Section 4.5.2 below).

The two-scale equation can also be used as a starting point in constructing a
multiresolution analysis. In other words, instead of starting from an axiomatic
definition of a multiresolution analysis, choose ϕ(t) such that (4.5.3) holds, with
∑

n |g0[n]|2 <∞ and 0 < A ≤
∑

n |Φ(ω + 2πn)|2 ≤ B < ∞. Then define Vm to be
the closed subspace spanned by 2−m/2ϕ(2−mt−n). All the other axioms follow (an
orthogonalization step is involved if ϕ(t) is not orthogonal to its integer translates).
For more details, refer to [73].

Moment Properties of Wavelets Recall that the lowpass filter g0[n], in an iter-
ated filter bank scheme, has at least one zero at ω = π and thus, g1[n] has at least
one zero at ω = 0. Since Φ(0) = 1 (from the normalization of M0(ω)) it follows
that Ψ(ω) has at least one zero at ω = 0. Therefore,

∫ ∞

−∞
ψ(t) dt = Ψ(0) = 0,



278 CHAPTER 4

which is to be expected since ψ(t) is a bandpass function. In general, if G0(e
jω)

has an Nth-order zero at ω = π, the wavelet Ψ(ω) has an Nth-order zero at ω = 0.
Using the moment theorem of the Fourier transform (see Section 2.4.2), it follows
that ∫ ∞

−∞
tnψ(t) dt = 0, n = 0, . . . , N − 1,

that is, the first N moments of the wavelet are zero. Besides wavelets constructed
from iterated filter banks, we have seen Meyer’s and Battle-Lemarié wavelets.
Meyer’s wavelet, which is not based on the iteration of a rational function, has
by construction an infinite “zero” at the origin, that is, an infinite number of zero
moments. The Battle-Lemarié wavelet, on the other hand, is based on the Nth-
order B-spline function. The orthogonal filter G0(e

jω) has an (N +1)th-order zero
at π (see (4.3.18)) and the wavelet thus has N + 1 zero moments.

The importance of zero moments comes from the following fact. Assume a
length L wavelet with N zero moments. Assume that the function f(t) to be
represented by the wavelet series expansion is polynomial of order N − 1 in an
interval [t0, t1]. Then, for sufficiently small scales (such that 2mL < (t1− t0)/2) the
wavelet expansion coefficients will automatically vanish in the region corresponding
to [t0, t1] since the inner product with each term of the polynomial will be zero.
Another view is to consider the Taylor expansion of a function around a point t0,

f(t0 + ǫ) = f(t0) +
f ′(t0)
1!

ǫ+
f ′′(t0)
2!

ǫ2 + . . . .

The wavelet expansion around t0 now depends only on the terms of degree N and
higher of the Taylor expansion since the terms 0 through N − 1 are zeroed out
because of the N zero moments of the wavelet. If the function is smooth, the
high-order terms of the Taylor expansion are very small. Because the wavelet series
coefficients now depend only on Taylor coefficients of order N and larger, they will
be very small as well.

These approximation features of wavelets with zero moments are important in
approximation of smooth functions and operators and also in signal compression
(see Chapter 7).

Smoothness and Decay Properties of Wavelets In discussing the iterated fil-
ters leading to the Daubechies’ wavelets, we pointed out that besides convergence,
continuity or even differentiability of the wavelet was often desirable. While this
regularity of the wavelet is linked to the number of zeros at ω = π of the lowpass
filter G0(e

jω), the link is not as direct as in the case of the zero-moment property
seen above. In particular, there is no direct relation between these two properties.
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Table 4.5 Zero moments, regularity, and decay of various wavelets. α(N)
is a linearly increasing function of N which approaches 0.2075·N for large
N . The Battle-Lemarié wavelet of order N is based on a B-spline of order
N − 1. The Daubechies’ wavelet of order N corresponds to a length-2N
maximally flat orthogonal filter.

decay or decay or
Wavelet # of zero moments regularity r support in support in

time frequency

Haar 1 0 [0,1] 1/ω
Sinc ∞ ∞ 1/t [π, 2π]
Meyer ∞ ∞ 1/poly. [2π/3, 8π/3]

Battle-Lemarié N N exponential 1/ωN

Daubechies N N ⌊α(N)⌋ [0, 2N − 1] 1/ωα(N)

The regularity of all the wavelets discussed so far is indicated in Table 4.5. Reg-
ularity r means that the rth derivative exists almost everywhere. The localization
or decay in time and frequency of all these wavelets is also indicated in the table.

Filter Banks Obtained from Wavelets Consider again (4.5.3) and (4.5.4). An
interesting fact is that using the coefficients g0[n] and g1[n] for the synthesis lowpass
and highpass filters respectively, one obtains a perfect reconstruction orthonormal
filter bank (as defined in Section 3.2.3). To check the orthonormality conditions
for these filters use the orthonormality conditions of the scaling function and the
wavelet. Thus, start from

〈ϕ(t+ l), ϕ(t + k)〉 = δ[k − l],
or

〈ϕ(t+ l), ϕ(t+ k)〉 =

〈
∑

n

g0[n] ϕ(2t+ 2l − n),
∑

m

g0[m] ϕ(2t+ 2k −m)

〉

=

〈
∑

n′
g0[n

′ + 2l] ϕ(2t− n′),
∑

m′
g0[m

′ + 2k] ϕ(2t −m′)

〉

=
1

2

∑

n′
g0[n

′ + 2l] g0[n
′ + 2k] = δ[l − k],

that is, the lowpass is orthogonal to its even translates. In a similar fashion, one can
show that the lowpass filter is orthogonal to the highpass and its even translates.
The highpass filter is orthogonal to its even translates as well. That is, {gi[n−2k]},
i = 0, 1, is an orthonormal set, and it can be used to build an orthogonal filter bank
(see Section 3.2.3).
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4.5.3 Computation of the Wavelet Series and Mallat’s Algori thm

An attractive feature of the wavelet series expansion is that the underlying mul-
tiresolution structure leads to an efficient discrete-time algorithm based on a filter
bank implementation. This connection was pointed out by Mallat [181]. The com-
putational procedure is therefore referred to as Mallat’s algorithm.

Assume we start with a function f(t) ∈ V0 and we are given the sequence
f (0)[n] = 〈ϕ(t− n), f(t)〉, n ∈ Z. That is

f(t) =
∞∑

n=−∞
f (0)[n] ϕ(t− n). (4.5.7)

We also assume that the axioms of multiresolution analysis hold. In searching for
projections of f(t) onto V1 and W1, we use the fact that ϕ(t) and ψ(t) satisfy
two-scale equations. Consider first the projection onto V1, that is

f (1)[n] =

〈
1√
2
ϕ

(
t

2
− n

)

, f(t)

〉

. (4.5.8)

Because ϕ(t) =
√
2
∑

k g0[k] ϕ(2t− k),

1√
2
ϕ

(
t

2
− n

)

=
∑

k

g0[k] ϕ(t− 2n− k). (4.5.9)

Thus, (4.5.8) becomes

f (1)[n] =
∑

k

g0[k] 〈ϕ(t− 2n− k), f(t)〉,

and using (4.5.7),

f (1)[n] =
∑

k

∑

l

g0[k] f
(0)[l] 〈ϕ(t − 2n − k), ϕ(t− l)〉. (4.5.10)

Because of the orthogonality of ϕ(t) with respect to its integer translates, the inner
product in the above equation is equal to δ[l − 2n − k]. Therefore, only the term
with l = 2n− k is kept from the second summation. With a change of variable, we
can write (4.5.10) as

f (1)[n] =
∑

k

g0[k − 2n] f (0)[k].

With the definition g̃0[n] = g0[−n], we obtain

f (1)[n] =
∑

k

g̃0[2n − k] f (0)[k], (4.5.11)
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that is, the coefficients of the projection onto V1 are obtained by filtering f (0) with
g̃0 and downsampling by 2. To calculate the projection onto W1, we use the fact
that ψ(t) =

√
2
∑

k g1[k] · ϕ(2t−k). Calling d(1)[n] the coefficients of the projection
onto W1, or

d(1)[n] = 〈 1√
2
ψ

(
t

2
− n

)

, f(t)〉,

and using the two-scale equation for ψ(t) as well as the expansion for f(t) given in
(4.5.7), we find, similarly to (4.5.9–4.5.11)

d(1)[n] =
∑

k

∑

l

g1[k] f
(0)[l] 〈ϕ(t− 2n− k), ϕ(t − l)〉

=
∑

k

∑

l

g1[k] f
(0)[l] δ[l − 2n− k]

=
∑

l

g1[l − 2n] f (0)[l] =
∑

l

g̃1(2n − l) f (0)[l],

where g̃1[n] = g1[−n]. That is, the coefficients of the projection onto W1 are
obtained by filtering f (0) with g̃1 and downsampling by 2, exactly as we obtained the
projection onto V1 using g̃0. Of course, projections onto V2 andW2 can be obtained
similarly from filtering f (1) and downsampling by 2. Therefore, the projections
onto Wm, m = 1, 2, 3, . . . are obtained from m − 1 filtering with g̃0[n] followed by
downsampling by 2, as well as a final filtering by g̃1[n] and downsampling. This
purely discrete-time algorithm to implement the wavelet series expansion is depicted
in Figure 4.25.

A key question is how to obtain an orthogonal projection f̂(t) onto V0 from an
arbitrary signal f(t) . Because {ϕ(t−n)} is an orthonormal basis for V0, f̂(t) equals

f̂(t) =
∑

n

〈ϕ(t− n), f(t)〉 ϕ(t− n),

and f̂(t) − f(t) is orthogonal to ϕ(t − n), n ∈ Z. Thus, given an initial signal
f(t), we have to compute the set of inner products f (0)(n) = 〈ϕ(t − n), f(t)〉.
This, unlike the further decomposition which involves only discrete-time processing,
requires continuous-time processing. However, if V0 corresponds to sufficiently fine
resolution compared to the resolution of the input signal f(t), than sampling f(t)
will be sufficient. This follows because ϕ(t) is a lowpass filter with an integral equal
to 1. If f(t) is smooth and ϕ(t) is sufficiently short-lived, then we have

〈ϕ(t− n), f(t)〉 ≃ f(n).

Of course, if V0 is not fine enough, one can start with V−m for m sufficiently large
so that

〈2m2 ϕ (2mt− n) , f(t)〉 ≃ 2−m/2f(2−mn).
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FIGURE 4.25 fignew4.5.4
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Figure 4.25 Computation of the wavelet series coefficients. Starting with the
coefficients f (0)[n] = 〈ϕ(t − n), f(t)〉, n ∈ Z, we obtain the wavelet expansion
coefficient by a filter bank algorithm.

If f(t) has some regularity (for example, it is continuous), there will be a resolution
at which sampling is a good enough approximation of the inner products needed
to begin Mallat’s algorithm. Generalizations of Mallat’s algorithm, which include
more general initial approximation problems, are derived in [261] and [296].

4.6 GENERALIZATIONS IN ONE DIMENSION

In this section, we discuss some of the more common generalizations in one dimen-
sion, most notably, the biorthogonal and recursive filter cases, as well as wavelets
obtained from multichannel filter banks. For treatment of wavelets with rational
dilation factors see [16] and [33].

4.6.1 Biorthogonal Wavelets

Instead of orthogonal wavelet families, one can construct biorthogonal ones, that
is, the wavelet used for the analysis is different from the one used at the synthesis
[58]. Basically, we relax the orthogonality requirement used so far in this chapter.
However, we still maintain the requirement that the set of functions ψm,n or ψ̃k,l
are linearly independent and actually form a basis. In Chapter 5, this requirement
will be relaxed, and we will work with linearly dependent sets or frames. Calling
{ψm,n(t)} and {ψ̃m,n(t)}7 the families used at synthesis and analysis respectively
(m and n stand for dilation and shift) then, in a biorthogonal family, the following

7Note that here, the “ ˜ ” does not denote time reversal, but is used for a dual function.
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relation is satisfied:

〈ψm,n(t), ψ̃k,l(t)〉 = δ[m− k] δ[n− l]. (4.6.1)

If in addition the family is complete in a given space such as L2(R), then any
function of the space can be written as

f(t) =
∑

m

∑

n

〈ψm,n, f〉 ψ̃m,n(t) (4.6.2)

=
∑

m

∑

n

〈ψ̃m,n, f〉 ψm,n(t), (4.6.3)

since ψ and ψ̃ play dual roles. There are various ways to find such biorthogonal
families. For example, one could construct a biorthogonal spline basis by simply
not orthogonalizing the Battle-Lemarié wavelet.

Another approach consists in starting with a biorthogonal filter bank and using
the iterated filter bank method just as in the orthogonal case. Now, both the
analysis and the synthesis filters (which are not just time-reversed versions of each
other) have to be iterated. For example, one can use finite-length linear phase filters
and obtain wavelets with symmetries and compact support (which is impossible in
the orthogonal case).

In a biorthogonal filter bank with analysis/synthesis filters H0(z), H1(z), G0(z),
and G1(z), perfect reconstruction with FIR filters means that (see (3.2.21))

G0(z)H0(z) +G0(−z)H0(−z) = 2 (4.6.4)

and

H1(z) = −z2k+1G0(−z), (4.6.5)

G1(z) = z−2k−1H0(−z) (4.6.6)

following (3.2.18), where det(Hm(z)) = 2z2k+1 (we assume noncausal analysis filters
in this discussion). Now, given a polynomial P (z) satisfying P (z) + P (−z) = 2,
we can factor it into P (z) = G0(z)H0(z) and use {H0(z), G0(z)} as the analy-
sis/synthesis lowpass filters of a biorthogonal perfect reconstruction filter bank (the
highpass filters follow from (4.6.5–4.6.6).

We can iterate such a biorthogonal filter bank on the lowpass channel and find
equivalent iterated filter impulse responses. Note that now, analysis and synthesis
impulse responses are not simply time-reversed versions of each other (as in the
orthogonal case), but are typically very different (since they depend on H0(z) and
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G0(z), respectively). We can define the iterated lowpass filters as

H
(i)
0 (z) =

i−1∏

k=0

H0(z
2k),

G
(i)
0 (z) =

i−1∏

k=0

G0(z
2k).

For the associated limit functions to converge, it is necessary that both H0(z) and
G0(z) have a zero at z = −1 (see Proposition 4.6). Therefore, following (4.6.4), we
have that

G0(1) H0(1) =

(
∑

n

g0[n]

)(
∑

n

h0[n]

)

= 2.

That is, we can “normalize” the filters such that
∑

n

g0[n] =
∑

n

h0[n] =
√
2.

This is necessary for the iteration to be well-defined (there is no square normaliza-
tion as in the orthogonal case). Define

M̃0(ω) =
H0(e

jω)√
2

, M0(ω) =
G0(e

jω)√
2

and the associated limit functions

Φ̃(ω) =
∞∏

k=1

M̃0

( ω

2k

)

Φ(ω) =
∞∏

k=1

M0

( ω

2k

)

where the former is the scaling function at analysis (within time reversal) and the
latter is the scaling function at synthesis. These two scaling functions can be very
different, as shown in Example 4.6.

Example 4.6

Consider a biorthogonal filter bank with length-4 linear phase filters. This is a one-parameter
family with analysis and synthesis lowpass filters given by (α 6= ±1):

H0(z) =
1√

2(α+ 1)
(1 + αz + αz2 + z3),

G0(z) =
1√

2(α− 1)
(−1 + αz−1 + αz−2 − z−3).
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Figure 4.26 Iteration of a lowpass filter with impulse response cα · [1, α, α, 1] for
α ∈ [−3 . . . 3]. The sixth iteration is shown. For α = 3, the iteration converges
to a quadratic spline. Note that for α = 0, there is no convergence and α = ±1
does not correspond to a biorthogonal filter bank.

In Figure 4.26 we show the iteration of the filter H0(z) for a range of values α. Looking at
the iterated filter for α and −α, one can see that there is no solution having both a regular
analysis and a regular synthesis filter. For example, for α = 3, the analysis filter converges
to a quadratic spline function, while the iterated synthesis filter exhibits fractal behavior
and no regularity.

In order to derive the biorthogonal wavelet family, we define

M̃1(ω) =
H1(e

jω)√
2

, M1(ω) =
G1(e

jω)√
2

, (4.6.7)

as well as (similarly to (4.4.15))

Ψ̃(ω) = M̃1

(ω

2

) ∞∏

k=2

M̃0

( ω

2k

)

, (4.6.8)

Ψ(ω) = M1

(ω

2

) ∞∏

k=2

M0

( ω

2k

)

.

Note that the regularity of the wavelet is the same as that of the scaling func-
tion (we assume FIR filters). Except that we define scaling functions and wavelets
as well as their duals, the construction is analogous to the orthogonal case. The
biorthogonality relation (4.6.1) can be derived similarly to the orthogonal case (see
Proposition 4.4), but using properties of the underlying biorthogonal filter bank
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Figure 4.27 Biorthogonal wavelet bases. The scaling function ϕ(t) is the hat
function or linear spline (shown in Figure 4.12(b)). (a) Biorthogonal scaling
function ϕ̃(t) based on a length-5 filter. (b) Biorthogonal scaling function ϕ̃′(t)
based on a length-9 filter. (c) Wavelet ψ′(t) which is piecewise linear. (d) Dual
wavelet ψ̃′(t).

instead [58, 319]. As can be seen in the previous example, a difficult task in design-
ing biorthogonal wavelets is to guarantee simultaneous regularity of the basis and
its dual.8 To illustrate this point further, consider the case when one of the two
wavelet bases is piecewise linear.

Example 4.7 Piecewise Linear Biorthogonal Wavelet Bases

Choose G0(z) = 1/2
√
2 (z+2+ z−1). It can be verified that the associated scaling function

ϕ(t) is the triangle function or linear B-spline. Now, we have to choose H0(z) so that (i)

8Regularity of both the wavelet and its dual is not necessary. Actually, they can be very different
and still form a valid biorthogonal expansion.
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(4.6.4) is satisfied, (ii) H0(−1) = 0, and (iii) ϕ̃(t) has some regularity. First, choose

H0(z) =
1

4
√
2
(−z2 + 2z + 6 + 2z−1 − z−2) =

1

4
√
2
· (1 + z)(1 + z−1)(−z + 4− z−1)

which satisfies (i) and (ii) above. As for regularity, we show the iterated filter H
(i)
0 (z) in

Figure 4.27(a) leading to an approximation of ϕ̃(t). As can be seen, the dual scaling function
is very “spiky”. Instead, we can take a higher-order analysis lowpass filter, in particular
having more zeros at z = −1. For example, using

H ′
0(z) =

1

64
√
2
(1 + z)2(1 + z−1)2(3z2 − 18z + 38− 18z−1 + 3z−2)

leads to a smoother dual scaling function ϕ̃′(t) as shown in Figure 4.27(b). The wavelet ψ′(t)
and its dual ψ̃′(t) are shown in Figure 4.27(c) and (d). Note that both of these examples
are simply a refactorization of the autocorrelation of the Daubechies’ filters for N = 2 and
3, respectively (see Table 4.2).

Given the vastly different behavior of the wavelet and its dual, a natural question
that comes to mind is which of the two decomposition formulas, (4.6.2) or (4.6.3),
should be used. If all wavelet coefficients are used, and we are not worried about
the speed of convergence of the wavelet series, then it does not matter. However, if
approximations are to be used (as in image compression), then the two formulas can
exhibit different behavior. First, zero moments of the analyzing wavelet will tend
to reduce the number of significant wavelet coefficients (see Section 4.5.2) and thus,
one should use the wavelet with many zeros at ω = 0 for the analysis. Since ψ̃(ω)
involves H1(e

jω) (see (4.6.7–4.6.8)) and H1(z) is related to G0(−z), zeros at the
origin for ψ̃(ω) correspond to zeros at ω = π for G0(e

jω). Thus many zeros at z = −1
in G0(z) will give the same number of zero moments for ψ̃(ω) and contribute to a
more compact representation of smooth signals. Second, the reconstructed signal
is a linear combination of the synthesis wavelet and its shifts and translates. If
not all coefficients are used in the reconstruction, a subset of wavelets should give
a “close” approximation to the signal and in general, smooth wavelets will give a
better approximation (for example in a perceptual sense for image compression).
Again, smooth wavelets at the synthesis are obtained by having many zeros at
z = −1 in H0(z). In practice, it turns out that (4.6.2) and (4.6.3) indeed lead to
a different behavior (for example in image compression) and usually, the schemes
having smooth synthesis scaling function and wavelet are preferred [14].

This concludes our brief overview of biorthogonal wavelet constructions based
on filter banks. For more material on this topic, please refer to [58] (which proves
completeness of the biorthogonal basis under certain conditions on the filters), [289]
(which discusses general properties of biorthogonal wavelet bases) and [130, 319]
(which explores further properties of biorthogonal filter banks useful for designing
biorthogonal wavelets).
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4.6.2 Recursive Filter Banks and Wavelets with Exponential Decay

In Section 3.2.5, filter banks using recursive or IIR filters were discussed. Just
like their FIR counterparts, such filter banks can be used to generate wavelets
by iteration [130, 133]. We will concentrate on the orthogonal case, noting that
biorthogonal solutions are possible as well.

We start with a valid autocorrelation P (z), that is, P (z)+P (−z) = 2, but where
P (z) is now a ratio of polynomials. The general form of such a P (z) is given in
(3.2.75) and a distinctive feature is that the denominator is a function of z2. Given
a valid P (z), we can take one of its spectral factors. Call this spectral factor G0(z)
and use it as the lowpass synthesis filter in an orthogonal recursive filter bank. The
other filters follow as usual (see (3.2.76–3.2.77)) and we assume that there is no
additional allpass component (this only increases complexity, but does not improve
frequency selectivity).

Assume that G0(z) has at least one zero at z = 1 and define M0(w) = 1/
√
2 ·

G0(e
jω) (thus ensuring that M0(0) = 1). As usual, we can define the iterated filter

G
(i)
0 (z) (4.4.9) and the graphical function ϕ(i)(t) (4.4.10). Assuming convergence

of the graphical function, the limit will be a scaling function ϕ(t) just as in the
FIR case. The two-scale equation property holds (see (4.4.20)), the only difference
being that now, an infinite number of ϕ(2t− n)’s are involved.

An interesting question arises: What are the maximally flat IIR filters, or the
equivalent of the Daubechies’ filters? This question has been studied by Herley,
who gave the class of solutions and the associated wavelets [130, 133]. Such max-
imally flat IIR filters lead to scaling functions and wavelets with high regularity
and exponential decay in time domain. Because IIR filters have better frequency
selectivity than FIR filters for a given computational complexity, it turns out that
wavelets based on IIR filters offer better frequency selectivity as well. Interestingly,
the most regular wavelets obtained with this construction are based on very classic
filters, namely Butterworth filters (see Examples 2.2 and 3.6).

Example 4.8 Wavelets based on Butterworth Filters

The general form of the autocorrelation P (z) of a half-band digital Butterworth filter is
given in (3.2.78). Choose N = 5 and the spectral factorization of P (z) given in (3.2.79–
3.2.80). Then, the corresponding scaling function and wavelet (actually, an approximation
based on the sixth iteration) are shown in Figure 4.28. These functions have better regularity
(twice differentiable) than the corresponding Daubechies’ wavelets but do not have compact
support.

The Daubechies’ and Butterworth maximally flat filters are two extreme cases to
solving for a minimum degree autocorrelation R(z) such that

(1 + z)N (1 + z−1)NR(z) + (1− z)N (1− z−1)NR(−z) = 2
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is satisfied. In the Daubechies’ solution, R(z) has zeros only, while in the Butter-
worth case, R(z) is all-pole. For N ≥ 4, there are intermediate solutions where
R(z) has both poles and zeros and these are described in [130, 133]. The regularity
of the associated wavelets is very close to the Butterworth case and thus, better
than the corresponding Daubechies’ wavelets.

The freedom gained by going from FIR to IIR filters allows the construction of
orthogonal wavelets with symmetries or linear phase; a case excluded in the FIR
or wavelet with compact support case (except for the Haar wavelet). Orthogonal
IIR filter banks having linear phase filters were briefly discussed in Section 3.2.5.
In particular, the example derived in (3.2.81–3.2.82) is relevant for wavelet con-
structions. Take synthesis filters G0(z) = A(z2) + z−1A(z−2) and G1(z) = G0(−z)
(similar to (3.2.81)) and A(z) as the allpass given in (3.2.82). Then

G0(z) =
1√
2

(1 + z−1)(49 − 20z−1 + 198z−2 − 20z−3 + 49z−4)

(15 + 42z−2 + 7z−4)(7 + 42z−2 + 15z−4)

has linear phase and five zeros at z = −1. It leads, through iteration, to a smooth,
differentiable scaling function and wavelet with exponential decay (but obviously
noncausal).

4.6.3 Multichannel Filter Banks and Wavelet Packets

Consider the tree-structured filter bank case first and assume that the lowpass
filter g0[n] is regular and orthogonal to its even translates. Thus, there is a limit
function ϕ(t) which satisfies a two-scale equation. However, ϕ(t) satisfies also two-
scale equations with scale changes by any power of 2 (by iteration). The linear

combination is given by the iterated filter g
(i)
0 [n]:

ϕ(t) = 2i/2
L(i)−1∑

k=0

g
(i)
0 [k]ϕ(2it− k).

Then, we can design different “wavelet” bases based on iterated low and highpass
filters. Let us take a simple example. Consider the following four filters, corre-
sponding to a four-channel filter bank derived from a binary tree:

F0(z) = G0(z)G0(z
2) F1(z) = G0(z)G1(z

2), (4.6.9)

F2(z) = G1(z)G0(z
2) F3(z) = G1(z)G1(z

2). (4.6.10)

This corresponds to an orthogonal filter bank as we had seen in Section 3.3. Call
the impulse responses fi[n]. Then, the following ϕ(t) is a scaling function (with
scale change by 4):

ϕ(t) = 2
∑

k

f0[k] ϕ(4t− k).
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Figure 4.28 Scaling function ϕ(t) and wavelet ψ(t) based on a half-band digital
Butterworth filter with five zeros at w = π. (a) Scaling function ϕ(t). (b)
Fourier transform magnitude Φ(ω). (c) Wavelet ψ(t). (d) Fourier transform
magnitude Ψ(ω).

Note that ϕ(t) is just the usual scaling function from the iterated two-channel bank,
but now written with respect to a scale change by 4 (which involves the filter f0[k]).
The following three functions are “wavelets”:

ψi(t) = 2
∑

k

fi[k]ϕ(4t − k), i ∈ {1, 2, 3}.

The set {ϕ(t−k), ψ1(t−l), ψ2(t−m), ψ3(t−n), } is orthonormal and 2jψi(4
jt−li), i ∈

{1, 2, 3}, li , j ∈ Z is an orthonormal basis for L2(R) following similar arguments
as in the classic “single” wavelet case (we have simply expanded two successive
wavelet spaces into three spaces spanned by ψi(t), i ∈ {1, 2, 3}). Of course, this is a
simple variation on the normal wavelet case (note that ψ1(t) is the usual wavelet).
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With these methods and the previously discussed concept of wavelet packets in
Section 3.3.4 it can be seen how to obtain continuous-time wavelet packets. That
is, given any binary tree built with two-channel filter banks, we can associate a set
of “wavelets” with the highpass and bandpass channels. These functions, together
with appropriate scales and shifts will form orthonormal wavelet packet bases for
L2(R).

The case for general filter banks is very similar [129, 277]. Assume we have a
size-N filter bank with a regular lowpass filter. This filter has to be regular with
respect to downsampling by N (rather than 2), which amounts (in a similar fashion
to Proposition 4.7) to having a sufficient number of zeros at the Nth roots of unity
(the aliasing frequencies, see discussion below). The lowpass filter will lead to a
scaling function satisfying

ϕ(t) = N1/2
∑

k

g0[k] ϕ(Nt− k).

The N − 1 functions

ψi(t) = N1/2
∑

k

gi[k]ϕ(Nt− k), i = 1, . . . , N − 1,

will form a wavelet basis with respect to scale changes by N .
Let us consider the issue of regularity for multichannel filter banks. It is clear

that if a regular two-channel filter bank is cascaded a finite number of times in order
to obtain wavelet packets (as was done above in (4.6.9–4.6.10)), then regularity of
the lowpass filter is necessary and sufficient in order to obtain regular wavelet
packets. This follows since the scaling function is the same and the wavelet packets
are finite linear combinations of scaling functions. In the more general case of a
filter bank with N channels, we have to test the regularity of the lowpass filter
G0(z) with respect to sampling rate changes by N . That is, we are interested in

the behavior of the iterated filter G
(i)
0 (z);

G
(i)
0 (z) =

i−1∏

k=0

G0(z
Nk

), (4.6.11)

and the associated graphical function

ϕ(i)(t) = N i/2 · g(i)0 [n],
n

N i
≤ t < n+ 1

N i
. (4.6.12)

Since the filter G0(z) is orthogonal with respect to translation by multiples of N ,
it satisfies (see (3.4.11))

N−1∑

k=0

G0(e
j(ω+2πk/N)) G0(e

−j(ω+2πk/N)) = N. (4.6.13)
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A necessary condition for convergence of the graphical function is that (see Prob-
lem 4.15)

G0(e
j(ω+2πk/N)) = 0, k = 1, . . . , N − 1, (4.6.14)

that is, G0(z) has at least one zero at each of the aliasing frequencies ω = 2πk/N ,
k = 1, . . . , N − 1. Then, using (4.6.14) in (4.6.13), we see that

G0(1) =
√
N.

Introducing a normalized version of the lowpass filter,

M0(ω) =
1√
N
G0(e

jω)

and assuming convergence, it follows that the Fourier transform of the scaling func-
tion equals

Φ(ω) =

∞∏

i=1

M0

( ω

N i

)

.

A sufficient condition for the convergence of the graphical function (4.6.12) to a
continuous function can be derived very similarly to Proposition 4.7. Write

M0(ω) =

(

1 + ejω + · · ·+ ej(N−1)ω

N

)K

R(ω)

where K ≥ 1 because of the necessary condition for convergence and call

B = supw∈[0,2π]|R(ω)|.

Then
B < NK−1 (4.6.15)

ensures that the limit ϕ(i)(t) as i→∞ is continuous (see Problem 4.16).
The design of lowpass filters with a maximum number of zeros at aliasing fre-

quencies (the equivalent of the Daubechies’ filters, but for integer downsampling
larger than 2) is given in [277]. An interesting feature of multichannel wavelet
schemes is that now, orthogonality and compact support are possible simultane-
ously. This follows from the fact that there exist unitary FIR filter banks having
linear phase filters for more than two channels [321]. A detailed exploration of
such filter banks and their use for the design of orthonormal wavelet bases with
symmetries (for example, a four-band filter bank leading to one symmetric scaling
function as well as one symmetric and two antisymmetric wavelets) is done in [275].

The problem with scale changes by N > 2 is that the resolution steps are even
larger between a scale and the next coarser scale than for the typical “octave-band”
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wavelet analysis. A finer resolution change could be obtained for rational scale
changes between 1 and 2. In discrete time such finer steps can be achieved with
filter banks having rational sampling rates [166]. The situation is more complicated
in continuous time. In particular, the iterated filter bank method does not lead to
wavelets in the same sense as for the integer-band case. Yet, orthonormal bases
can be constructed which have a similar behavior to wavelets [33]. A direct wavelet
construction with rational dilation factors is possible [16] but the coefficients of the
resulting two-scale equation do not correspond to either FIR or IIR filters.

4.7 MULTIDIMENSIONAL WAVELETS

In Chapter 3, we have seen that, driven by applications such as image compression,
some of the concepts from the theory of one-dimensional filter banks have been
extended to multiple dimensions. Hence, this section can be seen as generalization
of both Section 3.6 and the concepts introduced in this chapter.

An easy way to construct two-dimensional wavelets, for example, is to use tensor
products of their one-dimensional counterparts. This results, as will be seen later,
in one scaling function and three different “mother” wavelets. Since now, scale
change is represented by matrices, the scaling matrix in this case will be 2I, that
is, each dimension is dilated by 2. As for multidimensional filter banks, true mul-
tidimensional treatment of wavelets offers several advantages. First, one can still
have a diagonal dilation (scaling) matrix and yet design nonseparable (irreducible)
scaling function and wavelets. Then, the scale change of

√
2, for example, is pos-

sible, leading to one scaling function and one wavelet or a true two-dimensional
counterpart of the well-known one-dimensional dyadic case. However, unlike for
the filter banks, matrices used for dilation are more restricted in that one requires
dilation in each dimension. As in one dimension, the powerful connection with fil-
ter banks (through the method of iterated filter banks) can be exploited to design
multidimensional wavelets. However, the task is more complicated due to incom-
plete cascade structures and the difficulty of imposing a zero of a particular order
at aliasing frequencies. Regularity is much harder to achieve, and up-to-date, or-
thonormal families with arbitrarily high regularity, have not been found. In the
biorthogonal case, transformations of one-dimensional perfect reconstruction filter
banks into multidimensional ones can be used to design multidimensional wavelets
by iteration.

4.7.1 Multiresolution Analysis and Two-Scale Equation

The axiomatic definition of a multiresolution analysis is easily generalized: The
subspaces Vj in (4.2.1) are now subspaces of Rm and scaling is represented by a
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matrix D. This matrix has to be well-behaved, that is,

DZ
m ⊂ Z

m

|λi| > 1, ∀i.
The first condition requires D to have integer entries, while the second one states
that all the eigenvalues of D must be strictly greater than 1 in order to ensure
dilation in each dimension. For example, in the quincunx case, the matrix DQ

from (3.B.2)

DQ =

(
1 1
1 −1

)

, (4.7.1)

as well as

DQ1 =

(
1 −1
1 1

)

,

are both valid matrices, while

DQ2 =

(
2 1
0 1

)

,

is not, since it dilates only one dimension. Matrix DQ from (4.7.1) is a so-called
“symmetry” dilation matrix, used in [163], while DQ1 is termed a “rotation” matrix
used in [57]. As will be seen shortly, although both of these matrices represent
the same lattice, they are fundamentally different when it comes to constructing
wavelets.

For the case obtained as a tensor product, the dilation matrix is diagonal.
Specifically, in two dimensions, it is the matrix DS from (3.B.1)

Ds =

(
2 0
0 2

)

. (4.7.2)

The number of wavelets is determined by the number of cosets of DZ
n, or

|det(D)| − 1 = N − 1,

where N represents the downsampling rate of the underlying filter bank. Thus, in
the quincunx case, we have one “mother” wavelet, while in the 2× 2 separable case
(4.7.2), there are three “mother” wavelets ψ1, ψ2, ψ3.

The two-scale equation is obtained as in the one-dimensional case. For example,
using DQ (we will drop the subscript when there is no risk of confusion)

ϕ(t) =
√
2
∑

n∈Z2

g0[n] ϕ(Dt− n),

ϕ(t1, t2) =
√
2
∑

n1,n2∈Z
g0[n1, n2] ϕ(t1 + t2 − n1, t1 − t2 − n2).

We have assumed that
∑
g0[n] =

√
2.
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4.7.2 Construction of Wavelets Using Iterated Filter Banks

Since the construction is similar to the one-dimensional case, we will concentrate
on the quincunx dilation matrices by way of example.

Consider again Figure 4.14 with the matrix DQ replacing upsampling by 2.
Then the equivalent low branch after i steps of filtering and sampling by DQ will
be

G
(i)
0 (ω1, ω2) =

i−1∏

k=0

G0

(
(
Dt
Q

)k
(
ω1

ω2

))

, (4.7.3)

where G
(0)
0 (ω1, ω2) = 1. Observe here that instead of scalar powers, we are dealing

with powers of matrices. Thus, for different matrices, iterated filters are going to
exhibit vastly different behavior. Some of the most striking examples are multidi-
mensional generalizations of the Haar basis which were independently discovered
by Gröchenig and Madych [123] and Lawton and Resnikoff [172] (see next section).

Now, as in the one-dimensional case, construct a continuous-time “graphical”

function based on the iterated filter g
(i)
0 [n1, n2]:

ϕ(i)(t1, t2) = 2i/2 g
(i)
0 [n1, n2],

(
1 1
1 −1

)i(
t1
t2

)

∈
(
n1
n2

)

+ [0, 1) × [0, 1).

Note that these regions are not in general rectangular and specifically in this case,
they are squares in even, and diamonds (tilted squares) in odd iterations. Note that
one of the advantages of using the matrix DQ rather than DQ1 , is that it leads
to separable sampling (diagonal matrix) in every other iteration since D2

Q = 2I.
The reason why this feature is useful is that one can use certain one-dimensional
results in a separable manner in even iterations. We are again interested in the
limiting behavior of this “graphical” function. Let us first assume that the limit of
ϕ(i)(t1, t2) exists and is in L2(R

2) (we will come back later to the conditions under
which it exists). Hence, we define the scaling function as

ϕ(t1, t2) = lim
i→∞

ϕ(i)(t1, t2), ϕ(t1, t2) ∈ L2(R
2). (4.7.4)

Once the scaling function exists, the wavelet can be obtained from the two-dimensional
counterpart of (4.2.14). Again, the coefficients used in the two-scale equation and
the quincunx version of (4.2.14) are the impulse response coefficients of the low-
pass and highpass filters, respectively. To prove that the wavelet obtained in such
a fashion actually produces an orthonormal basis for L2(R

2), one has to demon-
strate various facts. The proofs of the following statements are analogous to the
one-dimensional case (see Proposition 4.4), that is, they rely on the orthogonality
of the underlying filter banks and the two-scale equation property [163]:
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(a) 〈ϕ(Dm
Qt − n), ϕ(Dm

Q t − k)〉 = 2−mδ[n − k], that is, the scaling function is

orthogonal to its translates by multiples of D−m
Q at all scales.

(b) The same holds for the wavelet.

(c) 〈ϕ(t), ψ(t−k)〉, the scaling function is orthogonal to the wavelet and its integer
translates.

(d) Wavelets are orthogonal across scales.

It follows that the set

S = {2−m/2ψ(D−mt− n) | m ∈ Z,n ∈ Z
2, t ∈ R

2},

is an orthonormal set. What is left to be shown is completeness, which can be done
similarly to the one-dimensional case (see Theorem 4.5 and [71]).

The existence of the limit of ϕ(i)(t1, t2) was assumed. Now we give a necessary
condition for its existence. Similarly to the one-dimensional case, it is necessary for
the lowpass filter of the iterated filter bank to have a zero at aliasing frequencies.
This condition holds in general, but will be given here for the case we have been
following throughout this section, that is, the quincunx case. The proof of necessity
is similar to that of Proposition 4.6.

PROPOSITION 4.9

If the scaling function ϕ(t1, t2) exists for some (t1, t2) ∈ R
2, then

∑

k∈Z2

g0[D1k+ ki] =
1√
2
, k0 =

(
0
0

)

, k1 =

(
1
0

)

, (4.7.5)

or, in other words

G0(1, 1) =
√
2, G0(−1,−1) = 0.

PROOF

Following (4.7.3), one can express the equivalent filter after i steps in terms of the equivalent
filter after (i− 1) steps as

g
(i)
0 [n] =

∑

k

g0[k] g
(i−1)
0 [n −D

i−1
k] =

∑

k

g
(i−1)
0 [k] g0[n−Dk],

and thus

g
(i)
0 [Dn] =

∑

k

g0[Dk] g
(i−1)
0 [n− k].
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Using (4.7.4) express g
(i−1)
0 and g

(i)
0 in terms of ϕ(i−1) and ϕ(i) and then take the limits

(which we are allowed to do by assumption)

ϕ(Dt) =
√
2
∑

k

g0[Dk] ϕ(Dt). (4.7.6)

Doing now the same for g
(i)
0 [Dn+ k1] one obtains

ϕ(Dt) =
√
2
∑

k

g0[Dn+ k1] ϕ(Dt). (4.7.7)

Equating (4.7.6) and (4.7.7), one obtains (4.7.5).

Now, a single zero at aliasing frequency is in general not sufficient to ensure reg-
ularity. Higher-order zeros have led to regular scaling functions and wavelets, but
the precise relationship is a topic of current research.

4.7.3 Generalization of Haar Basis to Multiple Dimensions

The material in this section is based on the work of Lawton and Resnikoff [172],
and Gröchenig and Madych [123]. The results are stated in the form given in [123].

Recall the Haar basis introduced at the beginning of this chapter and recall that
the associated scaling function is 1 over the interval [0, 1) and 0 otherwise. In other
words, this scaling function can be viewed as the characteristic function of the set
Q = [0, 1). Together with integer translates, the Haar scaling function “covers”
the real line. The idea is to construct analogous multidimensional generalized Haar
bases that would have, as scaling functions, characteristic functions of appropriate
sets with dilation replaced by a suitable linear transformation.

The approach in [123] consists of finding a characteristic function of a compact
set Q that would be the scaling function for an appropriate multiresolution analysis.
Then to find the wavelets, one would use the standard techniques. An interesting
property of such scaling functions is that they form self-similar tilings of Rn. This
is not an obvious feature for some scaling functions of exotic shapes.

The algorithm for constructing a scaling function for multiresolution analysis
with matrix dilation D basically states that one takes a set of points belonging to
different cosets of the lattice and forms a discrete filter being 1 on these points. The
filter is then iterated as explained earlier. If it converges, we obtain an example
of a generalized Haar wavelet. For a more formal definition of the algorithm, the
reader is referred to [123]. For example, in the quincunx case, the set of points of
coset representatives would consist only of two elements (since the quincunx lattice
has only two cosets) and its elements would represent the two taps of the lowpass
filter. Thus, the corresponding subband schemes would consist of two-tap filters.
The algorithm, when it converges, can be interpreted as the iteration of a lowpass
filter with only two nonzero taps (each equal to one and being in a different coset)
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Figure 4.29 (a) The twin-dragon scaling function. The function is 1 in the
white area and 0 otherwise. (b) The twin-dragon wavelet. The function is 1
in the white area, −1 in the black area, and 0 otherwise.

which converges to the characteristic function of some compact set, just as the
one-dimensional Haar filter converged to the indicator function of the unit interval.

A very interesting scaling function is obtained when using the “rotation” matrix
DQ1 from (4.7.1) and points {(0, 0), (1, 0)}, that is, the lowpass filter with g0[0, 0] =
g0[1, 0] = 1, and 0 otherwise. Iterating this filter leads to the “twin-dragon” case
[190], as given in Figure 4.29. Note that ϕ(t) = 1 over the white region and 0
otherwise. The wavelet is 1 and −1 in the white/black regions respectively, and 0
otherwise. Note also how the wavelet is formed by two “scaled” scaling functions, as
required by the two-dimensional counterpart of (4.2.9), and how this fractal shape
tiles the space.

4.7.4 Design of Multidimensional Wavelets

As we have seen in Section 3.6, the design of multidimensional filter banks is not
easy, and it becomes all the more involved by introducing the requirement that the
lowpass filter be regular. Here, known techniques will be briefly reviewed, for more
details the reader is referred to [57] and [163].
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Figure 4.30 The sixth iteration of the smallest regular two-dimensional filter.

Direct Design To achieve perfect reconstruction in a subband system, cascade
structures are perfect candidates (see Section 3.6), since beside perfect reconstruc-
tion, some other properties such as orthogonality and linear phase can be easily
imposed.

Recall that in one dimension, a zero of a sufficiently high order at π would
guarantee the desired degree of regularity. Unfortunately, imposing a zero of a
particular order in multiple dimensions becomes a nontrivial problem and thus,
algebraic solutions can be obtained only for very small size filters.

As an example of direct design, consider again the quincunx case with matrix
D1 and the perfect reconstruction filter pair given in (3.6.7). Thus, the approach
is to impose a zero of the highest possible order at (π, π) on the lowpass filter in
(3.6.7), that is

∂k−1H0(ω1, ω2)

∂lω1∂k−l−1ω2

∣
∣
∣
∣
(π,π)

= 0,
k = 1, . . . ,m,
l = 0, . . . , k − 1.

Upon imposing a second-order zero the following solutions are obtained

a0 = ±
√
3, a1 = ±

√
3, a2 = 2±

√
3, (4.7.8)

a0 = ±
√
3, a1 = 0, a2 = 2±

√
3. (4.7.9)

Note that the filters should be scaled by (1 −
√
3)/(4

√
2). The solution in (4.7.9)

is the one-dimensional D2 filter, while (4.7.8) would be the smallest “regular” two-
dimensional filter (actually, a counterpart of D2). Figure 4.30 shows the fourth
iteration of this solution. As can be seen from the plot, the function looks contin-
uous, but not differentiable at some points. As a simple check of continuity, the
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largest first-order differences of the iterated filter can be computed (in this case,
these differences decrease with an almost constant rate — a good indicator that
the function is continuous [163]). Recently, a method for checking the continuity
was developed [324]. Using this method, it was confirmed that this solution indeed
leads to a continuous scaling function and consequently a continuous wavelet.

This method, however, fails for larger size filters, since imposing a zero of a par-
ticular order means solving a large system of nonlinear equations (in the orthogonal
case). Note, however, that numerical approaches are always possible [162].

One to Multidimensional Transformations Another way to approach the design
problem is to use transformations of one-dimensional filters into multidimensional
ones in such a way that [163]

(a) Perfect reconstruction is preserved (in order to have a valid subband coding
system).

(b) Zeros at aliasing frequencies are preserved (necessary but not sufficient for
regularity).

We have already discussed how to obtain perfect reconstruction in Section 3.6. Here,
we will concern ourselves only with properties that might be of interest for designing
wavelets. If we used the method of separable polyphase components, an advantage
is that the zeros at aliasing frequencies carry over into multiple dimensions. As we
pointed out in Section 3.6, the disadvantage is that only IIR solutions are possible,
and thus we cannot obtain wavelets with compact support. In the McClellan case,
however, wavelets with compact support are possible, but not orthonormal ones.
For more details on these issues, see [163].

4.8 LOCAL COSINE BASES

At the beginning of this chapter (see Section 4.1.2), we examined a piecewise Fourier
series expansion that was an orthogonal local Fourier basis. Unfortunately, because
the basis functions were truncated complex exponentials (and thus discontinuous),
they achieved poor frequency localization (actually, the time-bandwidth product of
the basis functions is unbounded). Because of the Balian-Low Theorem [73], there
are no “good” orthogonal bases in the Gabor or windowed Fourier transform case
(see Chapter 5). However, if instead of using modulation by complex exponen-
tials, one uses modulation by cosines, it turns out that good orthonormal bases do
exist, as will be shown next. This result is the continuous-time equivalent of the
modulated lapped orthogonal transforms, seen in Section 3.4.

We will start with a simple case which, when refined, will lead to what Meyer
calls “Malvar’s wavelets” [193]. Note that, beside this construction, there exists
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Figure 4.31 Relationship among windows for the local cosine bases. (a) Rect-
angular window. All windows are the same. (b) Smooth window satisfying the
power complementary condition. All windows are the same. (c) General case.

other orthonormal bases with similar properties [61]. Thus, consider the following
set of basis functions:

ϕj,k(t) =

√

2

Lj
wj(t) cos

[
π

Lj
(k +

1

2
)(t− aj)

]

, (4.8.1)

for k = 0, 1, 2, . . . , and j ∈ Z, aj is an increasing sequence of real numbers and the
window function wj(t) is centered around the interval [aj , aj+1]. As can be seen,
(4.8.1) is the continuous-time counterpart of (3.4.17) seen in the discrete-time case.
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4.8.1 Rectangular Window

Let us start with the simplest case and assume that

aj = (j − 1

2
)L, Lj = aj+1 − aj = L, (4.8.2)

while the “window” functions wj(t) will be restricted as (see Figure 4.31(a))

wj(t) = w(t− jL), w(t) =
1√
2
, −L ≤ t ≤ L.

That is, we have rectangular windows which overlap by L with their neighbors, as
given in Figure 4.31(a). Thus, the basis functions from (4.8.1) become

ϕj,k(t) =
1√
L

cos

[
π

L
(k +

1

2
)(t− jL+

L

2
)

]

, (j − 1)L ≤ t ≤ (j + 1)L.

To prove that this set of functions forms a basis, we have to demonstrate the
orthogonality of the basis functions, as well as completeness. Since the proof of
completeness is quite involved, we refer the reader to [61] for details (note that in
[61], the proof is given for a slightly different set of basis functions, but the idea is
the same). As for orthogonality, first note that ϕj,k and ϕj′,m do not overlap for
j − j′ ≥ 2. To prove that ϕj,k and ϕj+1,m are mutually orthogonal, write

〈ϕj,k, ϕj+1,m〉 =
1

L

∫ (j+1)L

jL
cos

[
π

L
(k +

1

2
)(t− jL+

L

2
)

]

× cos

[
π

L
(m+

1

2
)(t− (j + 1)L+

L

2
)

]

dt, (4.8.3)

which, with change of variable x = t− (j + 1)L+ L/2 becomes

〈ϕj,k, ϕj+1,m〉 = ± 1

L

∫ L/2

−L/2
sin

[
π

L
(k +

1

2
)x

]

cos

[
π

L
(m+

1

2
)x

]

dx = 0,

since the integrand is an odd function of x.
Finally, orthogonality of ϕj,k and ϕj,m for k 6= m follows from (again with the

change of variable x = t− jL)

〈ϕj,k, ϕj,m〉 =
1

L

∫ L

−L
cos

[
π

L
(k +

1

2
)(x+

L

2
)

]

cos

[
π

L
(m+

1

2
)(x+

L

2
)

]

dx = 0.

What we have constructed effectively, is a set of basis functions obtained from the
cosines of various frequencies, shifted in time to points jL on the time axis, and
modulated by a square window of length 2L.
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4.8.2 Smooth Window

Suppose now that we still keep the regular spacing of L between shifts as in (4.8.2),
but allow for a smooth window of length 2L satisfying the following (see Fig-
ure 4.31(b)):

wj(t) = w(t−jL), w(t) = w(−t), −L ≤ t ≤ L, w2(t)+w2(L−t) = 1, (4.8.4)

and the basis functions are as in (4.8.1) (see Figure 4.31(b)). Note that here, on
top of cosines overlapping, we have to deal with the windowing of the cosines. To
prove orthogonality, again we will have to demonstrate it only for ϕj,k and ϕj+1,m,
as well as for ϕj,k and ϕj,m.

By using the same change of variable as in (4.8.3), we obtain that

〈ϕj,k, ϕj+1,m〉 = ± 2

L

∫ L/2

−L/2
w(t+

L

2
) w(t−L

2
) sin

[
π

L
(k +

1

2
)t

]

cos

[
π

L
(m+

1

2
)t

]

dt.

Since w(t+L/2)w(t−L/2) is an even function of t, while the rest is an odd function
of t as before, the above inner product is zero. For orthogonality of ϕj,k and ϕj,m
write

〈ϕj,k, ϕj,m〉 =
2

L

∫ L

−L
w2(t) cos

[
π

L
(k +

1

2
)(t+

L

2
)

]

cos

[
π

L
(m+

1

2
)(t+

L

2
)

]

dt.

Divide the above integral into three parts: from −L to −L/2, from −L/2 to L/2,
and from L/2 to L. Let us concentrate on the last one. With the change of variable
x = L− t, it becomes

2

L

∫ L

L/2
w2(t) cos

[
π

L
(k +

1

2
)(t+

L

2
)

]

cos

[
π

L
(m+

1

2
)(t+

L

2
)

]

dt =

2

L

∫ L/2

0
w2(L− x) cos

[
π

L
(k +

1

2
)(
3

2
L− x)

]

cos

[
π

L
(m+

1

2
)(
3

2
L− x)

]

dx.

However, since cos[(π/L)(k+1/2)((3/2)L− x) = − cos[π/L(k+1/2)(x+1/2)], we
can merge this integral to the second one from 0 to L/2. Using the same argument
for the one from −L to −L/2, we finally obtain

2

L

∫ L/2

−L/2
(w2(t) + w2(L− t))
︸ ︷︷ ︸

1

cos

[
π

L
(k +

1

2
)(t+

L

2
)

]

cos

[
π

L
(m+

1

2
)(t+

L

2
)

]

dt = 0.

We now see why it was important for the window to satisfy the power complemen-
tary condition given in (4.8.4), exactly as in the discrete-time case. Therefore, we
have progressed from a rectangular window to a smooth window.



304 CHAPTER 4

4.8.3 General Window

The final step is to lift the restriction on aj imposed in (4.8.2) and allow for windows
wj(t) to be different. We outline the general construction [61]. The proofs of
orthogonality will be omitted, however, since they follow similarly to the two simpler
cases discussed above. They are left as an exercise for the reader (see Problem
4.22). For the proof of completeness, we again refer the reader to [61] (although for
a slightly different set of basis functions).

Assume, thus, that we have an increasing sequence of real numbers aj , j ∈
Z, . . . aj−1 < aj < aj+1 . . . We will denote by Lj the distance between aj+1 and
aj , Lj = aj+1 − aj . We will also assume that we are given a sequence of numbers
ηj > 0 such that ηj + ηj+1 ≤ Lj, j ∈ Z, which ensures that windows will only
overlap with their nearest neighbor. The given windows wj(t) will be differentiable
(possibly infinitely) and of compact support, with the following requirements:

(a) 0 ≤ wj(t) ≤ 1, wj(t) = 1 if aj + ηj ≤ t ≤ aj+1 − ηj+1.

(b) wj(t) is supported within [aj − ηj , aj+1 + ηj+1].

(c) If |t− aj | ≤ ηj then wj−1(t) = wj(2aj − t), and w2
j−1(t) + w2

j (t) = 1.

This last condition ensures that the “tails” of the adjacent windows are power
complementary. An example of such a window is taking wj(t) = sin[(π/2)θ((t −
aj+ηj)/(2ηj))] for |t−aj| ≤ ηj, and wj(t) = cos[(π/2)θ((t−aj+1+ηj+1)/ηj+1)] for
|t − aj+1| ≤ ηj+1. Here, θ(t) is the function we used for constructing the Meyer’s
wavelet given in (4.3.1), Section 4.3.1. With these conditions, the set of functions
as in (4.8.1) forms an orthonormal basis for L2(R). It helps to visualize the above
conditions on the windows as in Figure 4.31(c). Therefore, in this most general
case, the window can go anywhere from length 2L to length L (being a constant
window in this latter case of height 1) and is arbitrary as long as it satisfies the
above three conditions.

Let us see what has been achieved. The time-domain functions are local and
smooth and their Fourier transforms have arbitrary polynomial decay (depending
on the smoothness or differentiability of the window). Thus, the time-bandwidth
product is now finite (unlike in the piecewise Fourier series case), and we have a
local modulated basis with good time-frequency localization.

APPENDIX 4.A P ROOF OF THEOREM 4.5

PROOF

As mentioned previously, what follows is a brief outline of the proof, for more details, refer
to [71].
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(a) It can be shown that
∑

k

[g0[n− 2k]ϕjk + g1[n− 2k]ψjk] = ϕj−1,n.

(b) Using this, it can be shown that
∑

n

|〈ϕj−1,n, f〉|2 =
∑

k

|〈ϕjk, f〉|2 +
∑

k

|〈ψjk, f〉|2.

(c) Then, by iteration, for all N ∈ N

∑

n

|〈ϕ−N,n, f〉|2 =
∑

k

|〈ϕNk, f〉|2 +
N
∑

j=−N

∑

k

|〈ψjk, f〉|2. (4.A.1)

(d) It can be shown that

lim
N→∞

∑

k

|〈ϕNk, f〉|2 = 0,

and thus the limit of (4.A.1) reduces to

lim
N→∞

|〈ϕ−Nn, f〉|2 = lim
N→∞

N
∑

j=−N

∑

k

|〈ψjk, f〉|2. (4.A.2)

(e) Concentrating on the left side of (4.A.2)

∑

k

|〈ϕ−Nk, f〉|2 = 2π

∫

|Φ(2−Nω)|2|F (ω)|2dω +R,

with |R| ≤ C2−3N/2 and thus
lim
N→∞

|R| = 0,

or

lim
N→∞

∑

k

|〈ϕ−Nk, f〉|2 = lim
N→∞

2π

∫

|Φ(2−Nω)|2|F (ω)|2dω,

or again, substituting into (4.A.2)

lim
N→∞

N
∑

j=−N

∑

k

|〈ψjk, f〉|2 =
∑

k

|〈ψjk, f〉|2,

= lim
N→∞

2π

∫

|Φ(2−Nω)|2|F (ω)|2dω.

(f) Finally, the right side of the previous equation can be shown to be

lim
N→∞

2π

∫

|Φ(2−Nω)|2|F (ω)|2dω = ‖f‖2,

and
∑

k

|〈ψjk, f〉|2 = ‖f‖2,

which completes the proof of the theorem.
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PROBLEMS

4.1 Consider the wavelet series expansion of continuous-time signals f(t) and assume ψ(t) is
the Haar wavelet.

(a) Give the expansion coefficients for f(t) = 1, t ∈ [0, 1], and 0 otherwise (that is, the
scaling function ϕ(t)).

(b) Verify that
∑

m

∑

n |〈ψm,n, f〉|2 = 1 (Parseval’s identity for the wavelet series expan-
sion).

(c) Consider f ′(t) = f(t − 2−i), where i is a positive integer. Give the range of scales
over which expansion coefficients are different from zero.

(d) Same as above, but now f ′(t) = f(t− 1/
√
2).

4.2 Consider a multiresolution analysis and the two-scale equation for ϕ(t) given in (4.2.8).
Assume that {ϕ(t− n)} is an orthonormal basis for V0. Prove that

(a) ‖g0[n]‖ = 1

(b) g0[n] =
√
2 〈ϕ(2t− n), ϕ(n)〉.

4.3 In a multiresolution analysis with a scaling function ϕ(t) satisfying orthonormality to its
integer shifts, consider the two-scale equation (4.2.8). Assume further 0 < |Φ(0)| <∞ and
that Φ(ω) is continuous in ω = 0.

(a) Show that
∑

N g0[n] =
√
2.

(b) Show that
∑

n g0[2n] =
∑

n g0[2n+ 1].

4.4 Consider the Meyer wavelet derived in Section 4.3.1 and given by equation (4.3.5). Prove
(4.3.6). Hint: in every interval [(2kπ)/3, (2k+1π)/3] there are only two “tails” present.

4.5 A simple Meyer wavelet can be obtained by choosing θ(x) in (4.3.1) as

θ(x) =







0 x ≤ 0
x 0 ≤ x ≤ 1
1 1 ≤ x

.

(a) Derive the scaling function and wavelet in this case (in Fourier domain).

(b) Discuss the decay in time of the scaling function and wavelet, and compare it to the
case when θ(x) given in (4.3.2) is used.

(c) Plot (numerically) the scaling function and wavelet.

4.6 Consider B-splines as discussed in Section 4.3.2.

(a) Verify that (4.3.11) is the DTFT of (4.3.12).
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(b) Given that β(2N+1)(t) = β(N)(t) ∗ β(N)(t), prove that

b(2N+1)[n] =

∫ ∞

∞
β(N)(t) β(N)(t− n) dt.

(This is an alternate proof of (4.3.23).

(c) Calculate b(2N+1)[n] for N = 1 and 2.

4.7 Battle-Lemarié wavelets: Calculate the Battle-Lemarié wavelet for the quadratic spline case
(see (4.3.26–4.3.27)).

4.8 Battle-Lemarié wavelets based on recursive filters: In the orthogonalization procedure of the
Battle-Lemarié wavelet (Section 4.3.2), there is a division by

√

B(2N+1)(ω) (see (4.3.14),
(4.3.17)). Instead of taking a square root, one can perform a spectral factorization of
B(2N+1)(ω) when B(2N+1)(ω) is a polynomial in ejω (for example, (4.3.16)). For the linear
spline case (Section 4.3.2), perform a spectral factorization of B(2N+1)(ω) into

B(2N+1)(ω) = R(ejω) ·R(e−jω) = |R(ejω)|2,

and derive Φ(ω), ϕ(t) (use the fact that 1/R(ejω) is a recursive filter and find the set {αn})
and G0(e

jω). Indicate also Ψ(ω) in this case.

4.9 Prove that if g(t), the nonorthogonal basis for V0, has compact support, thenD(ω) in (4.3.20)
is a trigonometric polynomial and has a stable (possibly noncausal) spectral factorization.

4.10 Orthogonality relations of Daubechies’ wavelets: Prove Relations (b) and (c) in Proposi-
tion 4.4, namely:

(a) 〈ψ(t− n), ψ(t− n′)〉 = δ[n− n′] (where we skipped the scaling factor for simplicity)

(b) 〈ϕ(t− n), ψ(t− n′)〉 = 0,

4.11 Infinite products and the Haar scaling function:

(a) Consider the following infinite product:

pk =
k
∏

i=0

ab
i |b| < 1,

and show that its limit as k →∞ is

p = lim
i→∞

pk = a1/(1−b).

(b) In Section 4.4.1, we derived the Haar scaling function as the limit of a graphical
function, showing that it was equal to the indicator function of the unit interval.
Starting from the Haar lowpass filter G0(z) = (1+z−1)/

√
2 and its normalized version

M0(ω) = G0(e
jω)/
√
2, show that from (4.4.14),

Φ(ω) =

∞
∏

k=1

M0

(

ω/2k
)

= e−jω/2
sin(ω/2)

ω/2
.

Hint: Use the identity cos(ω) = sin(2ω)/2 sin(ω).
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(c) Show, using (4.4.15), that the Haar wavelet is given by

Ψ(ω) = je−jω/2
sin2(ω/4)

ω/4
.

4.12 Consider the product

Φ(i)(ω) =

i
∏

k=1

M0

( ω

2k

)

where M0(ω) is 2π-periodic and satisfies M0(0) = 1 as well as |M0(ω)| ≤ 1, ω ∈ [−π, π].

(a) Show that the infinite product Φ(i)(ω) converges pointwise to a limit Φ(ω).

(b) Show that if M0(ω) = 1/
√
2G0(e)

ω and G0(e)
ω is the lowpass filter in an orthogo-

nal filter bank, then |M0(ω)| ≤ 1 is automatically satisfied and M0(0) = 1 implies
M0(π) = 0.

4.13 Maximally flat Daubechies’ filters: A proof of the closed form formula for the autocorrelation
of the Daubechies’ filter (4.4.34) can be derived as follows (assume Q = 0). Rewrite (4.4.32)
as

P (y) =
1

(1− y)N [1− yN P (1− y)].

Use Taylor series expansion of the first term and the fact that deg[P (y)] < N (which can
be shown using Euclid’s algorithm) to prove (4.4.34).

4.14 Given the Daubechies’ filters in Table 4.2 or 4.3, verify that they satisfy the regularity bound
given in Proposition 4.7. Do they meet higher regularity as well? (you might have to use
alternate factorizations or cascades).

4.15 In an N-channel filter bank, show that at least one zero at all aliasing frequencies 2πk/N ,
k = 1, . . . , N − 1, is necessary for the iterated graphical function to converge. Hint: See the
proof of Proposition 4.6.

4.16 Consider a filter G0(z) whose impulse response is orthonormal with respect to shifts by N .
Assume G0(z) as K zeros at each of the aliasing frequencies ω = 2πk/N , k = 1, . . . , N −
1. Consider the iteration of G0(z) with respect to sampling rate change by N and the
associated graphical function (see (4.6.11–4.6.12)). Prove that the condition given in (4.6.15)
is sufficient to ensure a continuous limit function ϕ(t) = limi→∞ ϕ(i)(t). Hint: The proof is
similar to that of Proposition 4.7.

4.17 Successive interpolation [131]: Given an input signal x[n], we would like to compute an
interpolation by applying upsampling by 2 followed by filtering, and this i times. Assume
that the interpolation filter G(z) is symmetric and has zero phase, or G(z) = g0 + g1z +
g−1z

−1 + g2z
2 + g−2z

−2 + . . .

(a) After one step, we would like y(1)[2n] = x[n], while y(1)[2n+1] is interpolated. What
conditions does that impose on G(z)?

(b) Show that if condition (a) is fulfilled, then after i iterations, we have y(i)[2in] = x[n]
while other values are interpolated.
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(c) Assume G(z) = 1/2z+1+1/2z−1 . Given some input signal, sketch the output signal
y(i)[n] for some small i.

(d) Assume we associate a continuous-time function y(i)(t) with y(i)[n]:

y(i)(t) = y(i)[n], n/2i ≤ t < (n+ 1)/2i.

What can you say about the limit function y(i)(t) as i goes to infinity and G(z) is as
in example (c)? Is the limit function continuous? differentiable?

(e) Consider G(z) to be the autocorrelation of the Daubechies’ filters for N = 2 . . . 6,
that is, the P (z) given in Table 4.2. Does this satisfy condition (a)? For N =
2 . . . 6, consider the limit function y(i)(t) as i goes to infinity and try to establish the
“regularity” of these limit functions (are they continuous, differentiable, etc.?).

4.18 Recursive subdivision schemes: Assume that a function f(t) satisfies a two-scale equation
f(t) =

∑

n cnf(2t − n). We can recursively compute f(t) at dyadic rationals with the

following procedure. Start with f (0)(t) = 1, −1/2 ≤ t ≤ 1/2, 0 otherwise. In particular,
f (0)(0) = 1 and f (0)(1) = f (0)(−1) = 0. Then, recursively compute

f (i)(t) =
∑

n

cn f
(i−1)(2t− n).

In particular, at step i, one can compute the values f (i)(t) at t = 2−in, n ∈ Z. This will
successively “refine” f (i)(t) to approach the limit f(t), assuming it exists.

(a) Consider this successive refinement for c0 = 1 and c1 = c−1 = 1/2. What is the limit
f (i)(t) as i→∞?

(b) A similar refinement scheme can be applied to a discrete-time sequence s[n]. Create
a function g(0)(t) = s[n] at t = n. Then, define

g(i)
( n

2i−1

)

= g(i−1)
( n

2i−1

)

,

g(i)
(

2n+ 1

2i

)

=
1

2
g(i−1)

( n

2i−1

)

+
1

2
g(i−1)

(

n+ 1

2i−1

)

.

To what function g(t) does this converge in the limit of i → ∞? This scheme is
sometimes called bilinear interpolation, explain why.

(c) A more elaborate successive refinement scheme is based on the two-scale equation

f(t) = f(2x) +
9

16
[f(2x+ 1) + f(2x− 1)]− 1

16
[f(2x + 3) + f(2x− 3)].

Answer parts (a) and (b) for this scheme. (Note: the limit f(x) has no simple closed
form expression).

4.19 Interpolation filters and functions: A filter with impulse response g[n] is called an interpo-
lation filter with respect to upsampling by 2 if g[2n] = δ[n]. A continuous-time function
f(t) is said to have the interpolation property if f(n) = δ[n]. Examples of such functions
are the sinc and the hat function.
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(a) Show that if g[n] is an interpolation filter and the graphical function ϕ(i)(t) associ-
ated with the iterated filter g(i)[n] converges pointwise, then the limit ϕ(t) has the
interpolation property.

(b) Show that if g[n] is a finite-length orthogonal lowpass filter, then the only solution
leading to an interpolation filter is the Haar lowpass filter (or variations thereof).

(c) Show that if ϕ(t) has the interpolation property and satisfies a two-scale equation

ϕ(t) =
∑

n

cn ϕ(2t− n),

then c2l = δ[l], that is, the sequence cn is an interpolation filter.

4.20 Assume a continuous scaling function ϕ(t) with decay O(1/t(1+ǫ)), ǫ > 0, satisfying the
two-scale equation

ϕ(t) =
∑

n

cn ϕ(2t− n).

Show that
∑

n c2n =
∑

n c2n+1 = 1 implies that

f(t) =
∑

n

ϕ(t− n) = constant 6= 0.

Hint: Show that f(t) = f(2t).

4.21 Assume a continuous and differentiable function ϕ(t) satisfying a two-scale equation

ϕ(t) =
∑

n

cn ϕ(2t− n)

where
∑

n c2n =
∑

n c2n+1 = 1. Show that ϕ′(t) satisfies a two-scale equation and show
this graphically in the case of the hat function (which is differentiable almost everywhere).

4.22 Prove the orthogonality relations for the set of basis functions (4.8.1) in the most general
setting, that is, when the windows wj(t) satisfy conditions (a)–(c) given at the end of Section
4.8.
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Continuous Wavelet and Short-Time Fourier
Transforms and Frames

“Man lives between the infinitely large
and the infinitely small.”

— Blaise Pascal, Thoughts

In this chapter, we consider expansions of continuous-time functions in terms of
two variables, such as shift and scale for the wavelet transform, or shift and fre-
quency for the short-time Fourier transform. That is, a one-variable function is
mapped into a two-variable function. This representation is redundant but has
interesting features which will be studied here. Because of the redundancy, the
parameters of the expansion can be discretized, leading to overcomplete series ex-
pansions called frames.

Recall Section 2.6.4, where we have seen that one could define the continuous
wavelet transform of a function as an inner product between shifted and scaled
versions of a single function — the mother wavelet, and the function itself. The
mother wavelet we chose was not arbitrary, rather it satisfied a zero-mean condition.
This condition follows from the “admissibility condition” on the mother wavelet,
which will be discussed in the next section. At the same time, we saw that the
resulting transform depended on two parameters — shift and scale, leading to a
representation we denote, for a function f(t), by CWTf(a, b) where a stands for
scale and b for shift. Since these two parameters continuously span the real plane
(except that scale cannot be zero), the resulting representation is highly redundant.

A similar situation exists in the short-time Fourier transform case (see Sec-
tion 2.6.3). There, the function is represented in terms of shifts and modulates of
a basic window function w(t). As for the wavelet transform, the span of the shift

311
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and frequency parameters leads to a redundant representation, which we denote by
STFTf (ω, τ) where ω and τ stand for frequency and shift, respectively.

Because of the high redundancy in both CWTf(a, b) and STFTf (ω, τ), it is
possible to discretize the transform parameters and still be able to achieve recon-
struction. In the STFT case, a rectangular grid over the (ω, τ) plane can be used, of
the form (m ·ω0, n · τ0), m,n ∈ Z and with ω0 and τ0 sufficiently small (ω0τ0 < 2π).

In the wavelet transform case, a hyperbolic grid is used instead (with a dyadic
grid as a special case when scales are powers of 2). That is, the (a, b) plane is
discretized into (±am0 , n · am0 b0). In this manner, large basis functions (when am0
is large) are shifted in large steps, while small basis functions are shifted in small
steps. In order for the sampling of the (a, b) plane to be sufficiently fine, a0 has to
be chosen sufficiently close to 1, and b0 close to 0.

These discretized versions of the continuous transforms are examples of frames,
which can be seen as overcomplete series expansions (a brief review of frames is
given in Section 5.3.2). Reconstruction formulas are possible, but depend on the
sampling density. In general, they require different synthesis functions than analysis
functions, except in a special case, called a tight frame. Then, the frame behaves
just as an orthonormal basis, except that the set of functions used to expand the
signal is redundant and thus the functions are not independent.

An interesting question is the following: Can one discretize the parameters in the
discussed continuous transforms such that the corresponding set of functions is an
orthonormal basis? From Chapter 4, we know that this can be done for the wavelet
case, with a0 = 2, b0 = 1, and an appropriate wavelet (which is a constrained
function). For the STFT, the answer is less obvious and will be investigated in
this chapter. However, as a rule, we can already hint at the fact that when the
sampling is highly redundant (or, the set of functions is highly overcomplete), we
have great freedom in choosing the prototype function. At the other extreme,
when the sampling becomes critical, that is, little or no redundancy exists between
various functions used in the expansion, then possible prototype functions become
very constrained.

Historically, the first instance of a signal representation based on a localized
Fourier transform is the Gabor transform [102], where complex sinusoids are win-
dowed with a Gaussian window. It is also called a short-time Fourier transform and
has been used extensively in speech processing [8, 226]. A continuous wavelet trans-
form was first proposed by Morlet [119, 125], using a modulated Gaussian as the
wavelet (called the Morlet wavelet). Morlet also proposed the inversion formula.1

The discretization of the continuous transforms is related to the theory of frames,

1Morlet proposed the inversion formula based on intuition and numerical evidence. The story
goes that when he showed it to a mathematician for verification, he was told: “This formula, being
so simple, would be known if it were correct...”



5.1. CONTINUOUS WAVELET TRANSFORM 313

which has been studied in nonharmonic Fourier analysis [89]. Frames of wavelets
and short-time Fourier transforms have been studied by Daubechies [72] and an ex-
cellent treatment can be found in her book [73] as well, to which we refer for more
details. A text that discusses both the continuous wavelet and short-time Fourier
transforms is [108]. Several papers discuss these topics as well [10, 60, 99, 293].

Further discussions and possible applications of the continuous wavelet trans-
form can be found in the work of Mallat and coworkers [182, 183, 184] for singularity
detection, and in [36, 78, 253, 266] for multiscale signal analysis. Representations
involving both scale and modulation are discussed in [185, 291]. Additional material
can also be found in edited volumes on wavelets [51, 65, 251].

The outline of the chapter is as follows: The case of continuous transform
variables is discussed in the first two sections. In Section 5.1 various properties
of the continuous wavelet transform are derived. In particular, the “zooming”
property, which allows one to characterize signals locally, is described. Comparisons
are made with the STFT, which is presented in Section 5.2. Frames of wavelets and
of the STFT are treated in Section 5.3. Tight frames are discussed, as well as the
interplay of redundancy and freedom in the choice of the prototype basis function.

5.1 CONTINUOUS WAVELET TRANSFORM

5.1.1 Analysis and Synthesis

Although the definition of the wavelet transform was briefly introduced in Sec-
tion 2.6.4, we repeat it here for completeness. Consider the family of functions
obtained by shifting and scaling a “mother wavelet” ψ(t) ∈ L2(R),

ψa,b(t) =
1

√

|a|
ψ

(
t− b
a

)

, (5.1.1)

where a, b ∈ R (a 6= 0), and the normalization ensures that ‖ψa,b(t)‖ = ‖ψ(t)‖ (for
now, we assume that a can be both positive and negative). In the following, we
will assume that the wavelet satisfies the admissibility condition

Cψ =

∫ ∞

−∞

|Ψ(ω)|2
|ω| dω <∞, (5.1.2)

where Ψ(ω) is the Fourier transform of ψ(t). In practice, Ψ(ω) will always have
sufficient decay so that the admissibility condition reduces to the requirement that
Ψ(0) = 0 (from (2.4.7–2.4.8)):

∫ ∞

−∞
ψ(t)dt = Ψ(0) = 0.
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Because the Fourier transform is zero at the origin and the spectrum decays at high
frequencies, the wavelet has a bandpass behavior. We now normalize the wavelet
so that it has unit energy, or

‖ψ(t)‖2 =

∫ ∞

−∞
|ψ(t)|2dt =

1

2π

∫ ∞

−∞
|Ψ(ω)|2dω = 1.

As a result, ‖ψa,b(t)‖2 = ‖ψ(t)‖2 = 1 (see (5.1.1)). The continuous wavelet trans-
form of a function f(t) ∈ L2(R) is then defined as

CWTf(a, b) =

∫ ∞

−∞
ψ∗
a,b(t)f(t)dt = 〈ψa,b(t), f(t)〉. (5.1.3)

The function f(t) can be recovered from its transform by the following reconstruc-
tion formula, also called resolution of the identity:

PROPOSITION 5.1

Given the continuous wavelet transform CWTf(a, b) of a function f(t) ∈
L2(R) (see (5.1.3)), the function can be recovered by:

f(t) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
CWTf(a, b) ψa,b(t)

da db

a2
, (5.1.4)

where reconstruction is in the L2 sense (that is, the L2 norm of the recon-
struction error is zero). This states that any f(t) from L2(R) can be written
as a superposition of shifted and dilated wavelets.

PROOF

In order to simplify the proof, we will assume that ψ(t) ∈ L1, f(t) ∈ L1 ∩ L2 as well as
F (ω) ∈ L1 (or f(t) is continuous) [108]. First, let us rewrite CWTf (a, b) in terms of the
Fourier transforms of the wavelet and signal. Note that the Fourier transform of ψa,b(t) is

Ψa,b(ω) =
√
ae−jbωΨ(aω).

According to Parseval’s formula (2.4.11) given in Section 2.4.2, we get from (5.1.3)

CWTf (a, b) =

∫ ∞

−∞
ψ∗
a,b(t)f(t)dt =

1

2π

∫ ∞

−∞
Ψ∗
a,b(ω)F (ω)dω

=

√
a

2π

∫ ∞

−∞
Ψ∗(aω)F (ω)ejbωdω. (5.1.5)

Note that the last integral is proportional to the inverse Fourier transform of Ψ∗(aω)F (ω)
as a function of b. Let us now compute the integral over b in (5.1.4), which we call J(a),

J(a) =

∫ ∞

−∞
CWTf (a, b) ψa,b(t)db,
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and substituting (5.1.5)

J(a) =

√
a

2π

∫ ∞

−∞

(∫ ∞

−∞
Ψ∗(aω)F (ω)ejbωdω

)

ψa,b(t)db

=

√
a

2π

∫ ∞

−∞
Ψ∗(aω)F (ω)

∫ ∞

−∞
ψa,b(t)e

jbωdb dω. (5.1.6)

The second integral in the above equation equals (with substitution b′ = (t− b)/a)
∫ ∞

−∞
ψa,b(t)e

jbωdb =
1√
a

∫ ∞

−∞
ψ

(

t− b
a

)

ejbωdb

=
√
aejωt

∫ ∞

−∞
ψ(b′)e−jωab

′

db′ =
√
aejωtΨ(aω). (5.1.7)

Therefore, substituting (5.1.7) into (5.1.6), J(a) becomes equal to

J(a) =
|a|
2π

∫ ∞

−∞
|Ψ(aω)|2F (ω)ejωtdω.

We now evaluate the integral in (5.1.4) over a (the integral is multiplied by Cψ):

∫ ∞

−∞
J(a)

da

a2
=

1

2π

∫ ∞

−∞

∫ ∞

−∞
F (ω)ejωt

|Ψ(aω)|2
|a| dω da. (5.1.8)

Because of the restrictions we imposed on f(t) and ψ(t), we can change the order of inte-
gration. We evaluate (use the change of variable a′ = aω)

∫ ∞

−∞

|Ψ(aω)|2
|a| da =

∫ ∞

−∞

|Ψ(a′)|2
|a′| da′ = Cψ, (5.1.9)

that is, this integral is independent of ω, which is the key property that makes it all work.
It follows that (5.1.8) becomes (this is actually the right side of (5.1.4) multiplied by Cψ)

1

2π

∫ ∞

−∞
F (ω)ejωtCψdω = Cψ · f(t),

and thus, the inversion formula (5.1.4) is verified almost everywhere. It also becomes clear
why the admissibility condition (5.1.2) is required (see (5.1.9)).

If we relax the conditions on f(t) and ψ(t), and require only that they belong to
L2(R), then the inversion formula still holds but the proof requires some finer arguments
[73, 108].

There are possible variations on the reconstruction formula (5.1.4) if additional
constraints are imposed on the wavelet [75]. We restrict a ∈ R

+, and if the following
modified admissibility condition is satisfied

Cψ =

∫ ∞

0

|Ψ(ω)|2
|ω| dω =

∫ 0

−∞

|Ψ(ω)|2
|ω| dω, (5.1.10)
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then (5.1.4) becomes

f(t) =
1

Cψ

∫ ∞

0

∫ ∞

−∞
CWTf (a, b)ψa,b(t)

da db

a2
.

For example, (5.1.10) is satisfied if the wavelet is real and admissible in the usual
sense given by (5.1.2).

A generalization of the analysis/synthesis formulas involves two different wave-
lets; ψ1(t) for analysis and ψ2(t) for synthesis, respectively. If the two wavelets
satisfy

∫ ∞

−∞

|Ψ1(ω)||Ψ2(ω)|
|ω| dω <∞,

then the following reconstruction formula holds [73]:

f(t) =
1

Cψ1,ψ2

∫ ∞

−∞

∫ ∞

−∞
〈ψ1a,b , f〉ψ2a,b

da db

a2
, (5.1.11)

where Cψ1,ψ2 =
∫
(Ψ∗

1(ω)Ψ2(ω)/|ω|)dω. An interesting feature of (5.1.11) is that
ψ1(t) and ψ2(t) can have significantly different behavior, as we have seen with
biorthogonal systems in Section 4.6.1. For example, ψ1(t) could be compactly
supported but not ψ2(t), or one could be continuous and not the other.

5.1.2 Properties

The continuous wavelet transform possesses a number of properties which we will
derive. Some are closely related to Fourier transform properties (for example, en-
ergy conservation) while others are specific to the CWT (such as the reproducing
kernel). Some of these properties are discussed in [124]. In the proofs we will
assume that ψ(t) is real.

Linearity The linearity of the CWT follows immediately from the linearity of the
inner product.

Shift Property If f(t) has a continuous wavelet transform given by CWTf (a, b),
then f ′(t) = f(t− b′) leads to the following transform:2

CWTf ′(a, b) = CWTf(a, b− b′).
This follows since

CWTf ′(a, b) =
1

√

|a|

∫ ∞

−∞
ψ

(
t− b
a

)

f(t− b′)dt

=
1

√

|a|

∫ ∞

−∞
ψ

(
t′ + b′ − b

a

)

f(t′)dt′ = CWTf (a, b− b′).

2In the following, f ′(t) denotes the modified function (rather than the derivative).
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FIGURE 5.1 fig5.1.1

Figure 5.1 Shift property of the continuous wavelet transform. A shift of the
function leads to a shift of its wavelet transform. The shading in the (a, b)
plane indicates the region of influence.

t

(b)

fig5.1.2

a

(a0, b0)ε/s

b

(a)

FIGURE 5.2

a0
s

------
b0
s

------,
 
 
 

ε

ε
ε
s
---

b

a

Figure 5.2 The scaling property. (a) Scaling by a factor of 2. (b) Two squares
of constant energy in the wavelet-transform plane (after [238]).

This shift invariance of the continuous transform is to be contrasted with the shift
variance of the discrete-time wavelet series seen in Chapter 4. Figure 5.1 shows the
shift property pictorially.

Scaling Property If f(t) has CWTf(a, b) as its continuous wavelet transform,
then f ′(t) = (1/

√
s)f(t/s) has the following transform:

CWTf ′(a, b) = CWTf

(
a

s
,
b

s

)

.

This follows since

CWTf ′(a, b) =
1

√

|a| · s

∫ ∞

−∞
ψ

(
t− b
a

)

f

(
t

s

)

dt
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=

√
s

|a|

∫ ∞

−∞
ψ

(
st′ − b
a

)

f(t′)dt′ = CWTf

(
a

s
,
b

s

)

.

The scaling property is shown in Figure 5.2(a). We chose f ′(t) such that it has
the same energy as f(t). Note that an elementary square in the CWT of f ′, with
the upper left corner (a0, b0) and width ε, corresponds to an elementary square
in the CWT of f with the corner point (a0/s, b0/s) and width ε/s, as shown in
Figure 5.2(b). That is, assuming a scaling factor greater than 1, energy contained
in a given region of the CWT of f is spread by a factor of s in both dimensions in
the the CWT of f ′. Therefore, we have an intuitive explanation for the measure
(da db)/a2 used in the reconstruction formula (5.1.4), which weights elementary
squares so that they contribute equal energy.

Energy Conservation The CWT has an energy conservation property that is
similar to Parseval’s formula of the Fourier transform (2.4.12).

PROPOSITION 5.2

Given f(t) ∈ L2(R) and its continuous wavelet transform CWTf(a, b), the
following holds:

∫ ∞

−∞
|f(t)|2dt =

1

Cψ

∫ ∞

−∞

∫ ∞

−∞
|CWTf (a, b)|2

da db

a2
. (5.1.12)

PROOF

From (5.1.5) we can write

∫ ∞

−∞

∫ ∞

−∞
|CWTf (a, b)|2

da db

a2
=

∫ ∞

−∞

(

∫ ∞

−∞

∣

∣

∣

∣

√
a

2π

∫ ∞

−∞
Ψ∗(aω)F (ω)ejbωdω

∣

∣

∣

∣

2

db

)

da

a2
.

Calling now P (ω) = Ψ∗(aω)F (ω), we obtain that the above integral equals

∫ ∞

−∞

∫ ∞

−∞
|CWTf (a, b)|2

da db

a2
=

∫ ∞

−∞

(
∫ ∞

−∞
| 1
2π

∫ ∞

−∞
P (ω)ejbωdω|2db

)

da

|a|

=

∫ ∞

−∞

(
∫ ∞

−∞
|p(b)|2db

)

da

|a|

=

∫ ∞

−∞

(

1

2π

∫ ∞

−∞
|P (ω)|2dω

)

da

|a| , (5.1.13)

where we have again used Parseval’s formula (2.4.12). Thus, (5.1.13) becomes

∫ ∞

−∞

(

1

2π

∫ ∞

−∞
|Ψ∗(aω)|2|F (ω)|2dω

)

da

|a| =
1

2π

∫ ∞

−∞
|F (ω)|2

∫ ∞

−∞

|Ψ(aω)|2
|a| da dω. (5.1.14)
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The second integral is equal to Cψ (see (5.1.9)). Applying Parseval’s formula again, (5.1.14),
and consequently (5.1.13) become

1

Cψ

∫ ∞

−∞

∫ ∞

−∞
|CWTf (a, b)|2

da db

a2
=

1

Cψ
· Cψ
2π

∫ ∞

−∞
|F (ω)|2dω =

∫ ∞

−∞
|f(t)|2dt,

thus proving (5.1.12).

Again, the importance of the admissibility condition (5.1.2) is evident. Also, the
measure (da db)/a2 used in the transform domain is consistent with our discussion
of the scaling property. Scaling by s while conserving the energy will spread the
wavelet transform by s in both the dimensions a and b, and thus a renormalization
by 1/a2 is necessary.

A generalization of this energy conservation formula involves the inner product
of two functions in time and in wavelet domains. Then, (5.1.12) becomes [73]

∫

f∗(t) · g(t)dt =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
CWT ∗

f (a, b) · CWTg(a, b)
da db

a2
, (5.1.15)

that is, the usual inner product of the time-domain functions equals, up to a mul-
tiplicative constant, the inner product of their wavelet transform, but with the
measure (da db)/a2.

Localization Properties The continuous wavelet transform has some localization
properties, in particular sharp time localization at high frequencies (or small scales)
which distinguishes it from more traditional, Fourier-like transforms.

Time Localization Consider a Dirac pulse at time t0, δ(t − t0) and a wavelet ψ(t).
The continuous wavelet transform of the Dirac is

CWTδ(a, b) =
1√
a

∫

ψ

(
t− b
a

)

δ(t − t0)dt =
1√
a
ψ

(
t0 − b
a

)

.

For a given scale factor a0, that is, a horizontal line in the wavelet domain, the
transform is equal to the scaled (and normalized) wavelet reversed in time and
centered at the location of the Dirac. Figure 5.3(a) shows this localization for the
compactly supported Haar wavelet (with zero phase). It is clear that for small
a’s, the transform “zooms-in” to the Dirac with a very good localization for very
small scales. Figure 5.3(b) shows the case of a step function, which has a similar
localization but a different magnitude behavior. Another example is given in Fig-
ure 5.4 where the transform of a simple synthetic signal with different singularities
is shown.
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Figure 5.3 Time localization property, shown for the case of a zero-phase Haar
wavelet. (a) Behavior of f(t) = δ(t− t0). The cone of influence has a width of

a0/2 on each side of t0 and the height is a
−1/2
0 . (b) Behavior for f(t) = u(t−t0),

that is, the unit-step function. The cone of influence is as in part (a), but the

height is −1/2a1/20 .

Frequency Localization For the sake of discussion, we will consider the sinc wavelet,
that is, a perfect bandpass filter. Its magnitude spectrum is 1 for |ω| between π
and 2π. Consider a complex sinusoid of unit magnitude and at frequency ω0. The
highest-frequency wavelet that will pass the sinusoid through, has a scale factor
amin = π/ω0 (and a gain of

√

π/ω0) while the lowest-frequency wavelet passing
the sinusoid is for amax = 2π/ω0 (and a gain of

√

2π/ω0). Figure 5.5(a) shows
the various octave-band filters, and Figure 5.5(b) shows the continuous wavelet
transform of a sinusoid using a sinc wavelet.

The frequency resolution using an octave-band filter is limited, especially at
high frequencies. An improvement is obtained by going to narrower bandpass filters
(third of an octave, for example).

Characterization of Regularity In our discussion of time localization (see Fig-
ures 5.3 and 5.4), we saw the “zooming” property of the wavelet transform. This
allows a characterization of local regularity of signals; a feature which makes the
wavelet transform more attractive than the Fourier or local Fourier transform. In-
deed, while global regularity of a function can be measured from the decay of its
Fourier transform, little can be said about the local behavior. For example, a single
discontinuity in an otherwise smooth function will produce an order 1/|ω| decay of
its Fourier transform (as an example, consider the step function). The local Fourier
transform is able to indicate local regularity within a window, but not more locally.
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Figure 5.4 Continuous wavelet transform of a simple signal using the Haar
wavelet. (a) Signal containing four singularities. (b) Continuous wavelet trans-
form, with small scales toward the front. Note the different behavior at the
different singularities and the good time localization at small scales.

The wavelet transform, because of the zooming property, will isolate the disconti-
nuity from the rest of the function and the behavior of the wavelet transform in the
neighborhood of the discontinuity will characterize it.

Consider the wavelet transform of a Dirac impulse in Figure 5.3(a) and of a
step function in Figure 5.3(b). In the former case, the absolute value of the wavelet
transform behaves as |a|−1/2 when approaching the Dirac. In the latter case, it is
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Figure 5.5 Frequency localization of the continuous wavelet transform using
a sinc wavelet. (a) Magnitude spectrum of the wavelet and its scaled versions
involved in the resolution of a complex sinusoid at ω0. (b) Nonzero magnitude
of the continuous wavelet transform.

easy to verify, that the wavelet transform, using a Haar wavelet (with zero phase),

is equal to a hat function (a triangle) of height −1/2 ·a1/20 and width from t0−a0/2
to t0 + a0/2. Along the line a = a0, the CWT in 5.3(a) is simply the derivative
of the CWT in 5.3(b). This follows from the fact that the CWT can be written
as a convolution of the signal with a scaled and time-reversed wavelet. From the
differentiation property of the convolution and from the fact that the Dirac is the
derivative of the step function (in the sense of distributions), the result follows. In
Figure 5.4, we saw the different behavior of the continuous wavelet transform for
different singularities, as scale becomes small. A more thorough discussion of the
characterization of local regularity can be found in [73, 183] (see also Problem 5.1).

Reproducing Kernel As indicated earlier, the CWT is a very redundant repre-
sentation since it is a two-dimensional expansion of a one-dimensional function.
Consider the space V of square-integrable functions over the plane (a, b) with re-
spect to (da db)/a2. Obviously, only a subspace H of V corresponds to wavelet
transforms of functions from L2(R).
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PROPOSITION 5.3

If a function F (a, b) belongs to H, that is, it is the wavelet transform of a
function f(t), then F (a, b) satisfies

F (a0, b0) =
1

Cψ

∫ ∫

K(a0, b0, a, b)F (a, b)
da db

a2
, (5.1.16)

where

K(a0, b0, a, b) = 〈ψa0,b0 , ψa,b〉,
is the reproducing kernel.

PROOF

To prove (5.1.16), note that K(a0, b0, a, b) is the complex conjugate of the wavelet transform
of ψa0,b0 at (a, b),

K(a0, b0, a, b) = CWT ∗
ψa0,b0

(a, b), (5.1.17)

since 〈ψa0,b0 , ψa,b〉 = 〈ψa,b, ψa0,b0〉∗. Since F (a, b) = CWTf (a, b) by assumption and using
(5.1.17), the right side of (5.1.16) can be written as

1

Cψ

∫ ∞

−∞

∫ ∞

−∞
K(a0, b0, a, b)F (a, b)

da db

a2

=
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
CWT ∗

ψa0,b0
(a, b) · CWTf (a, b)

da db

a2

= 〈ψa0,b0 , f〉 = CWTf (a0, b0) = F (a0, b0),

where (5.1.15) was used to come back to the time domain.

Of course, since K(a0, b0, a, b) is the wavelet transform of ψa,b at location a0, b0, it
indicates the correlation across shifts and scales of the wavelet ψ.

We just showed that if a two-dimensional function is a continuous wavelet trans-
form of a function, then it satisfies the reproducing kernel relation (5.1.16). It can be
shown that the converse is true as well, that is, if a function F (a, b) satisfies (5.1.16),
then there is a function f(t) and a wavelet ψ(t) such that F (a, b) = CWTf (a, b)
[238]. Therefore, F (a, b) is a CWT if and only if it satisfies the reproducing kernel
relation (5.1.16).

An example of a reproducing kernel, that is, the wavelet transform of itself (the
wavelet is real), is shown in Figure 5.6 for the Haar wavelet. Note that because of
the orthogonality of the wavelet with respect to the dyadic grid, the reproducing
kernel is zero at the dyadic grid points.

5.1.3 Morlet Wavelet

The classic example of a continuous-time wavelet analysis uses a windowed complex
exponential as the prototype wavelet. This is the Morlet wavelet, as first proposed
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Figure 5.6 Reproducing kernel of the Haar wavelet.
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Figure 5.7 Morlet wavelet. (a) Time domain (real and imaginary parts are
the continuous and dotted graphs, respectively). (b) Magnitude spectrum.

in [119, 125] for signal analysis, and given by

ψ(t) =
1√
2π
e−jω0te−t

2/2, (5.1.18)

Ψ(ω) = e−(ω−ω0)2/2.

The factor 1/
√
2π in (5.1.18) ensures that ‖ψ(t)‖ = 1. The center frequency ω0 is

usually chosen such that the second maximum of Re{ψ(t)}, t > 0, is half the first
one (at t = 0). This leads to

ω0 = π

√

2

ln 2
= 5.336.
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It should be noted that this wavelet is not admissible since Ψ(ω)|ω=0 6= 0, but its
value at zero frequency is negligible (∼ 7·10−7), so it does not present any problem in
practice. The Morlet wavelet can be corrected so that Ψ(0) = 0, but the correction
term is very small. Figure 5.7 shows the Morlet wavelet in time and frequency.
The latter graph shows that the Morlet wavelet is roughly an octave-band filter.
Displays of signal analyses using the continuous-time wavelet transform are often
called scalograms, in contrast to spectrograms which are based on the short-time
Fourier transform.

5.2 CONTINUOUS SHORT-TIME FOURIER TRANSFORM

This transform, also called windowed Fourier or Gabor transform, was briefly intro-
duced in Section 2.6.3. The idea is that of a “localization” of the Fourier transform,
using an appropriate window function centered around a location of interest (which
can be moved). Thus, as the wavelet transform, it is an expansion along two param-
eters, frequency and time shift. However, it has a different behavior because of the
fixed window size as opposed to the scaled window used in the wavelet transform.

5.2.1 Properties

In the short-time Fourier transform (STFT) case, the functions used in the expan-
sion are obtained by shifts and modulates of a basic window function w(t)

gω,τ (t) = ejωtw(t− τ). (5.2.1)

This leads to an expansion of the form

STFTf (ω, τ) =

∫ ∞

−∞
e−jωtw∗(t− τ)f(t)dt = 〈gω,τ (t), f(t)〉.

There is no admissibility constraint on the window (unlike (5.1.2)) since it is suf-
ficient for the window to have finite energy. It is convenient to choose the window
such that ‖w(t)‖ = 1 and we will also assume that w(t) is absolutely integrable,
which is the case in practice.

Similarly to the wavelet case, the function f(t) can be recovered, in the L2 sense,
by a double integral

f(t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
STFTf (ω, τ)gω,τ (t)dω dτ, (5.2.2)

where ‖w(t)‖ = 1 was assumed (otherwise, a factor 1/‖w(t)‖2 has to be used).
The proof of (5.2.2) can be done by introducing

fA(t) =
1

2π

∫ ∞

−∞

∫ A

−A
STFTf (ω, τ)gω,τ (t)dωdτ
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and showing that limA→∞ fA(t) = f(t) in L2(R) (see [108] for a detailed proof).
There is also an energy conservation property for the STFT.

PROPOSITION 5.4

Given f(t) ∈ L2(R) and its short-time Fourier transform STFTf (ω, τ), the
following holds:

‖f(t)‖2 = 1

2π

∫ ∞

−∞

∫ ∞

−∞
|STFTf (ω, τ)|2dωdτ.

PROOF

First, using Parseval’s formula, let us write the STFT in Fourier domain as

STFTf(Ω, τ ) =

∫ ∞

−∞
g∗Ω,τ (t)f(t)dt =

1

2π

∫ ∞

−∞
G∗

Ω,τ (ω)F (ω) dω, (5.2.3)

where
GΩ,τ (ω) = e−j(ω−Ω)τW (ω − Ω) (5.2.4)

and W (ω) is the Fourier transform of w(t). Using (5.2.4) in (5.2.3), we obtain

STFTf (Ω, τ ) =
1

2π
e−jΩτ

∫ ∞

−∞
W ∗(ω −Ω)F (ω)ejωτ dω

= e−jΩτF−1[W ∗(ω − Ω)F (ω)](τ ).

where F−1[·](τ ) is the inverse Fourier transform at τ . Therefore,

1

2π

∫ ∞

−∞

∫ ∞

−∞
|STFTf (Ω, τ )|2dΩdτ =

1

2π

∫ ∞

−∞

(
∫ ∞

−∞
|F−1[W ∗(ω − Ω)F (ω)](τ )|2dτ

)

dΩ

=
1

2π

∫ ∞

−∞

(

1

2π

∫ ∞

−∞
|W ∗(ω − Ω)F (ω)|2dω

)

dΩ

(5.2.5)

where we used Parseval’s relation. Interchanging the order of integration (it can be shown
that W ∗(ω − Ω)F (ω) is in L2(R)), (5.2.5) becomes

∫ ∞

−∞

1

2π
|F (ω)|2

(

1

2π

∫ ∞

−∞
|W ∗(ω − Ω)|2dΩ

)

dω =
1

2π

∫ ∞

−∞
|F (ω)|2dω = ‖f(t)‖2

where we used the fact that ‖w(t)‖2 = 1 or ‖W (ω)‖2 = 2π.

5.2.2 Examples

Since the STFT is a local Fourier transform, any classic window that is used in
Fourier analysis of signals is a suitable window function. A rectangular window
will have poor frequency localization, so smoother windows are preferred. For
example, a triangular window has a spectrum decaying in 1/ω2 and is already a



5.2. CONTINUOUS SHORT-TIME FOURIER TRANSFORM 327

better choice. Smoother windows have been designed for data analysis, such as the
Hanning window [211]:

w(t) =

{
[1 + cos(2πt/T )]/2 t ∈ [−T/2, T/2],

0 otherwise.

The classic window, originally used by Gabor, is the Gaussian window

w(t) = βe−αt
2
, α, β > 0, (5.2.6)

where α controls the width, or spread, in time and β is a normalization factor. Its
Fourier transform W (ω) is given by

W (ω) = β

√
π

α
e−ω

2/4α.

Modulates of a Gaussian window (see (5.2.1)) are often called Gabor functions. An
attractive feature of the Gaussian window is that it achieves the best joint time
and frequency localization since it meets the lower bound set by the uncertainty
principle (see Section 2.6.2).

It is interesting to see that Gabor functions and the Morlet wavelet (see (5.1.18),
are related, since they are both modulated Gaussian windows. That is, given a
certain α in (5.2.6) and a certain ω0 in (5.1.18), we have that ψa,0(t), using the
Morlet wavelet, is (we assume zero time shift for simplicity)

ψa,0(t) =
1√
2πa

ejω0t/ae−t
2/2a2 ,

while gω,0(t), using the Gabor window, is

gω,0(t) = βejωte−αt
2
,

that is, they are equal if a = 1/
√
2α and ω = ω0

√
2α. Therefore, there is a fre-

quency and a scale at which the Gabor and wavelet transforms coincide. At others,
the analysis is different since the wavelet transform uses variable-size windows, as
opposed to the fixed-size window of the local Fourier analysis.

This points to a key design question in the STFT, namely the choice of the
window size. Once the window size is chosen, all frequencies will be analyzed
with the same time and frequency resolutions, unlike what happens in the wavelet
transform. In particular, events cannot be resolved if they appear close to each
other (within the window spread).

As far as regularity of functions is concerned, one can use Fourier techniques
which will indicate regularity estimates within a window. However, it will not be
possible to distinguish different behaviors within a window spread. An alternative
is to use STFT’s with multiple window sizes (see [291] for such a generalized STFT).
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5.3 FRAMES OF WAVELET AND SHORT-TIME FOURIER TRANSFORMS

In Chapter 3, we have considered discrete-time orthonormal bases as well as over-
complete expansions. For the latter ones, we pointed out some advantages of relax-
ing the sampling constraints: As the oversampling factor increases, we get more and
more freedom in choosing our basis functions, that is, we can get better filters. In
Chapter 4, orthonormal wavelet bases for continuous-time signals were discussed,
while at the beginning of this chapter, the continuous-time wavelet and short-time
Fourier transforms, that is, very redundant representations, were introduced.

Our aim in this section is to review overcomplete continuous-time expansions
called frames. They are sets of nonindependent vectors that are able to represent
every vector in a given space and can be obtained by discretizing the continuous-
time transforms (both wavelet and short-time Fourier transforms). We will see that
a frame condition is necessary if we want a numerically stable reconstruction of a
function f from a sequence of its transform coefficients (that is, (〈ψm,n, f〉)m,n∈Z in
the wavelet transform case, and (〈gm,n, f〉)m,n∈Z in the short-time Fourier transform
case).3 Therefore, the material in this section can be seen as the continuous-time
counterpart of overcomplete expansions seen briefly in Section 3.5, as well as a
“middle ground” between two extreme cases: Nonredundant orthonormal bases of
Chapter 4 and extremely redundant continuous-time wavelet and short-time Fourier
transforms at the beginning of this chapter. As in Chapter 3, there will be a trade-
off between oversampling and freedom in choosing our basis functions. In the most
extreme case, for the short-time Fourier transform frames, the Balian-Low theorem
tells us that when critical (Nyquist) sampling is used, it will not be possible to obtain
frames with good time and frequency resolutions (and consequently, orthonormal
short-time Fourier transform bases will not be achievable with basis functions being
well localized in time and frequency). On the other hand, wavelet frames are less
restricted and this is one of the reasons behind the excitement that wavelets have
generated over the past few years.

A fair amount of the material in this section follows Daubechies’s book [73]. For
more details and a more rigorous mathematical presentation, the reader is referred
to [73], as well as to [26, 72] for more advanced material.

5.3.1 Discretization of the Continuous-Time Wavelet
and Short-Time Fourier Transforms

As we have seen previously, the continuous-time wavelet transform employs basis
functions given by (5.1.1) where b ∈ R, a ∈ R

+, a 6= 0, and the reconstruction
formula is based on a double integral, namely the resolution of the identity given by
(5.1.4). However, we would like to be able to reconstruct the function from samples

3Round brackets are used to denote sequences of coefficients.
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taken on a discrete grid. To that end, we choose the following discretization of
the scaling parameter a: a = am0 , with m ∈ Z and a0 6= 1. As for the shift b,
consider the following: For m = 0, discretize b by taking integer multiples of a
fixed b0 (b0 > 0). The step b0 should be chosen in such a way that ψ(t − nb0)
will “cover” the whole time axis. Now, the step size b at scale m cannot be chosen
independently of m, since the basis functions are rescaled. If we define the “width”
of the function, ∆t(f), as in (2.6.1), then one can see that the width of ψam0 ,0(t) is
am0 times the width of ψ(t), that is

∆t(ψam0 ,0(t)) = am0 ∆t(ψ(t)).

Then, it is obvious that for ψa,b(t) to “cover” the whole axis at a scale a = am0 , the
shift has to be b = nb0a

m
0 . Therefore, we choose the following discretization:

a = am0 , b = nb0a
m
0 , m, n ∈ Z, a0 > 1, b0 > 0.

The discretized family of wavelets is now

ψm,n(t) = a
−m/2
0 ψ(a−m0 t− nb0).

As illustrated in Figure 5.8, to different values of m correspond wavelets of different
widths: Narrow, high-frequency wavelets are translated by smaller steps in order
to “cover” the whole axis, while wider, lower-frequency wavelets are translated by
larger steps. For a0 = 2, b0 = 1, we obtain the dyadic case introduced in Chapter 4,
for which we know that orthonormal bases exist and reconstruction from transform
coefficients is possible.

We would like to answer the following question: Given the sequence of transform
coefficients (ψm,n, f), is it possible to reconstruct f in a numerically stable way?
In the continuous-parameter case, this is answered by using the resolution of the
identity. When the parameters are discretized, there is no equivalent formula.
However, in what follows, it will be shown that reconstruction is indeed possible,
that is, for certain ψ and appropriate a0, b0, there exist ψ̃m,n such that the function
f can be reconstructed as follows:

f =
∑

m

∑

n

〈ψm,n, f〉ψ̃m,n.

It is also intuitively clear that when a0 is close to one, and b0 is close to zero,
reconstruction should be possible by using the resolution of the identity (since the
double sum will become a close approximation to the double integral used in the
resolution of the identity). Also, as we said earlier, we know that for some choices of
a0 and b0 (such as the dyadic case and orthonormal bases in general), reconstruction
is possible as well. What we want to explore are the cases in between.
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FIGURE 5.8
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Figure 5.8 By discretizing the values of dilation and shift parameters a =
am0 , b = nb0a

m
0 , one obtains (a) the sampling grid and (b) the corresponding

set of functions (the case a0 = 21/2, b0 = 1, is shown). To different values of m
correspond wavelets of different width: Shorter, high-frequency wavelets are
translated by smaller steps, while wider, low-frequency wavelets are translated
by larger steps.

Let us now see what is necessary in order to have a stable reconstruction. In-
tuitively, the operator that maps a function f(t) into coefficients 〈ψm,n, f〉 has to
be bounded. That is, if f(t) ∈ L2(R), then

∑

m,n |〈ψm,n, f〉|2 has to be finite. Also,
no f(t) with ‖f‖ > 0 should be mapped to 0. These two conditions lead to frame
bounds which guarantee stable reconstruction. Consider the first condition. For
any wavelet with some decay in time and frequency, having zero mean, and any
choice for a0 > 1, b0 > 0, it can be shown that

∑

m,n

|〈ψm,n, f〉|2 ≤ B ‖f‖2 (5.3.1)

(this just states that the sequence (〈ψm,n, f〉)m,n is in l2(Z
2), that is, the sequence is

square-summable [73]). On the other hand, the requirement for stable reconstruc-
tion means that if

∑

m,n |〈ψm,n, f〉|2 is small, ‖f‖2 should be small as well (that

is,
∑

m,n |〈ψm,n, f〉|2 should be “close” to ‖f‖2). This further means that there

should exist α < ∞ such that
∑

m,n |〈ψm,n, f〉|2 < 1 implies ‖f‖2 ≤ α. Take now
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an arbitrary f and define f̃ =
[
∑

m,n |〈ψm,n, f〉|2
]−1/2

f . Then it is obvious that
∑

m,n |〈ψm,n, f̃〉|2 ≤ 1 and consequently, ‖f̃‖2 ≤ α. This is equivalent to

A ‖f‖2 ≤
∑

m,n

|〈ψm,n, f〉|2, (5.3.2)

for some A = 1/α. Take now f = f1−f2. Then, (5.3.2) means also that the distance
‖f1 − f2‖ cannot be arbitrarily large if

∑

m,n |〈ψm,n, f1〉 − 〈ψm,n, f2〉|2 is small,
or, (5.3.2) is equivalent to the stability requirement. Putting (5.3.1) and (5.3.2)
together tells us that a numerically stable reconstruction of f from its transform
(wavelet) coefficients is possible only if

A ‖f‖2 ≤
∑

m,n

|〈ψm,n, f〉|2 ≤ B ‖f‖2.

If this condition is satisfied, then the family (ψm,n)m,n∈Z constitutes a frame. When
A = B = 1, and |ψm,n| = 1, for all m,n, the family of wavelets is an orthonormal
basis (what we will call a tight frame with a frame bound equal to 1). These notions
will be defined in Section 5.3.2.

Until now, we have seen how the continuous-time wavelet transform can be
discretized and what the conditions on that discretized version are so that a nu-
merically stable reconstruction from (〈ψm,n, f〉)m,n is possible. What about the
short-time Fourier transform? As we have seen in Section 5.2, the basis functions
are given by (5.2.1). As before, we would like to be able to reconstruct the function
from the samples taken on a discrete grid. In the same manner as for the wavelet
transform, it is possible to discretize the short-time Fourier transform as follows:
In gω,τ (t) = ejωtw(t − τ) choose ω = mω0 and τ = nt0, with ω0, t0 > 0 fixed,
m, n ∈ Z so that

gm,n(t) = ejmω0tw(t− nt0). (5.3.3)

Again, we would like to know whether it is possible to reconstruct a given function
f from its transform coefficients (〈gm,n, f〉)m,n in a numerically stable way and
again, the answer is positive provided that gm,n constitute a frame. Then, the
reconstruction formula becomes

∑

m,n

〈gm,n, f〉 g̃m,n = f =
∑

m,n

〈g̃m,n, f〉 gm,n,

where g̃m,n are the vectors of the dual frame, and

〈gm,n, f〉 =

∫

e−jmω0tw∗(t− nt0)f(t)dt.
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5.3.2 Reconstruction in Frames

As we have just seen, for numerically stable reconstruction, the vectors used for the
expansion have to constitute a frame. Therefore, in this section, we will present
an overview of frames, as well as an algorithm to reconstruct f from its transform
coefficients. For a more detailed and rigorous account of frames, see [72, 73].

DEFINITION 5.5

A family of functions (γj)j∈J in a Hilbert space H is called a frame if there
exist 0 < A ≤ B <∞, such that, for all f in H,

A ‖f‖2 ≤
∑

j∈J
|〈γj , f〉|2 ≤ B ‖f‖2, (5.3.4)

where, A and B are called frame bounds.

If the two frame bounds are equal, the frame is called a tight frame. In that case,
and if ‖γj‖ = 1, A = B gives the “redundancy ratio”, or the oversampling ratio.
If that ratio equals to 1, we obtain the “critical” sampling case, or an orthonormal
basis. These observations lead to the following proposition [73]:

PROPOSITION 5.6

If (γj)j∈J is a tight frame, with frame bound A = 1, and if ‖γj‖ = 1, for all
j ∈ J , then the γj constitute an orthonormal basis.

Note that the converse is just Parseval’s formula. That is, an orthonormal basis is
also a tight frame with frame bounds equal to 1.

Since for a tight frame
∑

j∈J |〈γj , f〉|2 = A‖f‖2, or,∑j∈J〈f, γj〉〈γj , g〉 = A〈f, g〉,
we can say that (at least in the weak sense [73])

f =
1

A

∑

j∈J
〈γj , f〉 γj. (5.3.5)

This gives us an easy way to recover f from its transform coefficients 〈γj , f〉 if the
frame is tight. Note that (5.3.5) with A = 1 gives the usual reconstruction formula
for an orthonormal basis.

A frame, however, (even a tight frame) is not an orthonormal basis; it is a set
of nonindependent vectors, as is shown in the following examples.

Example 5.1

Consider R
2 and the redundant set of vectors ϕ0 = [1, 0]T , ϕ1 = [−1/2,

√
3/2]T and ϕ2 =

[−1/2,−
√
3/2]T (this overcomplete set was briefly discussed in Example 1.1 and shown in

Figure 1.1). Creating a matrix M = [ϕ0, ϕ1, ϕ2], it is easy to verify that

MM
T =

3

2
I
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and thus, any vector x ∈ R
2 can be written as

x =
2

3

2
∑

i=0

〈ϕi, x〉 ϕi. (5.3.6)

Note that ‖ϕi‖ = 1, and thus 3/2 is the redundancy factor. Also, in (5.3.6), the dual set is
identical to the vectors of the expansion. However, this set is not unique, because the ϕi’s
are linearly dependent. Since

∑2
i=0 ϕi = 0, we can choose

ϕ̃i = ϕi +

[

α

β

]

and still obtain

x =
2

3

2
∑

i=0

〈ϕ̃i, x〉 ϕi.

The particular choice of α = β = 0 leads to ϕ̃i = ϕi.
4 See Problem 5.5 for a more general

version of this example.

Example 5.2

Consider a two-channel filter bank, as given in Chapter 3, but this time with no downsam-
pling (see Section 3.5.1). Obviously, the output is simply

X̂(z) = [G0(z)H0(z) +G1(z)H1(z)] X(z).

Suppose now that the two filters G0(z) and G1(z) are of unit norm and satisfy

G0(z)G0(z
−1) +G1(z)G1(z

−1) = 2.

Then, setting H0(z) = G0(z
−1) and H1(z) = G1(z

−1) we get

X̂(z) = [G0(z)G0(z
−1) +G1(z)G1(z

−1)] X(z) = 2 ·X(z). (5.3.7)

Write this in time domain using the impulse responses g0[n] and g1[n] and their translates.
The output of the filter h0[n] = g0[−n] at time k equals 〈g0[n−k], x[n]〉 and thus contributes
〈g0[n− k], x[n]〉 · g0[m− k] to the output at time m. A similar relation holds for g1[n− k].
Therefore, using these relations and (5.3.7), we can write

x̂[m] =
∞
∑

k=−∞

1
∑

i=0

〈gi[n− k], x[n]〉 gi[m− k] = 2 · x[m].

That is, the set {gi[n− k]} , i = 0, 1, and k ∈ Z, forms a tight frame for l2(Z) with a
redundancy factor R = 2. The redundancy factor indicates the oversampling rate, which is
indeed a factor of two in our two-channel, nondownsampled case. The vectors gi[n−k], k ∈ Z

are not independent; indeed, there are twice as many than what would be needed to uniquely
represent the vectors in l2(Z). This redundancy, however, allows for more freedom in design
of gi[k − n]. Moreover, the representation is now shift-invariant, unlike in the critically
sampled case.

4This particular choice is unique, and leads to the dual frame (which happens to be identical
to the frame in this case).
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What about reconstructing with frames that are not tight? Let us define the frame
operator Γ from L2(R) to l2(J) as

(Γf)j = 〈γj , f〉. (5.3.8)

Since (γj)j∈J constitute a frame, we know from (5.3.4) that ‖Γf‖2 ≤ B‖f‖2, that is,
Γ is bounded, which means that it is possible to find its adjoint operator Γ∗. Note
first that the adjoint operator is a mapping from l2(J) to L2(R). Then, 〈f,Γ∗c〉
is an inner product over L2(R), while 〈Γf, c〉 is an inner product over l2(J). The
adjoint operator can be computed from the following relation (see (2.A.2))

〈f,Γ∗c〉 = 〈Γf, c〉 =
∑

j∈J
〈γj , f〉∗cj . (5.3.9)

Exchanging the order in the inner product, we get that

∑

j∈J
〈γj , f〉∗cj =

∑

j∈J
cj〈f, γj〉 = 〈f,

∑

j∈J
cjγj〉. (5.3.10)

Comparing the left side of (5.3.9) with the right side of (5.3.10), we find the adjoint
operator as

Γ∗c =
∑

j∈J
cjγj . (5.3.11)

From this it follows that:
∑

j

〈γj , f〉γj = Γ∗Γf. (5.3.12)

Using this adjoint operator, we can express condition (5.3.4) as (I is the identity
operator)

A · I ≤ Γ∗Γ ≤ B · I, (5.3.13)

from where it follows that Γ∗Γ is invertible (see Lemma 3.2.2 in [73]). Applying
this inverse (Γ∗Γ)−1 to the family of vectors γj , leads to another family γ̃j which
also constitutes a frame. The vectors γ̃j are given by

γ̃j = (Γ∗Γ)−1γj . (5.3.14)

This new family of vectors is called a dual frame and it satisfies

B−1‖f‖2 ≤
∑

j∈J
|〈γ̃j , f〉|2 ≤ A−1‖f‖2,
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and the reconstruction formula becomes

∑

j∈J
〈γj , f〉 γ̃j =

∑

j∈J
〈γj , f〉 (Γ∗Γ)−1γj

= (Γ∗Γ)−1
∑

j∈J
〈γj , f〉 γj

= (Γ∗Γ)−1Γ∗Γf

= f,

where we have used (5.3.14), (5.3.8) and (5.3.11). Therefore, one can write

∑

j∈J
〈γj , f〉γ̃j = f =

∑

j∈J
〈γ̃j, f〉 γj. (5.3.15)

The above relation shows how to obtain a reconstruction formula for f from 〈γj , f〉,
where the only thing one has to compute is γ̃j = (Γ∗Γ)−1γj , given by

γ̃j =
2

A+B

∞∑

k=0

(I − 2

A+B
Γ∗Γ)kγj. (5.3.16)

We now sketch a proof of this relation (see [73]) for a rigorous development).

PROOF

If frame bounds A and B are close, that is, if

∇ =
B

A
− 1≪ 1,

then (5.3.13) implies that Γ∗Γ is close to ((A+B)/2)I , or (Γ∗Γ)−1 is close to (2/(A+B))I .
This further means that the function f can be written as follows:

f =
2

A+B

∑

j∈J
〈γj , f〉 γj +Rf,

where R is given by (use (5.3.12))

R = I − 2

A+B
Γ∗Γ. (5.3.17)

Using (5.3.13) we obtain

−B − A
B + A

I ≤ R ≤ B −A
B +A

I,

and as a result,

‖R‖ ≤ B − A
B + A

=
∇

2 +∇ ≤ 1. (5.3.18)
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From (5.3.17) and using (5.3.18), (Γ∗Γ)−1 can be written as (see also (2.A.1))

(Γ∗Γ)−1 =
2

A+B
(I −R)−1 =

2

A+B

∞
∑

k=0

Rk,

implying that

γ̃j = (Γ∗Γ)−1γj =
2

A+B

∞
∑

k=0

Rkγj =
2

A+B

∞
∑

k=0

(I − 2

A+B
Γ∗Γ)kγj . (5.3.19)

Note that if B/A is close to one, that is, if ∇ is small, then R is close to zero and
convergence in (5.3.19) is fast. If the frame is tight, that is, A = B, and moreover,
if it is an orthonormal basis, that is, A = 1, then R = I and γ̃j = γj .

We have seen, for example, in the wavelet transform case, that to have a numer-
ically stable reconstruction, we require that (ψm,n) constitute a frame. If (ψm,n) do
constitute a frame, we found an algorithm to reconstruct f from 〈f, ψm,n〉, given
by (5.3.15) with γ̃j as in (5.3.16). For this algorithm to work, we have to obtain
estimates of frame bounds.

5.3.3 Frames of Wavelets and STFT

In the last section, we dealt with abstract issues regarding frames and the recon-
struction issue. Here, we will discuss some particularities of frames of wavelets and
short-time Fourier transform. The main point of this section will be that for wavelet
frames, there are no really strong constraints on ψ(t), a0, b0. On the other hand,
for the short-time Fourier transform, the situation is more complicated and having
good frames will be possible only for certain choices of ω0 and τ0. Moreover, if we
want to avoid redundancy and critically sample the short-time Fourier transform,
we will have to give up either good time or good frequency resolution. This is the
content of the Balian-Low theorem, given later in this section.

In all the cases mentioned above, we need to have some estimates of the frame
bounds in order to compute the dual frame. Therefore, we start with wavelet
frames and show that a family of wavelets being a frame imposes the admissibility
condition for the “mother” wavelet. We give the result here without proof (for a
proof, refer to [73]).

PROPOSITION 5.7

If the ψm,n(t) = a
−m/2
0 ψ(a−m0 t− nb0), m, n ∈ Z constitute a frame for L2(R)

with frame bounds A, B, then

b0 ln a0
2π

A ≤
∫ ∞

0

|Ψ(ω)|2
ω

dω ≤ b0 ln a0
2π

B, (5.3.20)
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and
b0 ln a0
2π

A ≤
∫ 0

−∞

|Ψ(ω)|2
| ω | dω ≤ b0 ln a0

2π
B. (5.3.21)

Compare these expressions with the admissibility condition given in (5.1.2). It is
obvious that the fact that the wavelets form a frame, automatically imposes the
admissibility condition on the “mother” wavelet. This proposition will also help us
find frame bounds in the case when the frame is tight (A = B), since then

A =
2π

b0 ln a0

∫ ∞

0

|Ψ(ω)|2
ω

dω =
2π

b0 ln a0

∫ 0

−∞

|Ψ(ω)|2
| ω | dω.

Moreover, in the orthonormal case (we use the dyadic case as an example, A = B =
1, b0 = 1, a0 = 2)

∫ ∞

0

|Ψ(ω)|2
ω

dω =

∫ 0

−∞

|Ψ(ω)|2
| ω | dω =

ln 2

2π
.

We mentioned previously that in order to have wavelet frames, we need not impose
really strong conditions on the wavelet, and the scaling and shift factors. In other
words, if ψ(t) is at all a “reasonable” function (it has some decay in time and
frequency, and

∫
ψ(t)dt = 0) then there exists a whole arsenal of a0 and b0, such

that {ψm,n} constitute a frame. This can be formalized, and we refer to [73] for
more details (Proposition 3.3.2, in particular). In [73], explicit estimates for frame
bounds A,B, as well as possible choices for ψ, a0, b0, are given.

Example 5.3

As an example to the previous discussion, consider the so-called Mexican-hat function

ψ(t) =
2√
3
π−1/4(1− t2) e−t

2/2,

given in Figure 5.9. Table 5.1 gives a few values for frame bounds A, B with a0 = 2 and
varying b0. Note, for example, how for certain values of b0, the frame is almost tight — a
so-called “snug” frame. The advantage of working with such a frame is that we can use just
the 0th-order term in the reconstruction formula (5.3.16) and still get a good approximation
of f . Another interesting point is that when the frame is almost tight, the frame bounds
(which are close) are inversely proportional to b0. Since the frame bounds in this case
measure redundancy of the frame, when b0 is halved (twice as many points on the grid),
the frame bounds should double (redundancy increases by two since we have twice as many
functions). Note also how for the value of b0 = 1.50, the ratio B/A increases suddenly.
Actually, for larger values of b0, the set {ψm,n} is not even a frame any more, since A is not
strictly positive anymore.
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FIGURE 5.9 fig5.3.3

Figure 5.9 The Mexican-hat function ψ(t) = (2/31/2) π−1/4(1−t2)e−t2/2. The
rotated ψ(t) gives rise to a Mexican hat — thus the name for the function.

Table 5.1 Frame bounds for Mexican-
hat wavelet frames with a0 = 2 (from
[73]).

b0 A B B/A

0.25 13.091 14.183 1.083
0.50 6.546 7.092 1.083
0.75 4.364 4.728 1.083
1.00 3.223 3.596 1.116
1.25 2.001 3.454 1.726
1.50 0.325 4.221 12.986

Finally, let us say a few words on time-frequency localization properties of wave-
let frames. Recall that one of the reasons we opted for the wavelet-type signal
expansions is because they allegedly provide good localization in both time and
frequency. Let us here, for the sake of discussion, assume that |ψ| and |Ψ| are
symmetric. ψ is centered around t = 0, and Ψ is centered around ω = ω0 (this
implies that ψm,n will be centered around t = am0 nb0 and around ±a−m0 ω0 in fre-
quency). This means that the inner product 〈ψm,n, f〉 represents the “information
content” of f near t = am0 nb0 and near ω± = ±a−m0 ω0. If the function f is localized
(most of its energy lies within |t| ≤ T and Ω0 ≤ |ω| ≤ Ω1) then only the coeffi-
cients 〈ψm,n, f〉 for which (t, ω) = (am0 nb0,±a−m0 ω0) lies within (or very close) to
[−T, T ]× ([−Ω1,−Ω0] ∪ [Ω0,Ω1]) will be necessary for f to be reconstructed up to
a good approximation. This approximation property is detailed in [73] (Theorem
3.5.1, in particular).

Let us now shift our attention to the short-time Fourier transform frames. As
mentioned before, we need to be able to say something about the frame bounds in
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order to compute the dual frame. Then, in a similar fashion to Proposition 5.7,
one can obtain a very interesting result, which states that if gm,n(t) (as in (5.3.3))
constitute a frame for L2(R) with frame bounds A and B, then

A ≤ 2π

ω0t0
‖g‖2 ≤ B. (5.3.22)

Note how in this case, any tight frame will have a frame bound A = (2π)/(ω0t0)
(with ‖g‖ = 1). In particular, an orthonormal basis will require the following to be
true:

ω0t0 = 2π.

Beware, however, that ω0t0 = 2π will not imply an orthonormal basis; it just
states that we have “critically” sampled our short-time Fourier transform.5 Note
that in (5.3.22) g does not appear (except ‖g‖ which can always be normalized to 1),
as opposed to (5.3.20), (5.3.21). This is similar to the absence of an admissibility
condition for the continuous-time short-time Fourier transform (see Section 5.2).
On the other hand, we see that ω0, t0 cannot be arbitrarily chosen. In fact, there
are no short-time Fourier transform frames for ω0t0 > 2π. Even more is true: In
order to have good time-frequency localization, we require that ω0t0 < 2π. The
last remaining case, that of critical sampling, ω0t0 = 2π, is very interesting. Unlike
for the wavelet frames, it turns out that no critically sampled short-time Fourier
transform frames are possible with good time and frequency localization. Actually,
the following theorem states just that.

THEOREM 5.8 (Balian-Low)

If the gm,n(t) = ej2πmtw(t− n), m, n ∈ Z constitute a frame for L2(R), then
either

∫
t2|w(t)|2dt =∞ or

∫
ω2|W (ω)|2dω =∞.

For a proof, see [73]. Note that in the statement of the theorem, t0 = 1, ω0 =
2π/t0 = 2π. Thus, in this case (ω0t0 = 2π), we will necessarily have bad localiza-
tion either in time or in frequency (or possibly both). This theorem has profound
consequences, since it also implies that no good short-time Fourier transform or-
thonormal bases (good meaning with good time and frequency localization) are
achievable (since orthonormal bases are necessarily critically sampled). This is
similar to the discrete-time result we have seen in Chapter 3, Theorem 3.17. The
previous discussion is pictorially represented in Figure 5.10 (after [73]).

A few more remarks about the short-time Fourier transform: First, as in the
wavelet case, it is possible to obtain estimates of the frame bounds A, B. Unlike
the wavelet case, however, the dual frame is always generated by a single function

5In signal processing terms, this corresponds to the Nyquist rate.
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t0

ω0

no frames for ω0t0 > 2π

FIGURE 5.10 fig5.3.5

ω0t0 = 2π
frames possible, but with bad 
time-frequency localization

good, tight frames 
possible for 
ω0t0 < 2π

Figure 5.10 Short-time Fourier transform case: no frames are possible for
ω0t0 > 2π. There exist frames with bad time-frequency localization for ω0t0 =
2π. Frames (even tight frames) with excellent time-frequency localization are
possible for ω0t0 < 2π (after [73]).

w̃. To see that, first introduce the shift operator Tw(t) = w(t−t0) and the operator
Ew(t) = ejω0tw(t). Then, gm,n(t) can be expressed as

gm,n(t) = ejmω0tw(t− nt0) = EmT nw(t).

One can easily check that both T and E commute with Γ∗Γ and thus with (Γ∗Γ)−1

as well [225]. Then, the dual frame can be found from (5.3.14)

dual(gm,n)(t) = (Γ∗Γ)−1gm,n(t)

= (Γ∗Γ)−1EmT nw(t)

= EmT n(Γ∗Γ)−1w(t)

= EmT nw̃(t),

= g̃m,n(t). (5.3.23)

To conclude this section, we will consider an example from [73], the Gaussian
window, where it can be shown how, as oversampling approaches critical sampling,
the dual frame starts to “misbehave.”

Example 5.4 (after [73])

Consider a Gaussian window
w(t) = π−1/4e−t

2/2

and a special case when ω0 = t0 =
√
λ 2π, or ω0t0 = 2πλ (note that 1/λ gives the oversam-

pling factor). Let us try to find the dual frame. From (5.3.3), recall that (with the Gaussian
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Table 5.2 Frame bounds for the Gaus-
sian and ω0 = t0 = (2πλ)1/2, for λ =
0.25, 0.375, 0.5, 0.75, 0.95 (from [73]).

λ A B B/A

0.250 3.899 4.101 1.052
0.375 2.500 2.833 1.133
0.500 1.575 2.425 1.539
0.750 0.582 2.089 3.592
0.950 0.092 2.021 22.004

window)

gm,n(t) = ejmω0tw(t− nt0)
= π−1/4ejmω0te−(t−nt0)2/2.

Also, since g̃m,n(t) are generated from a single function w̃(t) (see (5.3.23)), we will fix
m = n = 0 and find only w̃(t) from g0,0(t) = w(t). Then we use (5.3.16) and write

w̃(t) =
2

A+B

∞
∑

k=0

(I − 2

A+B
Γ∗Γ)kw(t). (5.3.24)

We will use the frame bounds already computed in [73]. Table 5.2 shows these frame bounds
for λ = 0.25, 0.375, 0.5, 0.75, 0.95, or corresponding t0 ∼= 1.25, 1.53, 1.77, 2.17, 2.44. Each
of these was taken from Table 3.3 in [73] (we took the nearest computed value). Our first
step is to evaluate Γ∗Γw. From (5.3.12) we know that

Γ∗Γw =
∑

m

∑

n

〈gm,n, w〉gm,n.

Due to the fast decay of functions, one computes only 10 terms on both sides (yielding a
total of 21 terms in the summation for m and as many for n). Note that for computational
purposes, one has to separate the computations of the real and the imaginary parts. The
iteration is obtained as follows: We start by setting w̃(t) = w0(t) = w(t). Then for each i,
we compute

wi(t) = wi−1(t)− 2

A+B
Γ∗Γwi−1(t),

w̃(t) = w̃(t) +wi(t).

Since the functions decay fast, only 20 iterations were needed in (5.3.24). Figure 5.11 shows
plots of w̃ with λ = 0.25, 0.375, 0.5, 0.75, 0.95, 1. Note how w̃ becomes less and less smooth
as λ increases (oversampling decreases). Even so, for all λ < 1, these dual frames have good
time-frequency localization. On the other hand, for λ = 1, w̃ is not even square-integrable
any more and becomes one of the pathological, Baastians’ functions [18]. Since in this case
A = 0, the dual frame function w̃ has to be computed differently. It is given by [225]

w̃B(t) = π7/4K
−3/2
0 et

2/2
∑

n>|t/
√
2π|−0.5

(−1)ne−π(n+0.5)2 ,

with K0 ≈ 1.854075.
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5.3.4 Remarks

This section dealt with overcomplete expansions called frames. Obtained by dis-
cretizing the continuous-time wavelet transform as well as the short-time Fourier
transform, they are used to obtain a numerically stable reconstruction of a function
f from a sequence of its transform coefficients. We have seen that the conditions
on wavelet frames are fairly relaxed, while the short-time Fourier transform frames
suffer from a serious drawback given in the Balian-Low theorem: When critical
sampling is used, it will not be possible to obtain frames with good time and fre-
quency resolutions. As a result, orthonormal short-time Fourier transform bases
are not achievable with basis functions being well localized in time and frequency.
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FIGURE 5.11 fig5.3.6

(e) (f)

(c) (d)

Figure 5.11 The dual frame functions w̃ for ω0 = t0 = (2πλ)1/2 and (a)
λ = 0.25, (b) λ = 0.375, (c) λ = 0.5, (d) λ = 0.75, (e) λ = 0.95, (f) λ = 1.0.
Note how w̃ starts to “misbehave” as λ increases (oversampling decreases). In
fact, for λ = 1, w̃ is not even square-integrable any more (after [73]).
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PROBLEMS

5.1 Characterization of local regularity: In Section 5.1.2, we have seen how the continuous wave-
let transform can characterize the local regularity of a function. Take the Haar wavelet for
simplicity.

(a) Consider the function

f(t) =

{

t 0 ≤ t,
0 t < 0,

and show, using arguments similar to the ones used in the text, that

CWTf (a, b) ≃ a3/2,

around b = 0 and for small a.

(b) Show that if

f(t) =

{

tn 0 ≤ t, n = 0, 1, 2 . . .
0 t < 0,

then
CWTf (a, b) ≃ a(2n+1)/2,

around b = 0 and for small a.

5.2 Consider the Haar wavelet

ψ(t) =







1 0 ≤ t ≤ 1/2,
−1 1/2 ≤ t ≤ 1,
0 otherwise.

(a) Give the expression and the graph of its autocorrelation function a(t),

a(t) =

∫

ψ(τ )ψ(τ − t)dτ.

(b) Is a(t) continuous? Derivable? What is the decay of the Fourier transform A(ω) as
ω → ±∞?

5.3 Nondownsampled filter bank: Refer to Figure 3.1 without downsamplers.

(a) Choose {H0(z), H1(z), G0(z), G1(z)} as in an orthogonal two-channel filter bank.
What is y[n] as a function of x[n]? Note: G0(z) = H0(z

−1) and G1(z) = H1(z
−1),

and assume FIR filters.

(b) Given the “energy” of x[n], or ‖x‖2, what can you say about ‖x0‖2 + ‖x1‖2? Give
either an exact expression, or bounds.

(c) Assume H0(z) and G0(z) are given, how can you find H1(z), G1(z) such that y[n] =
x[n]? Calculate the example where

H0(z) = G0(z
−1) = 1 + 2z−1 + z−2.

Is the solution (H1(z), G1(z)) unique? If not, what are the degrees of freedom? Note:
In general, y[n] = x[n − k] would be sufficient, but we concentrate on the zero-delay
case.
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5.4 Continuous wavelet transform: Consider a continuous wavelet transform

CWTf (a, b) =

∫ ∞

−∞

1√
a
ψ

(

t− b
a

)

· f(t)dt

using a Haar wavelet centered at the origin

ψ(t) =







1 − 1
2
≤ t < 0,

−1 0 ≤ t < 1
2
,

0 otherwise.

(a) Consider the signal f(t) given by

f(t) =

{

1 − 1
2
≤ t < 1

2
,

0 otherwise.

(i) Evaluate CWTf (a, b) for a = 1, 1/2, 2 and all shifts (b ∈ R).

(ii) Sketch CWTf (a, b) for all a (a > 0) and b, and indicate special behavior, if any
(for example, regions where CWTf (a, b) is zero, behavior as a → 0, anything else of
interest).

(b) Consider the case f(t) = ψ(t) and sketch the behavior of CWTf (a, b), similarly to (ii)
above.

5.5 Consider Example 5.1, and choose N vectors ϕi (N odd) for an expansion of R2 , where ϕi
is given by

ϕi = [cos(2πi/N), sin(2πi/N)]T i = 0 . . . N − 1.

Show that the set {ϕ} constitutes a tight frame for R
2 , and give the redundancy factor.

5.6 Show that the set {sinc(t− i/N)}, i ∈ Z and N ∈ N, where

sinc(t) =
sin(πt)

πt
,

forms a tight frame for the space of bandlimited signals (whose Fourier transforms are zero
outside (−π, π). Give the frame bounds and redundancy factor.

5.7 Consider a real m× n matrix M with m > n, rank(m) = n and bounded entries.

(a) Show, given any x ∈ R
n, that there exist real constants A and B such that

0 < A‖x‖ ≤ ‖Mx‖ ≤ B‖x‖ <∞.

(b) Show that MTM is always invertible, and that a possible left inverse of M is given
by

M̃ =
(

M
T
M
)−1

M
T .

(c) Characterize all other left inverses of M .

(d) Prove that P = MM̃ calculates the orthogonal projection of any vector y ∈ R
m onto

the range of M .
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Algorithms and Complexity

“. . . divide each difficulty at hand into as
many pieces as possible and as could be
required to better solve them.”

— René Descartes, Discourse on the Method

The theme of this chapter is “divide and conquer.” It is the algorithmic counter-
part of the multiresolution approximations seen for signal expansions in Chapters
3 and 4. The idea is simple: To solve a large-size problem, find smaller-size sub-
problems that are easy to solve and combine them efficiently to get the complete
solution. Then, apply the division again to the subproblems and stop only when
the subproblems are trivial.

What we just said in words, is the key to the fast Fourier transform (FFT) algo-
rithm, discussed in Section 6.1. Other computational tasks such as fast convolution
algorithms, have similar solutions.

The reason we are concerned with computational complexity is that the number
of arithmetic operations is often what makes the difference between an impractical
and a useful algorithm. While considerations other than just the raw numbers
of multiplications and additions play an important role as well (such as memory
accesses or communication costs), arithmetic or computational complexity is well
studied for signal processing algorithms, and we will stay with this point of view in
what follows. We will always assume discrete-time data and be mostly concerned
with exact rather than approximate algorithms (that is, algorithms that compute
the exact result in exact arithmetic).

First, we will review classic digital signal processing algorithms, such as fast
convolutions and fast Fourier transforms. Next, we discuss algorithms for multirate
signal processing, since these are central for filter banks and discrete-time wavelet
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series or transforms. Then, algorithms for wavelet series computations are consid-
ered, including methods for the efficient evaluation of iterated filters. Even if the
continuous wavelet transform cannot be evaluated exactly on a digital computer,
approximations are possible, and we study their complexity. We conclude with some
special topics, including FFT-based overlap-add/save fast convolution algorithms
seen as filter banks.

6.1 CLASSIC RESULTS

We briefly review the computational complexity of some basic discrete-time signal
processing algorithms. For more details, we refer to [32, 40, 209, 334].

6.1.1 Fast Convolution

Using transform techniques, the convolution of two sequences

c[n] =
∑

k

a[k] b[n− k], (6.1.1)

reduces to the product of their transforms. If the sequences are of finite length,
convolution becomes a polynomial product in transform domain. Taking the z-
transform of (6.1.1) and replacing z−1 by x, we obtain

C(x) = A(x) · B(x). (6.1.2)

Thus, any efficient polynomial product algorithm is also an efficient convolution
algorithm.

Cook-Toom Algorithm If A(x) and B(x) are of degree M and N respectively,
then C(x) is of degree M +N and has in general M +N + 1 nonzero coefficients.
We are going to use the Lagrange interpolation theorem [32], stating that if we are
given a set of M + N + 1 distinct points αi, i = 0, . . . ,M + N , then there exists
exactly one polynomial C(x) of degree M + N or less which has the value C(αi)
when evaluated at αi, and is given by

C(x) =

M+N∑

i=0

C(αi) ·
[ ∏

j 6=i(x− αj)
∏

j 6=i(αi − αj)

]

, (6.1.3)

where
C(αi) = A(αi) ·B(αi), i = 0, . . . ,M +N.

Therefore, the Cook-Toom algorithm first evaluates A(αi), B(αi), i = 0, . . . ,M+N ,
then C(αi) as in (6.1.2), and finally C(x) as in (6.1.3). Since the αi’s are arbitrary,
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one can choose them as simple integers and then the evaluation of A(αi) and B(αi)
can be performed with additions only (however, a very large number of these if
M and N grow) or multiplications by integers. Similarly, the reconstruction for-
mula (6.1.3) involves only integer multiplications up to a scale factor (the least
common multiple of the denominators). Thus, if one distinguishes carefully multi-
plications between real numbers (such as the coefficients of the polynomials) and
multiplication by integers (or rationals) as interpolation points, one can evaluate
the polynomial product in (6.1.2) with M +N +1 multiplications only, that is, lin-
ear complexity! While this algorithm is impractical for even medium M and N ’s,
it is useful for deriving efficient small size polynomial products, which can then be
used in larger problems as we will see.

Example 6.1 Product of Two Degree-2 Polynomials [32]

Take A(x) = a0 + a1x, B(x) = b0 + b1x, and choose α0 = 0, α1 = 1, α2 = −1. Then,
according to the algorithm, we first evaluate A(αi), B(αi):

A(0) = a0, A(1) = a0 + a1, A(−1) = a0 − a1,
B(0) = b0, B(1) = b0 + b1, B(−1) = b0 − b1,

followed by C(αi):

C(0) = a0b0, C(1) = (a0 + a1)(b0 + b1), C(−1) = (a0 − a1)(b0 − b1).

We then find the interpolation polynomials and call them Ii(x):

I0(x) = −(x− 1)(x+ 1), I1(x) =
x(x+ 1)

2
, I2(x) =

x(x− 1)

2
.

Finally, C(x) is obtained as

C(x) = C(0)I0(x) + C(1)I1(x) +C(−1)I2(x),

which could be compactly written as




c0
c1
c2



 =





1 0 0
0 1/2 −1/2
−1 1/2 1/2









b0 0 0
0 b0 + b1 0
0 0 b0 − b1









1 0
1 1
1 −1





(

a0
a1

)

.

An improvement to this would be if one notes that the highest-order coefficient (in this
case c2) is always obtained as the product of the highest-order coefficients in polynomials
A(x) and B(x), that is, in this case c2 = a1b1. Then, one can find a new polynomial
T (x) = C(x)− a1b1x2 and apply the Cook-Toom algorithm on T (x). Thus, with the choice
α0 = 0 and α1 = −1, we get





c0
c1
c2



 =





1 0 0
1 −1 1
0 0 1









b0 0 0
0 b0 − b1 0
0 0 b1









1 0
1 −1
0 1





(

a0
a1

)

. (6.1.4)

The Cook-Toom algorithm is a special case of a more general class of polynomial
product algorithms, studied systematically by Winograd [334].
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Winograd Short Convolution Algorithms In this algorithm, the idea is to use
the Chinese Remainder Theorem [32, 210], which states that an integer n ∈ {0, . . .,
M − 1} (where M =

∏
mi and the factors mi are pairwise coprime) is uniquely

specified by its residues ni = n mod mi. The Chinese Remainder Theorem holds
for polynomials as well. Thus, a possible way to evaluate (6.1.2) is to choose a
polynomial P (x) of degree at least M +N + 1, and compute

C(x) = C(x) mod P (x) = A(x) ·B(x) mod P (x),

where the first equality holds because the degree of P (x) is larger than that of C(x),
and thus the reduction modulo P (x) does not affect C(x). Factorizing P (x) into
its coprime factors, P (x) =

∏
Pi(x), one can separately evaluate

Ci(x) = Ai(x) ·Bi(x) mod Pi(x)

(where Ai(x) and Bi(x) are the residues with respect to Pi(x)) and reconstruct
C(x) from its residues. Note that the Cook-Toom algorithm is a particular case of
this algorithm when P (x) equals

∏
(x− αi). The power of the algorithm is that if

P (x) is well chosen and factorized over the rationals, then the Pi(x)’s can be simple
and the reduction operations as well as the reconstruction does not involve much
computational complexity. A classic example is to choose P (x) to be of the form
xL − 1 and to factor over the rationals. The factors, called cyclotomic polynomials
[32], have coefficients {1, 0,−1} up to relatively large L’s. Note that if A(x) and
B(x) are of degree L− 1 or less and we compute

C(x) = A(x) ·B(x) mod (xL − 1),

then we obtain the circular, or, cyclic convolution of the sequences a[n] and b[n]:

c[n] =
L−1∑

k=0

a[k]b[(n − k) mod L].

Fourier-Domain Computation of Convolution and Interpolat ion at the Roots
of Unity Choosing P (x) as xL − 1 and factoring down to first-order terms leads
to

xL − 1 =

L−1∏

i=0

(x−W i
L),

where WL = e−j 2π/L. For any polynomial Q(x), it can be verified that

Q(x) mod (x− a) = Q(a).
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Reduction
Modulo

Pi(x)

A(x)

Reduction
Modulo

Pi(x)

B(x)

Modulo Pi(x)

Chinese Remainder

C(x)

FIGURE 6.1 fig6.1

Theorem reconstruction
from residues

Figure 6.1 Generic fast convolution algorithms. The product C(x) = A(x) ·
B(x) is evaluated modulo P (x). Particular cases are the Cook-Toom algorithm
with P (x) =

∏
(x− αi) and Fourier-domain computation with P (x) =

∏
(x−

W i
L) where WL is the Lth root of unity.

Therefore, reducing A(x) and B(x) modulo the various factors of xL − 1 amounts
to computing

Ai(x) = A(W i
L),

Bi(x) = B(W i
L), i = 0, . . . , L− 1,

which, according to (2.4.43), is simply taking the length-L discrete Fourier trans-
form of the sequences a[n] and b[n]. Then

Ci(x) = C(W i
L) = A(W i

L) ·B(W i
L), i = 0, . . . , L− 1.

The reconstruction is simply the inverse Fourier transform. Of course, this is the
convolution theorem of the Fourier transform, but it is seen as a particular case of
either Lagrange interpolation or of the Chinese Remainder theorem.

In conclusion, we have seen three convolution algorithms and they all had the
generic structure shown in Figure 6.1. First, there is a reduction of the two poly-
nomials involved, then there is a product in the residue domain (which is only a
pointwise multiplication if the reduction is modulo first degree polynomials as in
the Fourier case) and finally, a reconstruction step concludes the algorithm.
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6.1.2 Fast Fourier Transform Computation

The discrete Fourier transform of size N computes (see (2.4.43))

X[k] =

N−1∑

n=0

x[n] ·W nk
N , W nk

N = e−j 2π/N . (6.1.5)

This is equivalent to evaluating polynomials at the location x = W k
N . Because of

the convolution theorem of the Fourier transform, it is clear that a good Fourier
transform algorithm will lead to efficient convolution computation.

Let us recall from Section 2.4.8 that the Fourier transform matrix diagonalizes
circular convolution matrices. That is, if B is a circulant matrix with first line
(b0 bN−1 bN−2 . . . b1) (the line i + 1 is a right-circular shift of the line i) then the
circular convolution of the sequence b[n] with the sequence a[n] is a sequence c[n]
given by

c = B · a,
where the vectors a and c contain the sequences a[n] and c[n], respectively. This
can be rewritten, using the convolution theorem of the Fourier transform, as

c = F−1 ·Λ · F · a,

where Λ is a diagonal matrix with F · b as the diagonal entries (the vector b

contains the sequence b[n]). However, unless there is a fast way to compute the
matrix-vector products involving F (or F−1, which is simply its transpose up to a
scale factor), there is no computational advantage in using the Fourier domain for
the computation of convolutions.

Several algorithms exist to speed up the product of a vector by the Fourier
matrix F which has entries Fij =W ij

N following (6.1.5) (note that rows and columns
are numbered starting from 0). We briefly review these algorithms and refer the
reader to [32, 90, 209], for more details.

The Cooley-Tukey FFT Algorithm Assume that the length of the Fourier trans-
form is a composite number, N = N1 ·N2. Perform the following change of variable
in (6.1.5):

n = N2 · n1 + n2, ni = 0, . . . , Ni − 1,
k = k1 +N1 · k2, ki = 0, . . . , Ni − 1.

(6.1.6)

Then (6.1.5) becomes

X[k1 +N1k2] =

N1−1∑

n1=0

N2−1∑

n2=0

x[N2n1 + n2]W
(N2n1+n2)(k1+N1k2)
N1N2

. (6.1.7)
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Using the simplifications

W lN
N = 1, W lN1

N = W l
N2
, W lN2

N = W l
N1
, l ∈ Z,

and reordering terms, we can rewrite (6.1.7) as

X[k1 +N1k2] =

N2−1∑

n2=0

W n2k2
N2

[

W n2k1
N1N2

·
[
N1−1∑

n1=0

x[N2n1 + n2]W
n1k1
N1

]]

. (6.1.8)

We recognize:

(a) The right sum as N2 DFT’s of size N1.

(b) N complex multiplications (by W n2k1
N1N2

).

(c) The left sum as N1 DFT’s of size N2.

If N1 and N2 are themselves composite, one can iterate the algorithm. In particular,
if N = 2l and choosing N1 = 2, N2 = N/2, (6.1.8) becomes

X[2k2] =

N2−1∑

n2=0

W n2k2
N/2 · (x[n2] + x [n2 +N/2] ) ,

X[2k2 + 1] =

N2−1∑

n2=0

W n2k2
N/2 ·

[
W n2
N · (x[n2]− x [n2 +N/2] )

]
.

Thus, at the cost of N/2 complex multiplications (by W n2
N1N2

) we have reduced the
complexity of a size-N DFT to two size-(N/2) DFT’s. Iterating log2N − 1 times
leads to trivial size-2 DFT’s and thus, the complexity is of order N log2N . Such
an algorithm is called a radix-2 FFT and is very popular due to its simplicity and
good performance.

The Good-Thomas or Prime Factor FFT Algorithm When performing the index
mapping in the Cooley-Tukey FFT (see (6.1.6)), we did not require anything except
that N had to be composite. If the factors N1 and N2 are coprime, a more powerful
mapping based on the Chinese Remainder Theorem can be used [32]. The major
difference is that such a mapping avoids the N/2 complex multiplications present in
the “middle” of the Cooley-Tukey FFT, thus mapping a length-(N1N2) DFT (N1

and N2 being coprime) into:

(a) N1 DFT’s of length N2,

(b) N2 DFT’s of length N1.
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This is equivalent to a two-dimensional FFT of size N1 × N2. While this is more
efficient than the Cooley-Tukey algorithm, it will require efficient algorithms for
lengths which are powers of primes, for which the Cooley-Tukey algorithm can be
used. In particular, efficient algorithms for Fourier transforms on lengths which are
prime are needed.

Rader’s FFT When the length of a Fourier transform is a prime number p, then
there exists a permutation of the input and output such that the problem becomes
a circular convolution of size p− 1 (and some auxiliary additions for the frequency
zero which is treated separately). While the details are somewhat involved, Rader’s
method shows that prime-length Fourier transforms can be solved as convolutions
and efficient algorithms will be in the generic form we saw in Section 6.1.1 (see the
example in (6.1.4)). That is, the Fourier transform matrix F can be written as

F = CMD, (6.1.9)

where C and D are matrices of output and input additions (which are rectangular)
and M is a diagonal matrix containing of the order of 2N multiplications.

The Winograd FFT Algorithm We saw that the Good-Thomas FFT mapped a
size-(N1N2) Fourier transform into a two-dimensional Fourier transform. Using
Kronecker products [32] (see (2.3.2)), we can thus write

FN1·N2 = FN1 ⊗ FN2 . (6.1.10)

If N1 and N2 are prime, we can use Rader’s algorithm to write FN1 and FN2 in
the form given in (6.1.9). Finally, using the property of Kronecker products given
in (2.3.3) that (A ⊗ B)(C ⊗ D) = (A · C) ⊗ (B · D) (if the products are all well
defined), we can rewrite (6.1.10) as

FN1 ⊗ FN2 = (C1 ·M1 ·D1)⊗ (C2 ·M2 ·D2)

= (C1 ⊗C2) · (M 1 ⊗M2) · (D1 ⊗D2).

Since the size of M1⊗M 2 is of the order of (2N1)·(2N2), we see that the complexity
is roughly 4N multiplications. In general, instead of the N logN behavior of the
Cooley-Tukey FFT, the Winograd FFT has a C(N) · N behavior, where C(N) is
slowly growing with N . For example, for N = 1008 = 7 · 9 · 16, the Winograd
FFT uses 3548 multiplications, while for N = 1024 = 210, the split-radix FFT
[90] uses 7172 multiplications. Despite the computational advantage, the complex
structure of the Winograd FFT has lead to mixed success in implementations and
the Cooley-Tukey FFT is still the most popular fast implementation of Fourier
transforms.
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Algorithms for Trigonometric Transforms Related to the Fou rier Transform
Most popular trigonometric transforms used in discrete-time signal processing are
closely related to the Fourier transform. Therefore, an efficient way to develop a
fast algorithm is to map the computational problem at hand into pre- and post-
processing while having a Fourier transform at the center. We will briefly show this
for the discrete cosine transform (DCT). The DCT is defined as (see also (7.1.10)-
(7.1.11) in Chapter 7)

X[k] =

N−1∑

n=0

x[n] cos

(
2π(2n + 1)k

4N

)

. (6.1.11)

To make it unitary, a factor of 1/
√
N has to be included for k = 0, and

√

2/N for
k 6= 0, but we skip the scaling since it can be included at the end. If we assume that
the transform length N is even, then it can be verified [203] that a simple input
permutation given by

x′[n] = x[2n],

x′[N − n− 1] = x[2n+ 1], n = 0, . . . ,
N

2
− 1, (6.1.12)

transforms (6.1.11) into

X[k] =

N−1∑

n=0

x′[n] cos

(
2π(4n + 1)k

4N

)

.

This can be related to the DFT of x′[n], denoted by X ′[k], in the following manner:

X[k] = cos

(
2πk

4N

)

Re[X ′[k]] − sin

(
2πk

4N

)

Im[X ′[k] ].

Evaluating X[k] and X[N − k − 1] at the same time, it is easy to see that they
follow from X ′[k] with a rotation by 2πk/4N [322]. Therefore, the length-N DCT
on a real vector has been mapped into a permutation (6.1.12), a Fourier transform
of length-N and a set of N/2 rotations. Since the Fourier transform on a real vector
takes half the complexity of a general Fourier transform [209], this is a very efficient
way to compute DCT’s. While there exist “direct” algorithms, it turns out that
mapping it into a Fourier transform problem is just as efficient and much easier.

6.1.3 Complexity of Multirate Discrete-Time Signal Proces sing

The key to reduce the complexity in multirate signal processing is a very simple
idea: always operate at the slowest possible sampling frequency.
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A(x) 2B(x) C0(x)

B(x) A0(x)2
B0(x)

A1(x)2
xB1(x)

D

+ C0(x)

(b)

fig6.2

(a)

FIGURE 6.2
Figure 6.2 Implementation of filtering followed by downsampling by 2. (a)
Original system. (b) Decomposition of input into even and odd components
followed by filtering with even and odd filters. D stands for a delay by 1.

Filtering and Downsampling Convolution followed by downsampling by 2 is
equivalent to computing only the even samples of the convolution. Using the
polyphase components of the sequences involved (see Section 3.2.1), the convolution
(6.1.1)-(6.1.2) followed by downsampling by 2 becomes

C0(x) = A0(x) ·B0(x) + x ·A1(x) ·B1(x). (6.1.13)

This is equivalent to filtering the two independent signals B0(x) and B1(x) by the
half-length filters A1(x) and A0(x) (see Figure 6.2). Because of the independence,
the complexity of the two polynomial products in (6.1.13) adds up. Assuming A(x)
and B(x) are of odd degree 2M − 1 and 2N − 1, then we have to evaluate two
products between polynomials of degree M − 1 and N − 1, which takes at least
2(M + N − 1) multiplications. This is almost as much as the lower bound for
the full polynomial product (which is 2(M + N) − 1 multiplications). If an FFT-
based convolution is used, we get some improvement. Assuming that an FFT takes
C · L · log2 L operations,1 it takes 2 · C · L · log2 L + L operations to perform a
length-L circular convolution (the transform of the filter is precomputed). Assume
a length-N input and a length-N filter and use a length-2N FFT. Direct convo-
lution therefore takes 4 · C · N · (log2N + 1) + 2N operations. The computation
of (6.1.13) requires two FFT’s of size N (for B0(x) and B1(x)), 2N operations for
the frequency-domain convolution, and a size-N inverse FFT to recuperate C0(x),
that is, a total of 3 · C ·N · log2N + 2N . This is a saving of roughly 25% over the
nondownsampled convolution.

1C is a small constant which depends on the particular length and FFT algorithm. For example,
the split-radix FFT of a real signal of length N = 2n requires 2n−1(n− 3) + 2 real multiplications
and 2n−1(3n− 5) + 4 real additions [90].
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Substantial improvements appear only if straight polynomial products are im-
plemented, since the 4MN complexity of the nondownsampled product becomes a
2MN complexity for computing the two products in (6.1.13). The main point is
that, reducing the size of the polynomial products involved in (6.1.13) might allow
one to use almost optimal algorithms, which might not be practical for the full
product.

The discussion of the above simple example involving downsampling by 2, gener-
alizes straightforwardly to any downsampling factorK. Then, a polynomial product
is replaced by K products with K-times shorter polynomials.

Upsampling and Interpolation The operation of upsampling by 2 followed by
interpolation filtering is equivalent to the following convolution:

C(x) = A(x) · B(x2), (6.1.14)

where B(x) is the input and A(x) the interpolation filter. Writing A(x) =
A0(x

2) + x ·A1(x
2), the efficient way to compute (6.1.14) is

C(x) = B(x2) ·A0(x
2) + xB(x2) ·A1(x

2),

that is, two polynomial products where each of the terms is approximately of half
size, since B(x2) · A0(x

2) can be computed as B(x) · A0(x) and then upsampled
(similarly for B(x2) · A1(x

2)). That this problem seems very similar to filtering
and downsampling is no surprise, since they are duals of each other. If one writes
the matrix that represents convolution by a[n] and downsampling by two, then its
transpose represents upsampling by two followed by interpolation with ã[n] (where
ã[n] is the time-reversed version of a[n]). This is shown in a simple three-tap filter
example below





. . . a[0] 0 0 . . . . . .
0 a[2] a[1] a[0] 0 0
. . . 0 0 a[2] a[1] a[0]





T

=













... 0 0
a[0] a[2] 0
0 a[1] 0
0 a[0] a[2]
0 0 a[1]
... 0 a[0]













.

The block diagram of an efficient implementation of upsampling and interpolation
is thus simply the transpose of the diagram in Figure 6.2. Both systems have the
same complexity, since they require the implementation of two half-length filters
(A0(x) and A1(x)) in the downsampled domain.

Of course, upsampling by an arbitrary factor K followed by interpolation can
be implemented by K small filters followed by upsampling, shifts, and summation.
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A(x) 2B(x) A(x) 2 A(x) 2 . . .

FIGURE 6.3 fig6.4

Figure 6.3 Iteration of filtering and downsampling.

Iterated Multirate Systems A case that appears often in practice, especially
around discrete-time wavelet series, is the iteration of an elementary block such
as filtering and downsampling as shown in Figure 6.3. An elementary, even if some-
what surprising, result is the following: If the complexity of the first block is C
operations/input sample, then the upper bound on the total complexity, irrespec-
tive of the number of stages, is 2C. The proof is immediate, since the second block
has complexity C but runs at half sampling rate and similarly, the ith block runs
2i−1 times slower than the first one. Thus, the total complexity for K blocks be-
comes

Ctot = C +
C

2
+
C

4
+ · · · C

2K−1
= 2C

(

1− 1

2K

)

< 2C. (6.1.15)

This property has been used to design very sharp filters with low complexity in
[236]. While the complexity remains bounded, the delay does not. If the first block
contributes a delay D, the second will produce a delay 2D and the ith block a delay
2i−1D. That is, the total delay becomes

Dtot = D + 2D + 4D + · · ·+ 2K−1D = (2K − 1)D.

This large delay is a serious drawback, especially for real-time applications such as
speech coding.

Efficient Filtering Using Multirate Signal Processing One very useful applica-
tion of multirate techniques to discrete-time signal processing has been the efficient
computation of narrow-band filters. There are two basic ideas behind the method.
First, the output of a lowpass filter can be downsampled, and thus, not all outputs
have to be computed. Second, a very long narrow-band filter can be factorized into
a cascade of several shorter ones and each of these can be downsampled as well.
We will show the technique on a simple example, and refer to [67] for an in-depth
treatment.

Example 6.2

Assume we desire a lowpass filter with a cutoff frequency π/12. Because of this cutoff
frequency, we can downsample the output, say by 8. Instead of a direct implementation, we
build a cascade of three filters with a cutoff frequency π/3, each downsampled by two. We
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Figure 6.4 Spectral responses of individual filters and the resulting
equivalent filter. (a) |H(ejω)|, |H(ej2ω)|, |H(ej4ω)|. (b) |H(ejω)| =
|H(ejω)||H(ej2ω)||H(ej4ω)|.

call such a filter a third-band filter. Using the interchange of downsampling and filtering
property, we get an equivalent filter with a z-transform:

Hequiv(z) = H(z) ·H(z2) ·H(z4),

where H(z) is the z-transform of the third-band lowpass filter. The spectral responses of
H(ejω), H(ej2ω), and H(ej4ω) are shown in Figure 6.4(a) and their product, Hequiv(z), is
shown in Figure 6.4(b), showing that a π/12 lowpass filter is realized. Note that its length
is approximately equal to L + 2L + 4L = 7L, where L is the length of the filter with the
cutoff frequency π/3.

If the filtered signal is needed at the full sampling rate, one can use upsampling
and interpolation filtering and the same trick can be applied to that filter as well.

Because of the cascade of shorter filters, and the fact that each stage is downsam-
pled, it is clear that substantial savings in computational complexity are obtained.
How this technique can be used to derive arbitrary sharp filters while keeping the
complexity bounded is shown in [236].
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6.2 COMPLEXITY OF DISCRETE BASES COMPUTATION

This section is concerned with the complexity of filter bank related computations.
The basic ingredients are the multirate techniques of the previous section, as well
as polyphase representations of filter banks.

6.2.1 Two-Channel Filter Banks

Assume a two-channel filter bank with filter impulse responses h0[n] and h1[n] of
length L. Recall from (3.2.22) in Section 3.2.1, that the channel signals equal

(
Y0(z)
Y1(z)

)

=

(
H00(z) H01(z)
H10(z) H11(z)

)

·
(
X0(z)
X1(z)

)

. (6.2.1)

Unless there are special relationships among the filters, this amounts to four con-
volutions by polyphase filters of length L/2 (assuming L even). For comparison
purposes, we will count the number of operations for each new input sample. The
four convolutions operate at half the input rate and thus, for every two input sam-
ples, we compute 4 ·L/2 multiplications and 4((L/2)− 1) + 2 additions. This leads
to L multiplications and L − 1 additions/input sample, that is, exactly the same
complexity as a convolution by a single filter of size L. If an FFT-based convolution
algorithm is used, the transforms of X0(z) and X1(z) can be shared for the compu-
tation of Y0(z) and Y1(z). Assuming again that a length-N FFT uses C ·N · log2N
operations and that the input signal and the filters are of length L, we get, since
we need FFT’s of length L to compute the polynomial products in (6.2.1) (which
are of size L/2× L/2):

(a) 2 · C · L · log2 L operations to get the transforms of X0(z) and X1(z),

(b) 4L operations to perform the frequency-domain convolutions,

(c) 2 · C · L · log2 L operations for the inverse FFT’s to get Y0(z) and Y1(z),

where we assumed that the transforms of the polyphase filters were precomputed.
That is, the Fourier-domain evaluation requires

4 · C · L · log2 L + 4L operations,

which is of the same order as Fourier-domain computation of a length-L filter
convolved with a length-L signal.

In [245], a precise analysis is made involving FFT’s with optimized lengths so
as to minimize the operation count. Using the split-radix FFT algorithm [90], the
number of operations (multiplications plus additions/sample) becomes (for large
L)

4 log2 L + O(log logL), (6.2.2)
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which is to be compared with 2L − 1 multiplications plus additions for the direct
implementation. The algorithm starts to be effective for L = 8 and an FFT size of
16, where it achieves around 5 multiplications/point (rather than 8) and leads to
improvements by an order of magnitude for large filters such as L = 64 or 128. For
medium size filters (L = 6, . . . , 12), a method based on fast running convolution is
best (see [245] and Section 6.5 below).

Let us now consider some special cases where additional savings are possible.

Linear Phase Filters It is well-known that if a filter is symmetric or antisym-
metric, the number of operations can be halved in the direct implementation by
simply adding (or subtracting) the two input samples that are multiplied by the
same coefficient. This trick can be used in the downsampled case as well, that is,
filter banks with linear phase filters require half the number of multiplications, or
L/2 multiplications/input sample (the number of additions remains unchanged).
If the filter length is odd, the polyphase components are themselves symmetric or
antisymmetric, and the saving is obvious in (6.2.1).

Certain linear phase filter banks can be written in cascade form [321] (see Sec-
tion 3.2.4). That is, their polyphase matrix is of the form given in (3.2.70):

Hp(z) = C

(
1 1
−1 1

)

·
[
K−1∏

i=1

(
1 0
0 z−1

)(
1 αi
αi 1

)]

.

The individual 2× 2 symmetric matrices can be written as (we assume αi 6= 1)
(

1 αi
αi 1

)

=
1− αi

2
·
(

1 −1
1 −1

)(
1+αi
1−αi 0
0 1

)(
1 −1
1 −1

)

.

By gathering the scale factors together, we see that each new block in the cascade
structure (which increases the length of the filters by two) adds only one multi-
plication. Thus, we need order-(L/2) multiplications to compute a new output in
each channel, or L/4 multiplications/input sample. The number of additions is of
the order of L additions/input sample [321].

Classic QMF Solution The classic QMF solution given in (3.2.34)-(3.2.35) (see
Figure 6.5(a)), besides using even-length linear phase filters, forces the highpass
filter to be equal to the lowpass, modulated by (−1)n. The polyphase matrix is
therefore:

Hp(z) =

(
H0(z) H1(z)
H0(z) −H1(z)

)

=

(
1 1
1 −1

)

·
(
H0(z) 0

0 H1(z)

)

,

where H0 and H1 are the polyphase components of the prototype filter H(z). The
factorized form on the right indicates that the complexity is halved, and an obvious
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Figure 6.5 Classic QMF filter bank. (a) Initial filter bank. (b) Efficient
implementation using polyphase components and a butterfly.

implementation is shown in Figure 6.5(b). Recall that this scheme only approxi-
mates perfect reconstruction when using FIR filters.

Orthogonal Filter Banks As seen in Section 3.2.4, orthogonal filter banks have
strong structural properties. In particular, because the highpass is the time-reversed
version of the lowpass filter modulated by (−1)n, the polyphase matrix has the
following form:

Hp(z) =

(
H00(z) H01(z)

−H̃01(z) H̃00(z)

)

, (6.2.3)

where H̃00(z) and H̃01(z) are time-reversed versions of H00(z) and H01(z), and
H00(z) and H01(z) are the two polyphase components of the lowpass filter. If
H00(z) and H01(z) were of degree zero, it is clear that the matrix in (6.2.3) would
be a rotation matrix, which can be implemented with three multiplications. It turns
out that for arbitrary degree polyphase components, terms can still be gathered into
rotations, saving 25% of multiplications (at the cost of 25% more additions) [104].
This rotation property is more obvious in the lattice structure form of orthogonal
filter banks [310]. We recall that the two-channel lattice factorizes the paraunitary
polyphase matrix into the following form (see (3.2.60)):

Hp(z) =

(
H00(z) H01(z)
H10(z) H11(z)

)

= U0 ·
[
N−1∏

i=1

(
1 0
0 z−1

)

U i

]

,

where filters are of length L = 2N and the matrices U i are 2 × 2 rotations. Such
rotations can be written as (where we use the shorthand ai and bi for cos(αi) and
sin(αi) respectively) [32]

(
ai bi
−bi ai

)

=

(
1 0 1
0 1 1

)

·





ai + bi 0 0
0 ai − bi 0
0 0 −bi



 ·





1 0
0 1
1 −1



 . (6.2.4)
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Table 6.1 Number of arithmetic opera-
tions/input sample for various two-channel
filter banks with length-L filters, where µ
and α stand for multiplications and additions,
respectively.

Filter bank type # of µ # of α

General two-channel
filter bank L L− 1

Linear phase filter bank
direct form L/2 L− 1
lattice form L/4 L

QMF filter bank L/2 L/2
Orthogonal filter bank

direct form L L− 1
lattice form 3L/4 3L/4

denormalized lattice L/2 3L/4
Frequency-domain computation

(assuming large L) [245] log2 L 3 log2 L

Thus, only three multiplications are needed, or 3N for the whole lattice. Since the
lattice works in the downsampled domain, the complexity is 3N/2 multiplications
or, since N = L/2, 3L/4 multiplications/input sample and a similar number of
additions. A further trick consists in denormalizing the diagonal matrix in (6.2.4)
(taking out bi for example) and gathering all scale factors at the end of the lattice.
Then, the complexity becomes (L/2)+1 multiplications/input sample. The number
of additions remains unchanged.

Table 6.1 summarizes the complexity of various filter banks. Except for the last
entry, time-domain computation is assumed. Note that in the frequency-domain
computation, savings due to symmetries become minor.

6.2.2 Filter Bank Trees and Discrete-Time Wavelet Transfor ms

Filter bank trees come mostly in two flavors: the full-grown tree, where each branch
is again subdivided, and the octave-band tree, where only the lower branch is further
subdivided.

First, it is clear that techniques used to improve two-channel banks will improve
any tree structure when applied to each elementary bank in the tree. Then, specific
techniques can be developed to compute tree structures.

Full Trees If an elementary block (a two-channel filter bank downsampled by two)
has complexity C0, then a K-stage full tree with 2K leaves has complexity K · C0.
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This holds because the initial block is followed by two blocks at half rate (which
contributes 2 ·C0/2), four blocks at quarter rate and so on. Thus, while the number
of leaves grows exponentially with K, the complexity only grows linearly with K.

Let us discuss alternatives for the computation of the full tree structure in the
simplest, two-stage case, shown in Figure 6.6(a). It can be transformed into the
four-channel filter bank shown in Figure 6.6(b) by passing the second stage of fil-
ters across the first stage of downsampling. While the structure is simpler, the
length of the filters involved is now of the order of 3L if Hi(z) is of degree L − 1.
Thus, unless the filters are implemented in factorized form, this is more complex
than the initial structure. However, the regular structure might be preferred in
hardware implementations.

Let us consider a Fourier-domain implementation. A simple trick consists of
implementing the first stage with FFT’s of length N and the second stage with
FFT’s of length N/2. Then, one can perform the downsampling in Fourier domain
and then, the forward FFT of the second stage cancels the inverse FFT of the first
stage. The downsampling in Fourier domain requires N/2 additions, since if X[k] is
a length-N Fourier transform, the length-N/2 Fourier transform of its downsampled
version is

Y [k] =
1

2
(X[k] +X [k +N/2] ) .

Figure 6.6(c) shows the algorithm schematically, where, for simplicity, the filters
rather than the polyphase components are shown. The polyphase implementation
requires to separate even and odd samples in time domain. The even samples are
obtained from the Fourier transform X[k] as

y[2n] =

N−1∑

k=0

X[k]W−2nk
N

=

N/2
∑

k=0

(X[k] +X [k +N/2] )W−nk
N/2 , (6.2.5)

while the odd ones require a phase shift

y[2n+ 1] =
N−1∑

k=0

X[k]W
−(2n+1)k
N

=

N−1∑

k=0

W−k
N (X[k] +X [k +N/2] )W−nk

N/2 . (6.2.6)

If the next stage uses a forward FFT of size N/2 on y[2n] and y[2n+1], the inverse
FFT’s in (6.2.5) and (6.2.6) are cancelled and only the phase shift in (6.2.6) remains.
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Figure 6.6 Two-stage full-tree filter bank. (a) Initial system. (b) Parallelized
system. (c) Fourier-domain computation with implicit cancellation of forward
and inverse transforms between stages. FS stands for Fourier-domain down-
sampling. Note that in the first stage the Hi[k] are obtained as outputs of a
size-N FFT, while in the second stage, they are outputs of a size-N/2 FFT.

These complex multiplications can be combined with the subsequent filtering in
Fourier domain. Therefore, we have shown how to merge two subsequent stages
with onlyN additions. Note that the length of the FFT’s have to be chosen carefully
so that linear convolution is computed at each stage. In the case discussed here,
N/2 (the size of the second FFT) has to be larger than (3L + Ls − 2)/2 where L
and Ls are the filter and signal lengths, respectively (the factor 1/2 comes from the
fact that we deal with polyphase components).

While this merging improves the computational complexity, it also constrains
the FFT length. That is, the length will not be optimal for the first or the second
stage, resulting in a certain loss of optimality.
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Octave-Band Trees and Discrete-Time Wavelet Series In this case, we can use
the property of iterated multirate systems which leads to a complexity independent
of the number of stages as seen in (6.1.15). For example, assuming a Fourier-domain
implementation of an elementary two-channel bank which uses about (4 log2 L) op-
erations/input sample as in (6.2.2), aK-stage discrete-time wavelet series expansion
requires of the order of

8 log2 L (1− 1/2K) operations

for long filters implemented in Fourier domain, and

4 L (1− 1/2K) operations (6.2.7)

for short filters implemented in time domain. As mentioned earlier, filters of length
8 or more are more efficiently implemented with Fourier-domain techniques.

Of course, the merging trick of inverse and forward FFT’s between stages can
be used here as well. A careful analysis made in [245] shows that merging of two
stages pays off for filter lengths of 16 or more. Merging of more stages is marginally
interesting for large filters since it involves very large FFT’s, which is probably
impractical. Again, fast running convolution methods are best for medium size
filters (L = 6, . . . , 12) [245]. Finally, all savings due to special structures, such as
orthogonality or linear phase, carry over to tree structures as well.

The study of hardware implementations of discrete-time wavelet transforms is
an important topic as well. In particular, the fact that different stages run at
different sampling rates makes the problem nontrivial. For a detailed study and
various solutions to this problem, see [219].

6.2.3 Parallel and Modulated Filter Banks

General parallel filter banks have an obvious implementation in the polyphase do-
main. If we have a filter bank with K channels and downsampling by M , we get,
instead of (6.2.1), a K×M matrix times a size-M vector product (where all entries
are polynomials). The complexity of straightforward computation is comparable,
when K =M , to a single convolution since we have M filters downsampled by M .
Fourier methods require M forward transforms (for each polyphase component),
K ·M frequency-domain convolutions, and finally, K inverse Fourier transforms to
obtain the channel signals in the time domain.

A more interesting case appears when the filters are related to each other. The
most important example is when all filters are related to a single prototype filter
through modulation.

The classic example is (see (3.4.13)-(3.4.14) in Section 3.4.3)

Hi(z) = Hpr(W
i
Nz), i = 0, . . . , N − 1, WN = e−j2π/N , (6.2.8)

hi[n] = W−in
N hpr[n]. (6.2.9)
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Figure 6.7 Modulated filter bank implemented with an FFT.

This corresponds to a short-time Fourier or Gabor transform filter bank. The
polyphase matrix with respect to downsampling by N has the form shown below
(an example for N = 3 is given):

Hp(z) =





Hpr0(z) Hpr1(z) Hpr2(z)
Hpr0(z) W3Hpr1(z) W 2

3Hpr2(z)
Hpr0(z) W 2

3Hpr1(z) W3Hpr2(z)





= F 3 ·





Hpr0(z) 0 0
0 Hpr1(z) 0
0 0 Hpr2(z)



 , (6.2.10)

whereHpri(z) is the ith polyphase component of the filter Hpr(z) and F 3 is the size-
3 discrete Fourier transform matrix. The implementation is shown in Figure 6.7.
This fast implementation of modulated filter banks using polyphase filters of the
prototype filter followed by a fast Fourier transform is central in several applications
such as transmultiplexers. This fast algorithm goes back to the early 70’s [25]. The
complexity is now substantially reduced. The polyphase filters require N -times less
complexity than a full filter bank, and the FFT adds an order N log2N operations
per N input samples. The complexity is of the order of

(2
L

N
+ 2 · log2N) operations/input sample, (6.2.11)

that is, a substantial reduction over a single, length-L filtering operation. Further
reductions are possible by implementing the polyphase filters in frequency domain
(reducing the term of order L to log2 L) and merging FFT’s into a multidimensional
one [210]. Another important and efficient filter bank is based on cosine modulation.
It is sometimes referred to as lapped orthogonal transforms (LOT’s) [188] or local
cosine bases [63]. Several possible LOT’s have been proposed in the literature
and are of the general form described in (3.4.17–3.4.18) in Section 3.4.3. Using
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trigonometric identities, this can be reduced to N polyphase filters followed by a
DCT-type of transform of length N (see (6.1.11)). Other LOT’s lead to various
length-N or length-2N trigonometric transforms, preceded by polyphase filters of
length two or larger [187].

6.2.4 Multidimensional Filter Banks

Computational complexity is of particularly great concern in multidimensional sys-
tems, since, for example, filtering an N × N image with a filter of size L × L
requires of the order of N2 · L2 operations. If the filter is separable, that is,
H(z1, z2) = H1(z1)H2(z2), then filtering on rows and columns can be done sepa-
rately and the complexity is reduced to an order 2N2L operations (N row filterings
and N column filterings, each using NL operations).

A multidimensional filter bank can be implemented in its polyphase form, bring-
ing the complexity down to the order of a single nondownsampled convolution, just
as in the one-dimensional case. A few cases of particular interest allow further
reductions in complexity.

Fully Separable Case When both filters and downsampling are separable, then
the system is the direct product of one-dimensional systems. The implementation
is done separately over each dimension. For example, consider a two-dimensional
system filtering an N×N image into four subbands using the filters {H0(z1)H0(z2),
H0(z1)H1(z2), H1(z1)H0(z2), H1(z1)H1(z2)} each of size L×L followed by separable
downsampling by two in each dimension. This requires N decompositions in one
dimension (one for each row), followed by N decompositions in the other, or a total
of 2N2 ·L multiplications and a similar number of additions. This is a saving of the
order of L/2 with respect to the nonseparable case. Note that if the decomposition
is iterated on the lowpass only (that is, a separable transform), the complexity is
only

Ctot = C +
C

4
+
C

16
+ · · · < 4

3
C,

where C is the complexity of the first stage.

Separable Polyphase Components The last example led automatically to sepa-
rable polyphase components, because in the case of separable downsampling, there
is a direct relationship between separability of the filter and its polyphase com-
ponents [163]. When the downsampling is nonseparable, separable filters yield
nonseparable polyphase components in general. Thus, it might be more efficient
to compute convolutions with the filters rather than their polyphase components.
Finally, one can construct filter banks with separable polyphase components (cor-
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responding to nonseparable filters in the nonseparable downsampling case) having
thus an efficient implementation and yielding savings of order L/2.

6.3 COMPLEXITY OF WAVELET SERIES COMPUTATION

The computational complexity of evaluating expansions into wavelet bases is con-
sidered in this section, as well as that of related problems such as iterated filters
used in regularity estimates of wavelets.

6.3.1 Expansion into Wavelet Bases

Assume a multiresolution analysis structure as defined in Section 4.2. If we have
the projection onto V0, that is, samples x[n] = 〈ϕ(t − n), x(t)〉, then Mallat’s
algorithm given in Section 4.5.3, indicates that the expansion onto Wi, i = 1, 2, . . .
can be evaluated using an octave-band filter bank. Therefore, given the initial
projection, the complexity of the wavelet expansion is of order 2L multiplications
and 2L additions/input sample (see (6.2.7)) where L is the length of the discrete-
time filter, or equivalently, the order of the two-scale equation. Unless the wavelet
ψ(t) is compactly supported, L could be infinite. For example, many of the wavelets
designed in Fourier domain (such as the Meyer’s and Battle-Lemarié’s wavelets) lead
to an unbounded L. In general, implementations simply truncate the infinitely long
filter and a reasonable approximation is computed with finite computational cost.

A more attractive alternative is to find recursive filters which perform an exact
computation at finite computational cost. An example is in the case of spline
spaces (see Section 4.3.2), where instead of the usual Battle-Lemarié wavelet, an
alternative one can be used which leads to an IIR filter implementation [133, 296].

When we cannot assume to have access to the projection onto V0, an approxima-
tion known as Shensa’s algorithm [261] can be used (see Section 4.5.3). It represents,
as an initial step, a nonorthogonal projection of the input and the wavelets onto
suitable approximation spaces. In terms of computational complexity, Shensa’s al-
gorithm involves a prefiltering stage with a discrete-time filter, thus adding an order
2Lp number of operations where Lp is the length of the prefilter.

Therefore, the computation of the wavelet series into K octaves requires about

2 L (1− 1/2K) + Lp

multiplications and a similar number of additions. Of course, applying Fourier
transform, the orders L and Lp are reduced to their logarithms. This efficiency for
computing in discrete time, a series expansion which normally uses integrals, is one
of the main attractive features of the wavelet decomposition.
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6.3.2 Iterated Filters

The previous section showed a completely discrete-time algorithm for the compu-
tation of the wavelet series. However, underlying this scheme are continuous-time
functions ϕ(t) and ψ(t), which often correspond to iterated discrete-time filters.
Such iterated filters are usually computed during the design stage of a wavelet
transform, so as to verify properties of the scaling function and wavelet such as reg-
ularity. Because the complexity appears only once, it is not as important to reduce
it as in the computation of the transform itself. However, the algorithms are simple
and the computational burden can be heavy especially in multiple dimensions, thus
we briefly discuss fast algorithms for iterated filters. Recall from (4.4.9) that we
wish to compute

G
(i)
0 (z) =

i−1∏

k=0

G0

(

z2
k
)

. (6.3.1)

For simplicity, we will omit the subscript “0” and will simply call the lowpass filter
G. The length of G(i)(z) is equal to

L(i) = (2i − 1)(L− 1) + 1.

From (6.3.1), the following identities can be verified (Problem 6.5):

G(i)(z) = G(z) ·G(i−1)(z2), (6.3.2)

G(i)(z) = G(z2
i−1

) ·G(i−1)(z), (6.3.3)

G(2k)(z) = G(2k−1)(z) ·G(2k−1)(z2
2k−1

). (6.3.4)

The first two relations will lead to recursive algorithms, while the last one produces
a doubling algorithm and can be used when iterates which are powers of two are
desired. Computing (6.3.2) as

G(i)(z) =
[
G0(z

2) + z−1G1(z
2)
]
·G(i−1)(z2),

where G0 and G1 are the two polyphase components of filter G, leads to two
products between polynomials of size L/2 and (2i−1 − 1)(L − 1) + 1. Calling
O[G(i)(z)] the number of multiplications for finding G(i)(z), we get the recursion
O[G(i)(z)] = L ·L(i−1)+O[G(i−1)(z)]. Again, because G(i−1)(z) takes half as much
complexity as G(i)(z), we get an order of complexity

O
[

G(i)(z)
]

≃ 2 · L · L(i−1) ≃ 2i · L2, (6.3.5)

for multiplications and similarly for additions.
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For a Fourier-domain evaluation, it turns out that the factorization (6.3.3) is
more appropriate. In (6.3.3), we have to compute 2i−1 products between poly-
nomials of size L (corresponding to G(z)) and of size L(i−1)/2i−1 (corresponding
to the polyphase components of G(i−1)(z)). Now, L(i−1)/2i−1 is roughly of size
L as well. That is, using direct polynomial products, (6.3.3) takes 2i−1 times L2

multiplications and as many additions, and the total complexity is the same as in
(6.3.5). However, using FFT’s produces a better algorithm. The L×L polynomial
products require two Fourier transforms of length 2L and 2L frequency products,
or, L · log2 L + 2L multiplications using the split-radix FFT. The step leading to
G(i)(z) thus uses 2(i−1) · L(log2 L+ 2) multiplications and the total complexity is

O
[

G(i)(z)
]

= 2i · L(log2 L+ 2)

multiplications, and about three times as many additions. This compares favorably
to time-domain evaluation (6.3.5). As usual, this is interesting for medium to large
L’s. It turns out that the doubling formula (6.3.4), which looks attractive at first
sight, does not lead to a more efficient algorithm than the ones we just outlined.

The savings obtained by the above simple algorithms are especially useful in
multiple dimensions, where the iterates are with respect to lattices. Because mul-
tidimensional wavelets are difficult to design, iterating the filter might be part of
the design procedure and thus, reducing the complexity of computing the iterates
can be important.

6.4 COMPLEXITY OF OVERCOMPLETE EXPANSIONS

Often, especially in signal analysis, a redundant expansion of the signal is desired.
This is unlike compression applications, where nonredundant expansions are used.
As seen in Chapter 5, the two major redundant expansions used in practice are
the short-time Fourier (or Gabor) transform, and the wavelet transform. While the
goal is to approximate the continuous transforms, the computations are necessarily
discrete and amount to computing the transforms on denser grids than their or-
thogonal counterparts, and this in an exact or approximate manner, depending on
the case.

6.4.1 Short-Time Fourier Transform

The short-time Fourier transform is computed with a modulated filter bank as in
(6.2.8)-(6.2.9). The only difference is that the outputs are downsampled byM < N ,
and we do not have a square polyphase matrix as in (6.2.10). However, because the
modulation is periodic with period N for all filters, there exists a fast algorithm.
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Compute the following intermediate outputs:

xi[n] =
∑

k

h[kN + i] · x[n− kN − i]. (6.4.1)

Then, the channel signals yi[n] are obtained by Fourier transform from the xi[n]’s

y[n] = F · x[n],

where y[n] = (y0[n] . . . yN−1[n] )
T , x[n] = (x0[n] . . . xN−1[n] )

T , and F is the size
N × N Fourier matrix. The complexity per output vector y[n] is L multipli-
cations and about L − N additions (from (6.4.1)) plus a size-N Fourier trans-
form, or, (N/2) log2N multiplications and three times as many additions. Since
y[n] has a rate M times smaller than the input, we get the following multi-
plicative complexity per input sample (where K = N/M is the oversampling ra-
tio):

1

M
(L+N log2N) = K ·

(
L

N
+ log2N

)

,

that is, K times more than in the critically sampled case given in (6.2.11). The
additive complexity is similar (except for a factor of 3 in front of the log2N).

Because M < N , the polyphase matrix is nonsquare of size N×M and does not
have a structure as simple as the one given in (6.2.10). However, if N is a multiple
of M , some structural simplifications can be made.

6.4.2 “Algorithme à Trous”

Mallat’s and Shensa’s algorithms compute the wavelet series expansion on a discrete
grid corresponding to scales ai = 2i and shifts bij = j · 2i (see Figure 6.8 (a)).
We assume i = 0, 1, 2, . . . , in this discussion. The associated wavelets form an
orthonormal basis, but the transform is not shift-invariant, which can be a problem
in signal analysis or pattern recognition. An obvious cure is to compute all the
shifts, that is, avoid the downsampling (see Figure 6.8(b)). Of course, scales are
still restricted to powers of two, but shifts are now arbitrary integers. It is clear
that the output at scale ai is 2i-times oversampled. To obtain this oversampled
transform, one simply finds the equivalent filters for each branch of the octave-
band tree which computes the discrete-time wavelet series. This is shown in Figure
6.9. The filter producing the oversampled wavelet transform at scale ai = 2i has a
z-transform equal to

Fi(z) = H1

(

z2
i−1
)

·
i−2∏

l=0

H0

(

z2
l
)

.
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Figure 6.8 Sampling of the time-scale plane. (a) Sampling in the orthogonal
discrete-time wavelet series. (b) Oversampled time-scale plane in the “algo-
rithme à trous”. (c) Multiple voices/octave. The case of three voices/octave
is shown.

An efficient computational structure simply computes the signals along the tree and
takes advantage of the fact that the filter impulse responses are upsampled, that is,
nonzero coefficients are separated by 2k zeros. This lead to the name “algorithme
à trous” (algorithm with holes) given in [136]. It is immediately obvious that
the complexity of a direct implementation is now 2L multiplications and 2(L − 1)
additions/octave and input sample, since each octave requires filtering by highpass
and lowpass filters which have L nonzero coefficients. Thus, to compute J octaves,
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Figure 6.9 Oversampled discrete-time wavelet series. (a) Critically sampled
case. (b) Oversampled case obtained from (a) by deriving the equivalent fil-
ters and skipping the downsampling. This approximates the continuous-time
wavelet transform.

the complexity is of the order of

4 · L · J operations/input sample

that is, a linear increase with the number of octaves. The operations can be moved
to Fourier domain to reduce the order L to an order log2 L and octaves can be
merged, just as in the critically sampled case. A careful analysis of the result-
ing complexity is made in [245], showing gains with Fourier methods for filters of
medium length (L ≥ 9).

6.4.3 Multiple Voices Per Octave

While the above algorithm increased the sampling in time, it remained an “octave
by octave” algorithm. Sometimes, finer scale changes are desired. Instead of a = 2i,
one uses a = 2j+m/M , m = 0, . . . ,M−1, which givesM “voices”/octave. Obviously,
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for m = 0, one can use the standard octave by octave algorithm, involving the
wavelet ψ(t). To get the scales for m = 1, . . . ,M − 1, one can use the slightly
stretched versions

ψ(m)(t) = 2−m/2Mψ
(

2−m/M t
)

, m = 1, . . . ,M − 1.

The tiling of the time-scale plane is shown in Figure 6.8(c) for the case of three
voices/octave (compare this with Figure 6.8(a)). Note that lower voices are over-
sampled, but the whole scheme is redundant in the first place since one voice would
be sufficient. The complexity is M times that of a regular discrete-time wavelet
series, if the various voices are computed in an independent manner.

The parameters of each of the separate discrete-time wavelet series have to be
computed (following Shensa’s algorithm), since the discrete-time filters will not
be “scales” of each other, but different approximations. Thus, one has to find
the appropriate highpass and lowpass filters for each of the m-voice wavelets. An
alternative is to use the scaling property of the wavelet transform. Since

〈x(t), ϕ(at)〉 =
1

a
〈x(t/a), ϕ(t)〉,

we can start a discrete-time wavelet series algorithm with m signals which are scales
of each other; xm(t) = 2m/2Mx(2m/M t), m = 0, . . . ,M − 1. Again, the complexity
is M times higher than a single discrete-time wavelet series. The problem is to find
the initial sequence which corresponds to the projection of the xm(t) onto V0. One
way to do this is given in [300].

Finally, one can combine the multivoice with the “à trous” algorithm to compute
a dense grid over scales as well as time. The complexity then grows linearly with
the number of octaves and the number of voices, as

4 · L · J ·M operations/input sample,

where J and M are the number of octaves and voices respectively. This is an
obvious algorithm, and there might exist more efficient ways yet to be found.

This concludes our discussion of algorithms for oversampled expansions, which
closely followed their counterparts for the critically sampled case.

6.5 SPECIAL TOPICS

6.5.1 Computing Convolutions Using Multirate Filter Banks

We have considered improvements in computing convolutions that appear in filter
banks. Now, we will investigate schemes where filter banks can be used to speed
up convolutions.
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Figure 6.10 Overlap-add algorithm as a filter bank.

Overlap-Add/Save Computation of Running Convolution When computing
the linear convolution of an infinite signal with a finite-length filter using fast
Fourier transforms, one has to segment the input signal into blocks. Assume a
filter of length L and an FFT of size N > L. Then, a block of signal of length
N −L+1 can be fed into the FFT so as to get the linear convolution of the signal
with the filter. The overlap-add algorithm [32, 209] segments the input signal into
pieces of length N − L + 1, computes the FFT-based convolution, and adds the
overlapping tails of adjacent segments (L− 1 outputs spill over to next segments of
outputs).

The overlap-save algorithm [32, 209], takes N input samples and computes a
circular convolution of which N−L+1 samples are valid linear convolution outputs
and L−1 samples are wrap-around effects. These last L−1 samples are discarded,
the N −L+ 1 valid ones kept, and the algorithm moves up by N −L+ 1 samples.

Both of these algorithms have an immediate filter bank interpretation [226]
which has the advantage of permitting generalizations [317]. We will now focus on
the overlap-add algorithm. Computing a size-N FFT with M = N −L+1 nonzero
inputs amounts to an analysis filter bank with N channels and downsampling by
M . The filters are given by [317]

H(z) = zM−1 + zM−2 + · · ·+ z + 1,

Hi(z) = z−M+1 ·H
(
W i
Nz
)
.

In frequency domain, convolution corresponds to pointwise multiplication by the
Fourier transform of the filter c[n] given by

Ci =
1

N

L−1∑

l=0

W il
n c[l].
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Finally, the inverse Fourier transform is obtained with upsampling by M followed
by filtering with an N -channel synthesis bank where the filters are given by

G(z) = 1 + z−1 + z−2 + · · ·+ z−N+1,

Gi(z) = G
(
W i
Nz
)
.

The algorithm is sketched in Figure 6.10. The proof that it does compute a running
convolution is simply by identification of the various steps with the usual overlap-
add algorithm. Note that the system produces a delay of M − 1 samples (since all
filters are causal), that is

Y (z) = z−(M−1)C(z)X(z).

A simple generalization consists in replacing the pointwise multiplications by
Ci, i = 0, . . . , N−1, by filters Ci(z), i = 0, . . . , N−1. Because the system is linear,
we can use the superposition principle and decompose Ci(z) into its components.
Call cil the lth coefficient of the ith filter. Now, the set {ci0}, i = 0, . . . , N − 1 pro-
duces an impulse response c0[n] obtained from the inverse Fourier transform of the
coefficients ci0. Therefore, because the filters Ci(z) exist in a domain downsampled
by M , the set {cil} produces an impulse response cl[n] which is the inverse Fourier
transform of cil delayed by l ·M samples.

Finally, if Ci(z) is of degree K, the generalized overlap-add algorithm produces
a running convolution with a filter of length (K+1)M when M = L and N = 2M .
Conversely, if an initial filter c[n] is given, one first decomposes it into segments
of length M , each of which is Fourier transformed into a set {cil}. That is, a
length-(K + 1)M convolution is mapped into N size-(K + 1) convolutions, where
N is about two times M , and this using size-N modulated filter banks. The major
advantage of this method is that the delay is substantially reduced, an issue of
primary concern in real-time systems. This is because the delay is of the order of
the downsampling M , while a regular overlap-add algorithm would have a delay of
the order of (K + 1) ·M .

Table 6.2 gives a comparison of several methods for computing running convolu-
tion, highlighting the trade-off between computational complexity and input-output
delay, as well as architectural complexity [317].

Short Running Convolution It is well-known that Fourier methods are only
worthwhile for efficiently computing convolutions by medium to long filters. If
a filter is short, one can use transposition of the short linear convolution algorithms
seen in Section 6.1.1 to get efficient running convolutions. For example, the al-
gorithm in (6.1.4) for 2 × 2 linear convolution, when transposed, computes two
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Table 6.2 Computation of running convolution with a length-32
filter (after [317]). The filter and signal are assumed to be com-
plex.

Method Delay Multiplications Architecture
per point

(a) Direct 0 96 Simple

(b) 128-point FFT 96 15 Complex
downsampled by 97 (128-pt FFT’s)

(c) 16-point FFT
downsampled by 8 7 29 Medium

and length-4 (16-pt FFT’s)
channel filters

(d) Same as (c) but Medium
with efficient 31 18.5 (as (c) plus

4-pt convolutions simple short
in the channel convolution algorithms)

successive outputs of a length-2 filter with impulse response (b1 b0), since





b0 0
b1 b0
0 b1





T

=

(
b0 b1 0
0 b0 b1

)

=

(
1 1 0
0 −1 1

)




b0 0 0
0 b0 − b1 0
0 0 b1









1 1 0
0 −1 0
0 1 1



.(6.5.1)

The multiplicative complexity is unchanged at three multiplications/two outputs
(rather than four), while the number of additions goes up from three to four.

The same generalization we made for overlap-add algorithms works here as well.
That is, the pointwise multiplications in (6.5.1) can be replaced by filters in order to
achieve longer convolutions. This again is best looked at as a filter bank algorithm,
and Figure 6.11 gives an example of equation (6.5.1) with channel filters instead
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Figure 6.11 Fast running convolution algorithm with channel filters. The
input-output relationship equals Htot(z) = z−1(H0(z

2) + z−1H1(z
2)).

of pointwise multiplications. After a forward polyphase transform, a polyphase
matrix (obtained from the rightmost addition matrix in (6.5.1) produces the three
channel signals. The channel filters are the polyphase components of the desired
filter and their difference. Then, a synthesis polyphase matrix (the left addition
matrix from (6.5.1)) precedes an inverse polyphase transform. The transfer matrix
between forward and inverse polyphase transform is

T (z) =

(
1 1 0
0 −1 1

)




H0(z) 0 0
0 H0(z)−H1(z) 0
0 0 H1(z)









1 1
0 −1
z−1 1





=

(
H0(z) H1(z)

z−1H1(z) H0(z)

)

,

which is pseudocirculant, as required for a time-invariant system [311]. The above
T (z) gives the following input-output relationship for the total system

Htot(z) = z−1(H0(z
2) + z−1H1(z

2)).

That is, at the price of a single delay, we have replaced a length-L convolution by
three length-L/2 convolutions at half-rate, that is, a saving of 25%. This simple
example is part of a large class of possible algorithms which have been studied
in [198, 199, 317]. Their attractive features are that they are simple, numerically
well-conditioned (no approximations are necessary), and the building blocks remain
convolutions (for which optimized hardware is available).

6.5.2 Numerical Algorithms

We will briefly discuss an original application of wavelets to numerical algorithms
[30]. These algorithms are approximate using exact arithmetic, but arbitrary preci-
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sion can be obtained. Thus, these are unlike the previous algorithms in this chapter
which reduced computations while being exact in exact arithmetic. The idea is that
matrices can be compressed just like images! In applications such as iterative so-
lution of large linear systems, the recurrent operation is a very large matrix-vector
product which has complexity N2. If the matrix is the discrete version of an op-
erator which is smooth (except at some singularities), the wavelet transform2 can
be used to “compress” the matrix by concentrating most of the energy into well-
localized bands. If coefficients smaller than a certain threshold are set to zero, the
transformed matrix becomes sparse. Of course, we now deal with an approximated
matrix, but the error can be bounded. Beylkin, Coifman and Rokhlin [30] show
that for a large class of operators, the number of coefficients after thresholding is
of order N .

We will concentrate on the simplest version of such an algorithm. Call W the
matrix which computes the orthogonal wavelet transform of a length-N vector. Its
inverse is simply its transpose. If we desire the matrix vector product y = M · x,
we can compute:

y = W T · (W ·M ·W T ) ·W · x. (6.5.2)

Recall that W · x has a complexity of order L ·N , where L is the filter length and
N the size of the vector. The complexity of W ·M ·W T is of order L ·N2, and
thus, (6.5.2) is not efficient if only one product is evaluated. However, if we are in
the case of an iterative algorithm, we can compute M ′ = W ·M ·W T once (at a
cost of LN2) and then use M ′ in the sequel. If M ′, after thresholding, has order-N
nonzero entries, then the subsequent iterations, which are of the form:

y′ = W T ·M ′ ·W · x′,

are indeed of order N rather than N2. It turns out that the computation of M ′

itself can be reduced to an order N problem [30]. An interpretation of M ′ is of
interest. Premultiplying M by W is equivalent to taking a wavelet transform of
the columns of M , while postmultiplying M by W T amounts to taking a wavelet
transform of its rows. That is, M ′ is the two-dimensional wavelet transform of M ,
where M is considered as an image. Now, if M is smooth, one expects M ′ to have
energy concentrated in some well-defined and small regions. It turns out that the
zero moments of the wavelets play an important role in concentrating the energy,
as they do in image compression. This short discussion only gave a glimpse of these
powerful methods, and we refer the interested reader to [30] and the references
therein for more details.

2Since this will be a matrix operation of finite dimension, we call it a wavelet transform rather
than a discrete-time wavelet series.
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PROBLEMS

6.1 Toeplitz matrix-vector products: Given a Toeplitz matrix T of size N ×N , and a vector x
of size N , show that the product Tx can be computed with an order N log2N operations.
The method consists in extending T into a circulant matrix C. What is the minimum size
of C, and how does it change if T is symmetric?

6.2 Block circulant matrices: A block-circulant matrix of size NM × NM is like a circulant
matrix of size N ×N , except that the elements are now blocks of size M ×M . For example,
given two M ×M matrices A and B,

C =

[

A B

B A

]

is a size 2M × 2M block-circulant matrix. Show that block-circulant matrices are block-
diagonalized by block Fourier transforms of size NM ×NM defined as

F
B
NM = FN ⊗ IM ,

where FN is the size-N Fourier matrix, IM is the size-M identity matrix and ⊗ is the
Kronecker product (2.3.2).

6.3 The Walsh-Hadamard transform of size 2N (N is a power of 2) is defined as

W2N = W2 ⊗WN ,

where

W2 =

[

1 1
1 −1

]

,

and ⊗ is the Kronecker product (2.3.2). Derive an algorithm that uses N log2N additions
for a size-N transform.

6.4 Complexity of MUSICAM filter bank: The filter bank used in MUSICAM (see also Sec-
tion 7.2.3) is based on modulation of a single prototype of length 512 to 32 bandpass filters.
For the sake of this problem, we assume a complex modulation by W nk

32 , that is

hk[n] = hp[n] W
nk
32 , W32 = e−j2π/32,

and thus, the filter bank can be implemented using polyphase filters and an FFT (see
Section 6.2.3). In a real MUSICAM system, the modulation is with cosines and the imple-
mentation involves polyphase filters and a fast DCT, thus it is very similar to the complex
case we analyze here. Assuming an input sampling rate of 44.1 kHz, give the number of
operations per second required to compute the filter bank.

6.5 Iterated filters: Consider

H(i)(z) =

i−1
∏

k=0

H
(

z2
k
)

i = 1, 2, . . .

and prove the following recursive formulas:

H(i)(z) = H(z) ·H(i−1)(z2),

H(i)(z) = H(z2
i−1

) ·H(i−1)(z),

H(2K )(z) = H(2k−1)(z) ·H(2k−1)(z2
2k−1

).



382 CHAPTER 6

6.6 Overlap-add/save filter banks: Consider a size-4 modulated filter bank downsampled by 2
and implementing overlap-add or save running convolution (see Figure 6.10 for example).

(a) Derive explicitly the analysis and synthesis filter banks.

(b) Derive the channel coefficients. How long can the time-domain impulse response be if
the channel coefficients are scalars and the system is LTI?

(c) Implement a filter with a longer impulse response than found in (b) above by using
polynomial channel coefficients. Give an example, and verify that the system is LTI.

6.7 Consider a 3-channel analysis/synthesis filter bank downsampled by 2, with filtering of the
channels (see Figure 3.18). The filters are given by

H0(z) = z−1, H1(z) = 1 + z−1, H2(z) = 1
G0(z) = 1− z−1, G1(z) = z−1, G2(z) = z−2 − z−1

C0(z) = F0(z), C1(z) = F0(z) + F1(z), C2(z) = F1(z).

Verify that the overall system is shift-invariant and performs a convolution with a filter
having the z-transform F (z) = (F0(z

2) + z−1F1(z
2))z−1.
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Signal Compression and Subband Coding

“That which shrinks must first expand.”

— Lao-Tzu, Tao Te Ching

The compression of signals, which is one of the main applications of digital signal
processing, uses signal expansions as a major component. Some of these expansions
were discussed in previous chapters, most notably discrete-time expansions via filter
banks. When the channels of a filter bank are used for coding, the resulting scheme
is known as subband coding. The reasons for expanding a signal and processing it
in transform domain are numerous. While source coding can be performed on the
original signal directly, it is usually more efficient to find an appropriate transform.
By efficient we mean that for a given complexity of the encoder, better compression
is achieved.

The first useful property of transforms, or “generalized” transforms such as sub-
band coding, is their decorrelation property. That is, in the transform domain, the
transform coefficients are not correlated, which is equivalent to diagonalizing the
autocovariance matrix of the signal, as will be seen in Section 7.1. This diagonal-
ization property is similar to the convolution property (or the diagonalization of
circulant matrices) of the Fourier transform as we discussed in Section 2.4.8. How-
ever, the only transform that achieves exact diagonalization, the Karhunen-Loève
transform, is usually impractical. Many other transforms come close to exact di-
agonalization and are therefore popular, such as the discrete cosine transform, or,
appropriately designed subband or wavelet transforms. The second advantage of
transforms is that the new domain is often more appropriate for quantization using
perceptual criterions. That is, the transform domain can be used to distribute er-
rors in a way that is less objectionable for the human user. For example, in speech

383
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and audio coding, the frequency bands used in subband coding might mimic opera-
tions performed in the inner ear and thus one can exploit the reduced sensitivity or
even masking between bands. The third advantage of transform coding is that the
previous features come at a low computational price. The transform decomposition
itself is computed using fast algorithms as discussed in Chapter 6, quantization in
the transform domain is often simple scalar quantization, and entropy coding is
done on a sample-by-sample basis.

Together, these advantages produced successful compression schemes for speech,
audio, images and video, some of which are now industry standards (32 Kbits/sec
subband coding for high-quality speech [192], AC [34, 290], PAC [147], and MUSI-
CAM for audio [77, 279], JPEG for images [148, 327], MPEG for video [173, 201]).

It is important to note that the signal expansions on which we have focused so far
are only one of the three major components of such compression schemes. The other
two are quantization and entropy coding. This three part view of compression will
be developed in detail in Section 7.1, together with the strong interaction that exists
among them. That is, in a compression context, there is no need for designing the
“ultimate” basis function system unless adequate quantization and entropy coding
are matched to it. This interplay, while fairly obvious, is often insufficiently stressed
in the literature. Note that this section is a review and can be skipped by readers
familiar with basic signal compression.

Section 7.2 concentrates on one-dimensional signal compression, that is, speech
and audio coding. Subband methods originated from speech compression research,
and for good reasons: Dividing the signal in frequency bands imitates the human
auditory system well enough to be the basis for a series of successful coders.

Section 7.3 discusses image compression, where transform and subband/
wavelet methods hold a preeminent position. It turns out that representing images
at multiple resolutions is a desirable feature in many systems using image compres-
sion such as image databases, and thus, subband or wavelet methods are a popular
choice. We also discuss some new schemes which contain wavelet decompositions
as a key ingredient.

Section 7.4 adds one more dimension and discusses video compression. While
straight linear transforms have been used, they are outperformed by methods using
a combination of motion based modeling and transforms. Again, a multiresolution
feature is often desired and will be discussed.

Section 7.5 discusses joint source-channel coding using multiresolution source
decompositions and matched channel coding. It turns out that several upcom-
ing applications, such as digital broadcasting and transmission over highly varying
channels such as wireless channels or channels corresponding to packet-switched
transmission, are improved by using multiresolution techniques.
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Figure 7.1 Compression system based on linear transformation. The linear
transform T is followed by quantization (Q) and entropy coding (E). The
reconstruction is simply x̂ = T−1ŷ. (a) Global view. (b) Multichannel case
with scalar quantization and entropy coding.

7.1 COMPRESSION SYSTEMS BASED ON L INEAR TRANSFORMS

In this section, we will deal with compression systems, as given in Figure 7.1(a).
The linear transformation (T) is the first step in the process which includes quan-
tization (Q) and entropy coding (E). Quantization introduces nonlinearities in the
system and results in loss of information, while entropy coding is a reversible pro-
cess. A system as given in Figure 7.1 is termed an open-loop system, since there
is no feedback from the output to the input. On the other hand, a closed-loop
system, such as the DPCM (see Figure 7.5), includes the quantization in the loop.
We mostly concentrate on open-loop systems, because of their close connection
to signal expansions. Following Figure 7.1, we start by discussing various linear
transforms with an emphasis on the optimal Karhunen-Loève transform, followed
by quantization, and end up briefly describing entropy coding methods. We try to
emphasize the interplay among these three parts, as well as indicate the importance
of perceptual criterions in designing the overall system. Our discussion is based on
the excellent text by Gersho and Gray [109], to which we refer for more details.
This chapter uses results from statistical signal processing, which are reviewed in
Appendix 7.A.
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Let us here define the measures of quality we will be using. First, the mean
square error (MSE), or, distortion, equals

D =
1

N

N−1∑

i=0

E(|xi − x̂i|2), (7.1.1)

where xi are the input values and x̂i are the reconstructed values. For a zero-mean
input, the signal-to-noise ratio (SNR) is given by

SNR = 10 log10
σ2

D
, (7.1.2)

where D is as given in (7.1.1) and σ2 is the input variance. The peak signal-to-noise
ratio (SNRp) is defined as [138]

SNRp = 10 log10
M2

D
, (7.1.3)

where M is the maximum peak-to-peak value in the signal (typically 256 for 8-
bit images). Distortion measures based on squared error have shortcomings when
assessing the quality of a coded signal such as an image. An improved distortion
measure is a perceptually weighted mean square error. Even better are distortion
models which include masking. These distortion metrics are signal specific, and
some of them will be discussed in conjunction with practical compression schemes
in later sections.

7.1.1 Linear Transformations

Assume a vector x[n] = (x[n], x[n+1], . . . x[n+N − 1] )T of N consecutive samples
of a real wide-sense stationary random process (see Appendix 7.A). Typically, these
samples are correlated and independent coding of the samples is inefficient. The idea
is to apply a linear transform1 so that the transform coefficients are decorrelated.
While there is no general formal result that guarantees more efficient compression
by decorrelation, it turns out in practice (and for certain cases in theory) that scalar
quantization of decorrelated transform coefficients is more efficient than direct scalar
quantization of the samples.

Since we assumed that the process is wide-sense stationary and we will be dealing
only with the second-order statistics, we do not need to keep the index n for x[n]
and can abbreviate it simply as x. From now on, we will assume that the process

1This can also be seen as a discrete-time series expansion. However, since it is usually imple-
mented as a matrix block transform we will adhere to the compression literature’s convention and
call it a transform.
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is zero-mean and thus its autocorrelation and autocovariance are the same, that is,
K[n,m] = R[n,m]. The autocovariance matrix of the input vector x is

Kx = E(x · xT ).
Again, since the process is wide-sense stationary and zero-mean, K[n,m] = K[n−
m] = R[n −m] (see Appendix 7.A). Therefore, the matrix Kx has the following
form:

Kx =







R[0] R[1] . . . R[N − 1]
R[1] R[0] . . . R[N − 2]
...

...
...

...
R[N − 1] R[N − 2] . . . R[0]






.

This matrix is Toeplitz, symmetric (see Section 2.3.5), and nonnegative definite
since all of its eigenvalues are greater or equal to zero (this holds in general for
autocorrelation matrices). Consider now the transformed vector y,

y = Tx, (7.1.4)

where T is an N ×N unitary matrix which thus satisfies T TT = TT T = I. Then
the autocovariance of y is

Ky = E(yyT ) = E(TxxTT T ) = TE(xxT )T T

= TKxT
T . (7.1.5)

Karhunen-Lo ève Transform We would like to obtain uncorrelated transform co-
efficients. Recall that for each two coefficients to be uncorrelated, their covariance
has to be zero (see Appendix 7.A). Thus, we are looking for a diagonal Ky. For
that to hold, T has to be chosen with its rows equal to the eigenvectors of Kx. Call
vi the eigenvector (normalized to unit norm) of Kx associated with the eigenvalue
λi, that is, Kxvi = λivi, and choose the following ordering for the λi’s:

λ0 ≥ λ1 ≥ · · · ≥ λN−1 ≥ 0, (7.1.6)

where the last inequality holds because Kx is nonnegative definite. Moreover, since
Kx is symmetric, there is a complete set of orthonormal eigenvectors (see Section
2.3.2). Take T as

T = [v0 v1 . . . vN−1]
T , (7.1.7)

then, from (7.1.5),

Ky = T ·Kx · T T = T · T T ·Λ = Λ, (7.1.8)

where Λ is a diagonal matrix with Λii = λi = σ2i = y2i , i = 0, . . . , N − 1. The
transform defined in (7.1.7) which achieves decorrelation as shown in (7.1.8) is
the discrete-time Karhunen-Loève (KLT) or Hotelling transform [109, 138]. The
following approximation result is intuitive:
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PROPOSITION 7.1

If only k out of the N transform coefficients are kept, then the coefficients
y0, . . . , yk−1 will minimize the MSE between x and its approximation x̂.

Although the proof of this result follows from general orthonormal expansions re-
sults given in Chapter 2, we describe it here for completeness.

PROOF

Following (7.1.1), the MSE is equal to

D = E

(

N−1
∑

i=0

(xi − x̂i)2
)

= E((x− x̂)T · (x− x̂)) = E((y − ŷ)T · (y − ŷ)), (7.1.9)

where the last equality follows from the fact that T is a unitary transform, that is, the MSE
is conserved between transform and original domains. Keeping only the first k coefficients
means that ŷi = yi for i = 0, . . . , k − 1 and ŷi = 0, for i = k, . . . , N − 1. Then the MSE
equals

Dk = E

(

N−1
∑

i=0

(yi − ŷi)2
)

=
1

N

N−1
∑

i=k

y2i =
1

N

N−1
∑

i=k

λi,

and this is obviously smaller or equal to any other set of N − k coefficients because of the
ordering in (7.1.6). Recall here that the assumption of zero mean still holds.

Another way to say this is that the first k coefficients contain most of the energy
of the transformed signal. This is the “energy packing” property of the Karhunen-
Loève transform. Actually, among all unitary transforms, the KLT is the one that
packs most energy into the first k coefficients.

There are two major problems with the KLT, however. First, the KLT is signal
dependent, since it depends on the autocovariance matrix. Second, it is computa-
tionally complex, since no structure can be assumed for T , and no fast algorithm
can be used. This leads to an order N2 operations for applying the transform.

Discrete Cosine Transform Due to the discussed problems, various approxima-
tions to the KLT have been proposed. These approximations usually have fast
algorithms for efficient implementation. The most successful is the discrete cosine
transform (DCT), which calculates the vector y from x as

y0 =
1√
N

N−1∑

n=0

xn, (7.1.10)

yk =

√

2

N

N−1∑

n=0

xn cos

(
2π(2n + 1)k

4N

)

, k = 1, . . . , N − 1. (7.1.11)
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The DCT was developed [2] as an approximation for the KLT of a first-order Gauss-
Markov process with a large positive correlation coefficient ρ (ρ→ 1). In this case,
Kx is of the following form (assuming unit variance and zero mean)

Kx =








1 ρ ρ2 ρ3 · · ·
ρ 1 ρ ρ2 · · ·
ρ2 ρ 1 ρ · · ·
...

...
...

...
. . .







.

For large ρ’s, the DCT approximately diagonalizes Kx. Actually, the DCT (as well
as some other transforms) is asymptotically equivalent to the KLT of an arbitrary
wide-sense stationary process when the block size N tends to infinity [294]. It
should be noted that even if the assumptions do not hold exactly (images are not
first-order Gauss-Markov), the DCT has proven to be a robust approximation to
the KLT, and is used in several standards for speech, image and video compression
as we shall see.

The DCT also has shortcomings. One must block the input stream in order to
perform the transform and this blocking is quite arbitrary. The block boundaries
often create not only loss of compression (correlation across the boundaries is not
removed) but also annoying blocking effects. This is one of the reasons for using
lapped transforms and subband or wavelet coding schemes. However, the goal of
these generalized transforms is the same, namely, to create decorrelated outputs
from a correlated input stream, and then to quantize the outputs separately.

Discussion We recall that decorrelation leads to independence only if the input is
Gaussian (see Appendix 7.A). Also, even independent random variables are better
quantized as a block (or as a vector) than as independent scalars, due to sphere
packing gains (see discussion of vector quantization in Section 7.1.2). However, the
complexity of doing so is high, and thus, scalar quantization is often preferred. It
will be shown below, after a discussion of quantization and bit allocation, that the
KLT is the optimal linear transformation (under certain assumptions) among block
transforms. The performance of subband coding will also be analyzed.

The major point is that all these schemes are unitary transformations on the
input and thus, if x̂ and ŷ are the approximate versions of x and y, respectively,
we always have (similarly to (7.1.9))

‖x− x̂‖ = ‖y − ŷ‖. (7.1.12)

Note that nonorthogonal systems (such as linear phase biorthogonal filter banks)
are usually designed to almost satisfy (7.1.12). If they do not, there is a risk that
small errors in the transform domain are magnified after reconstruction. The key
problem now is to design the set of quantizers so as to minimize E(‖y − ŷ‖).
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Fig. 7.2 figref. 7.2.2
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Figure 7.2 Uniform scalar quantizer with N = 7 and ∆ = 1. The deci-
sion levels {xi} are {−5/2,−3/2,−1/2, 1/2, 3/2, 5/2} and the outputs {yi} are
{−3,−2,−1, 0, 1, 2, 3}.

7.1.2 Quantization

While we deal with discrete-time signals in this chapter, the sample values are real
numbers, that is, continuously distributed in amplitude. In order to achieve com-
pression, we need to map the real value of samples into a discrete set, or discrete
alphabet. This process of mapping the real line into a countable discrete alphabet
is called quantization. In practical situations, the sample values are mapped into
a finite alphabet. An excellent treatment of quantization can be found in [109].
In its simplest form, each sample is individually quantized, which is called scalar
quantization. A more powerful method consists in quantizing several samples at
once, which is referred to as vector quantization. Also, one can quantize the differ-
ence between a signal and a suitable prediction of it, and this is called predictive
quantization. We would like to stress here that the results on optimal quantization
for a given signal are well-known, and can be found in [109, 143].

Scalar Quantization An example of a scalar quantizer is shown in Figure 7.2.
The input range is divided into intervals Ii = (xi−1, xi] (a partition of the real
line) and the output value yi is typically chosen in the interval Ii. The set {yi} is
called the codebook and yi the codewords. For the simple, uniform quantizer shown
in Figure 7.2, the intervals are of the form (i − 1/2, i + 1/2] and yi = i. Note
that the number of intervals is finite. Thus, there are two unbounded intervals
which correspond to what is called “overload” regions of the quantizer, that is, for
x < −5/2 and x > 5/2. Given that the number of intervals is N , there are N
output symbols. Thus, R = ⌈log2N⌉ bits are needed to represent the output of
the quantizer, and this is called the rate. The operation of selecting the interval is
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sometimes called coding, while assigning the output value yi for the interval Ii is
called decoding. Thus, we have a two-step process

(xi−1, xi] −→︸︷︷︸
coder

i −→
︸︷︷︸

decoder

yi.

The performance of a quantizer is measured as the distance between the input and
the output, and typically, the squared error is used:

d(x, x̂) = |x− x̂|2.

Given an input distribution, worst case or more often average distortion is measured.
Thus, the MSE is

D = E(|x− x̂|2) =
∑

i

∫ xi

xi−1

(x− yi)2fX(x)dx, (7.1.13)

where fX(x) is the probability density function (pdf) of x. For example, assume a
uniform input pdf and a bounded input with N intervals, then uniform quantization
with intervals of width ∆ and yi = (xi + xi−1)/2 leads to an MSE equal to

D =
∆2

12
. (7.1.14)

The derivation of (7.1.14) is left as an exercise (see Problem 7.1). The error due to
quantization is called quantization noise:

e[n] = x̂[n]− x[n],

if x and x̂ are the input and the output of the quantizer, respectively. While e[n]
is a deterministic function of x[n], it is often modeled as a noise process which is
uncorrelated to the input, white and with a uniform sample distribution. This is
called an additive noise model, since x̂[n] = x[n] + e[n]. While this is clearly an
approximation, it is a fair one in the case of high-resolution uniform quantization
(when ∆ is much smaller than the standard deviation σ of the input signal and N
is large).

Uniform quantization, while not optimal for nonuniform input pdf’s, is very
simple and thus often used in practice. One design parameter, besides the quanti-
zation step ∆, is the number of intervals, or the boundaries which correspond to the
overload region. Usually, they are chosen as a multiple of the standard deviation σ
of the input pdf (typically, 4 σ away from the mean). Given constant boundaries
a and b, then ∆ = (b − a)/N . Thus, ∆ decreases as 1/N = 1/2R where R is the
number of bits of the quantizer. The distortion D is of the form (following (7.1.14))

D =
∆2

12
=

(b− a)2
12N2

= σ22−2R = C · 2−2R, (7.1.15)
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Figure 7.3 Optimality conditions for scalar quantizers. (a) Nearest neighbor
condition. (b) Centroid condition.

since σ2 = (b− a)2/12 for uniform input pdf. In general, C is a function of σ2 and
depends on the distribution. This means that the SNR goes up by 6 dB for every
additional bit in the quantizer. To see that, add a bit to R, R′ = R+ 1. Then

D′ = C · 2−2(R+1) = C · 2−2R · 2−2.

The new SNR′ equals (use (7.1.2))

SNR′ = 10 log10 4
σ2

C2−2R
= SNR+ 10 log10 4 ≃ SNR+ 6 dB.

When the pdf is not uniform, optimal quantization will not be uniform either. An
optimal MSE quantizer is one that minimizes D in (7.1.13) for a given number
of output symbols N . For a quantizer to be MSE optimal, it has to satisfy the
following two necessary conditions [109]:

(a) Nearest neighbor condition For a given set of output levels, the optimal parti-
tion cells are such that an input is assigned to the nearest output level. For
MSE minimization, this leads to the midpoint decision level between every two
adjacent output levels.

(b) Centroid condition Given a partition of the input, the optimal decoding lev-
els with respect to the MSE are the centroids of the intervals, that is, yi =
E(x | x ∈ Ii).

Note that such a quantizer is not necessarily optimal for compression since it
does not take into account entropy coding.2 The two conditions are sketched in

2A suitable modification, called entropy constrained quantization, takes entropy into account
in the design of the quantizer.
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Fig. 7.4 figref. 7.2.4
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Figure 7.4 Vector quantization. (a) Example of a regular vector quantizer in
two dimensions. (b) Comparison of scalar and vector quantizations. On the
left, a two-dimensional probability density function is shown. It equals 2 in
shaded areas and 0 otherwise. Note that x0 and x1 have uniform marginal
distributions. For a given distortion, in the middle, optimal scalar (separa-
ble) quantization is shown, with 4.0 bits, or, 2.0 bits/sample. For the same
distortion, on the right, vector quantization is shown, with 3.0 bits, or, 1.5
bits/sample.

Figure 7.3. Both conditions are intuitive, and can be used to verify optimality of a
quantizer or actually design an optimal one. This is done in the Lloyd algorithm,
which iteratively improves a codebook for a given pdf and a number of codewords
N (the pdf can be given analytically or through measurements). Starting with some

initial codebook {y(0)i }, it alternates between

(a) Given {y(n)i }, find the partition {x(n)i }, based on the nearest neighbor condi-
tion.

(b) Given {x(n)i }, find the next {y(n+1)
i }, satisfying the centroid condition.

and stops when D(n) is only marginally improved. The resulting quantizer is called
a Lloyd-Max quantizer.

The above discussion assumed quantization of a continuous variable into a dis-
crete set. Often, a discrete input set of size M has to be quantized into a set of
size N < M . A “discrete” version of the Lloyd algorithm, which uses the same
necessary conditions (nearest neighbor and centroid), can then be used.

While the above method yields quantizers with minimum distortion for a given
codebook size, entropy coding was not considered. We will see that if entropy
coding is used after quantization, a uniform quantizer can actually be attractive.
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Vector Quantization While vector quantization (VQ) [109, 120] is much more
than just a generalization of scalar quantization to multiple dimensions, we will
only look at it in this restricted way in our brief treatment. Figure 7.4(a) shows a
regular vector quantizer for a two-dimensional variable. Note that the partition of
the square is into convex3 regions and the separation into regions is performed using
straight lines (in N dimensions, these would be hyperplanes of dimension N − 1).

There are several advantages of vector quantizers over scalar quantizers. For the
sake of discussion, we consider a two-dimensional case, but it obviously generalizes
to N dimensions.

(a) Packing gain Even if two variables are independent, there is gain in quantizing
them together. The reason is that there exist better partitions of the space
then the rectangular partition obtained when we separately scalar quantize
each variable. For example, in two dimensions, it is well-known that hexagonal
tiling achieves a smaller MSE than the square tiling for the quantization of
uniformly distributed random variables, given a certain density. The packing
gain increases with dimensionality.

(b) Removal of linear and nonlinear dependencies While linear dependencies could
be removed using a linear transformation, VQ also removes nonlinear depen-
dencies. To see this, let us consider the classic example shown in Figure 7.4(b).
The two-dimensional probability density function equals 2 in shaded areas and
0 otherwise. Because the marginal distributions are uniform, scalar quantiza-
tion of each variable is uniform. Vector quantization “understands” the de-
pendency, and only allocates partitions where necessary. Thus, instead of 4.0
bits, or, 2.0 bits/sample for the scalar quantization, we obtain 3.0 bits, or, 1.5
bits/sample for the vector quantization, reducing the bit rate by 25% while
keeping the same distortion (see Figure 7.4(b)).

(c) Fractional bit rate At low bit rates, choosing between 1.0 bits/sample or 2.0
bits/sample is a rather crude choice. By quantizing several samples together
and allocating an integer number of bits to the group, fractional bit rates can
be obtained.

For a vector quantizer to be MSE optimal, it has to satisfy the same two con-
ditions we have seen for scalar quantizers, namely:

(a) The nearest neighbor condition.

(b) The centroid condition.

3Convex means that if two points x and y belong to one region, then all the points on the
straight line connecting x and y will belong to the same region as well.



7.1. COMPRESSION SYSTEMS BASED ON LINEAR TRANSFORMS 395
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Figure 7.5 Predictive quantization. (a) Open-loop linear predictive quantiza-
tion. (b) Closed-loop predictive quantization or differential pulse code modu-
lation (DPCM).

A codebook satisfying these two necessary conditions is locally optimal (small per-
turbations will not decrease D) but is usually not globally optimal. The design
of VQ codebooks is thus a sophisticated technique, where a good initial guess is
crucial and is followed by an iterative procedure. For escaping local minimums,
stochastic relaxation is used. For details, we refer to [109].

A drawback of VQ is its complexity, which limits the size of vectors that can
be used. One solution is to structure the codebook so as to simplify the search of
the best matching vector, given the input. This is achieved with tree-structured
VQ. Another approach is to use linear transforms (including subband or wavelet
transforms) and apply VQ to the relevant transform coefficients. Finally, lattice VQ
uses multidimensional lattices as a partition, allowing large vectors with reasonable
complexity, since lattice VQ is the equivalent of uniform quantization in multiple
dimensions.

Predictive Quantization An important and useful technique is when, instead
of quantizing the samples x[n] of the signal to be compressed, one quantizes the
difference between a prediction x̂[n] and x[n], or d[n] = x[n] − x̂[n] [109, 143].
Obviously, if the prediction is accurate, d[n] will be small. In other words, for a given
number of quantization levels, the quantization error will decrease as compared to
a straight quantization of x[n]. Prediction is usually linear and based on a finite
number of past samples. An example is shown in Figure 7.5(a), where P (z) is
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a strictly causal filter, P (z) = a1z
−1 + a2z

−2 + · · · + aLz
−L. That is, x[n] is

predicted based on a linear combination of L past samples, {x[n−1], . . . , x[n−L]}.
Furthermore, 1 − P (z) is chosen to be minimum phase so that its inverse, used
in the decoder, is a stable filter. Given a predictor order and a stationary input
signal, the best linear prediction filter that minimizes the variance of d[n] is found
by solving a set of linear equations involving the autocorrelation matrix of the signal
(the Yule-Walker equations).

An interesting alternative is closed-loop predictive quantization or differential
pulse code modulation (DPCM), as shown in Figure 7.5(b). In the absence of
quantization, DPCM is equivalent to the open-loop predictive quantization in Fig-
ure 7.5(a). An important feature here is that since we are predicting x[n] based on
its past quantized values x̂q[k], k = n−L, . . . , n− 1, we can generate the same x̂[n]
at the decoder side from these past values x̂q[k]. The idea is that in the decoder,
we can add back exactly what was subtracted in the encoder and thus, the error
made on the signal is equal to the error made when quantizing the difference signal.
In other words, since

d[n] = x[n]− x̂q[n],

and

y[n] = dq[n] + x̂q[n],

we get that

E( |x[n]− y[n]|2 ) = E( |d[n] − dq[n]|2 ),

where x[n] and y[n] are the input and output of the DPCM, while d[n] and dq[n]
are the prediction error and its quantized version, respectively.

An important figure of merit of the above closed-loop predictive quantization
is the closed-loop prediction gain. It is defined as the ratio of the variances of the
input and of the prediction error,

G =
σ2x
σ2d
.

Note that when the quantization is coarse, this can be quite different from the
open-loop prediction gain, which is the equivalent relation but with the prediction
as in Figure 7.5(a). For practical reasons, the predictor P (z) in the closed-loop
case is usually chosen as in the open-loop case, that is, we are using the predicted
coefficients that are optimal for the true past L samples of the signal.

A further improvement involves adaptive prediction, and can be used both in
the open-loop and in the closed-loop cases. The predictor is updated every K
samples based on the local signal characteristics and sent to the decoder as side
information.
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Linear predictive quantization is used successfully in speech and image com-
pression (both in the open-loop and closed-loop forms). In video, a special form of
adaptive DPCM, over time, involves motion-based prediction called motion com-
pensation, which is discussed in Section 7.4.2.

Bit Allocation Looking back at the transform coding diagram in Figure 7.1, the
obvious question is: How do we choose the quantizers for the various transform
coefficients? This is a classical resource allocation problem, where one tries to
maximize (or minimize) a cost function which describes the quality of approximation
under the constraint of finite resources, that is, a given number of bits that can be
used to code the signal. Let us first recall an important fact: The total squared
error between the input and the output is the sum of individual errors because the
transform is unitary. To see that, call x and x̂ the input and reconstructed input,
respectively. Then y and ŷ will be the input and the output of the quantizer. That
is,

y = Tx, x̂ = T T ŷ,

where the last equation holds since the transform T is unitary, that is, T TT =
TT T = I. Then the total distortion is

D = E((x − x̂)T · (x− x̂)) = E((y − ŷ)T · TT T · (y − ŷ))

= E((y − ŷ)T · (y − ŷ)) = E

(
N−1∑

i=0

(yi − ŷi)2
)

=

N−1∑

i=0

Di,

whereDi is the expected squared error of the ith coefficient. Then, the bit allocation
problem is to minimize

D =
N−1∑

i=0

Di, (7.1.16)

while satisfying the bit budget

N−1∑

i=0

Ri ≤ R, (7.1.17)

whereR is the total budget and Ri the number of bits allocated to the ith coefficient.
A dual situation appears when a maximum allowable distortion is given and the
rate has to be minimized. Before considering specific allocation procedures, we will
discuss some aspects of optimal solutions.

The fundamental trade-off in quantization is between rate (number of bits used)
and distortion (approximation error) and is formalized as rate-distortion theory
[28, 121]. A rate-distortion function for a given source specified by a statistical
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Figure 7.6 Rate distortion and bit allocation. (a) Rate-distortion curve for
a statistically described source (solid line) and an operational rate-distortion
curve (dashed line) based on a set of quantizers. (b) Constant-slope solution
for an optimal allocation between two sources having the above rate-distortion
curves.

model precisely indicates the possible trade-off. While rate-distortion bounds are
usually not closely met in practice, implementable systems have a similar behavior.
Figure 7.6(a) shows a possible rate-distortion function as well as points reached by
a practical system (called an operational rate-distortion curve). Note that the true
rate-distortion function is convex, while the operational one is not necessarily.

For example, for high-resolution scalar quantization, the distortion Di is related
to the rate Ri as (see (7.1.15))

Di(Ri) ≃ Ci σ2i 2−2Ri , (7.1.18)

where Ci is a constant depending on the pdf of the quantized variable (for example,
in the case of a zero-mean Gaussian variable, Ci =

√
3π/2).

Returning to our initial problem as stated in (7.1.16) and (7.1.17), we will con-
sider a two-variable case for illustration. Assume we separately code two variables
x0 and x1, each having a given rate-distortion function. A key property we as-
sume is that both rate and distortion are additive. This is, for example, the case
in transform coding if the coefficients are independent. How shall we allocate bits
to each variable so as to minimize distortion? It is important to note that in a
rate-distortion problem, we have to consider both rate and distortion in order to
be optimal. Since the two dimensions are not related (one is bits and the other is
MSE), we use a new cost function L combining the two through a positive Lagrange
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multiplier λ:

L = D + λ ·R,
Li = Di + λ · Ri, i = 0, 1 ,

where L = L0+L1. Finding a minimum of L (which now depends on λ) amounts to
finding minimums for each Li (because the costs are additive). Writing distortion
as a function of rate, Di(Ri), and taking the derivative to find a minimum, we get

∂Li
∂Ri

=
∂Di(Ri)

∂Ri
+ λ = 0,

that is, the slope of the rate-distortion function is equal to −λ, for i = 0, 1 and
∂D0(R0)/∂R0 = ∂D1(R1)/∂R1 = −λ. Uniqueness follows from the convexity of
the rate-distortion curves. Thus, for a solution to be optimal, the set of chosen
rates R0 and R1 have to correspond to constant-slope points on their respective
rate-distortion curves [262], as shown in Figure 7.6(b). This solution is also very
intuitive. Consider what would happen if (R0,D0), (R1,D1) did not have the same
slope, and suppose that λ0 is much steeper than λ1. We assume we are within the
budget R, that is, R = R0 + R1. Increase now the rate R0 by ǫ. Since we need to
stay within the budget, we have to decrease the rate of R1 by the same amount. In
the process, we have decreased the distortion D0 and increased the distortion D1.
However, since we assumed that the first slope is steeper, it actually paid off to do
this since we remained with the same budget while decreasing the overall distortion.
Repeating the process, we move closer and closer to the optimal solution. Once we
reach the point where both slopes are the same, we do not gain anything by moving
further.

A constant-slope solution is obtained for any fixed value of R. To enforce the
constraint (7.1.17) exactly, one has to search over all slopes λ until the budget is
met and then we have an optimal solution that satisfies the constraints. In practice,
the exact functions Di(Ri) might not be known, but one can still use similar ideas
on operational rate-distortion curves [262]. The main point of our discussion was
to indicate the philosophy of the approach: Based on rate-distortion curves, find
operating points that satisfy an optimality criterion and search until the budget
constraint is satisfied as well.

When high-resolution quantization approximations can be used, it is possible
to give closed-form allocation expressions. Assume the N sources have the same
type of distribution but different variances. Then Di(Ri) is given in (7.1.18) with
a fixed constant Ci = C. Taking the derivative, it follows that:

∂Di(Ri)

∂Ri
= C ′ · σ2i · 2−2Ri ,
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with C ′ = −2 ln 2 · C. The constant-slope solution, that is, ∂Di(Ri)/∂Ri = −λ,
forces the rates to be of the following form:

Ri = α+ log2 σi.

Since we also have the budget constraint (7.1.17),

∑

Ri = N · α+

N−1∑

i=0

log2 σi = R,

we find

α =
R

N
− 1

N
·
N−1∑

i=0

log2 σi,

and

Ri =
R

N
+ log2 σi −

1

N

N−1∑

i=0

log2 σi = R̄+ log2
σi
ρ
, (7.1.19)

where R̄ = R/N is the mean rate and ρ is the geometric mean of the variances

ρ =

(
N−1∏

i=0

σi

)1/N

.

Note that each quantizer has the same average distortion

Di = C · σ2i 2−2Ri = C · σ2i 2−2(R̄+log2 σi/ρ)

= C · σ2i · 2−2R̄22 log2(ρ/σi) = C · ρ2 · 2−2R̄. (7.1.20)

The result of this allocation procedure is intuitive, since the number of quantization
levels allocated to the ith quantizer,

2Ri =
2R̄

ρ
· σi,

is simply proportional to the standard deviation or spread of the variable xi. The
allocation (7.1.19) can be modified for nonidentically distributed random variables
and weighted errors (the ith error is weighted by Wi in the total distortion). In
this case σ2i , in the allocation problem, is replaced by Ci ·Wi · σ2i , leading to the
appropriate modification of (7.1.19).

The problem with the above allocation procedure is that the resulting rates are
noninteger and even worse, small variances can lead to negative allocations. Both
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problems can be tackled by starting with the solution given by (7.1.19) and forcing
nonnegative integer allocations (this might lead to slight suboptimality, however).

The next algorithm [109] tackles the problem directly by allocating one bit at
a time to the quantizer where it is most needed. It is a “greedy” algorithm and
not optimal, but leads to good solutions. Call Ri[n] the number of bits allocated
to quantizer i at the nth iteration of the algorithm. Then, the algorithm iterates
over n until all bits have been allocated and at each step, allocates the next bit to
the quantizer j which has maximum distortion with the current allocation,

Dj(Rj [n]) ≥ Di(Ri[n]), i 6= j.

That is, the next bit is allocated to where it is most needed. Since Di can be given
in analytical form or measured on a training set, this algorithm is easily applicable.
More sophisticated algorithms, optimal or near optimal, are based on Lagrange
methods applied to arbitrary rate-distortion curves [262].

Coding Gain Now that we have discussed quantization and bit allocation, we
can return to our study of transform coding and see what advantage is obtained by
doing quantization in the transform domain (see Figure 7.1).

First, recall that the Karhunen-Loève transform leads to uncorrelated variables
with variance λi (see (7.1.8)). Assume that the input to the transform is zero-mean
Gaussian with variance σ2x, and that fine quantization is used. This leads us to
Proposition 7.2.

PROPOSITION 7.2 Optimality of Karhunen-Loève Transform

Among all block transforms and at a given rate, the Karhunen-Loève trans-
form will minimize the expected distortion.

PROOF

After the KLT with optimal scalar quantization and bit allocation, the total distortion for
all N channels is (following (7.1.20)),

DKLT = N · C · 2−2R̄ · ρ2 = N · C · 2−2R̄

(

N−1
∏

i=0

λi

)1/N

, (7.1.21)

where C =
√
3π/2 (see (7.1.18)). Since the determinant of a matrix is equal to the product

of its eigenvalues, the last term is equal to (det(Kx))
1/N where Kx is the autocovariance

matrix (assuming zero mean, Kx = Rx). To prove the optimality of the KLT, we need
the following inequality for the determinant of an autocorrelation matrix of N zero-mean
variables with variances σ2

i [109]:

det(Rx) ≤
N−1
∏

i=0

σ2
i , (7.1.22)
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with equality if and only if Rx is diagonal. It turns out that the more correlated the
variables are, the smaller the determinant.

Consider now an arbitrary orthogonal transform, with transform variables having
variance σ2

i . The distortion is

DT = N · C · 2−2R̄

(

N−1
∏

i=0

σi

)1/N

.

Because of (7.1.22) and the fact that the determinant is conserved by unitary transforms,
this is greater or equal than

DT ≥ N · C · 2−2R̄ det(Rx)
1/N .

Since the KLT achieves a diagonal Rx, then the equality is reached by the KLT following
(7.1.21). This proves that if the input to the transform is Gaussian and the quantization is
fine, the KLT is optimal among all unitary transforms.

What is the gain we just obtained? If the samples are directly quantized, the
distortion will be

DPCM = N · C · 2−2R̄ · σ2x, (7.1.23)

(where PCM stands for pulse code modulation, that is, sample-by-sample quanti-
zation) and the coding gain due to optimal transform coding is

DPCM

DKLT
=

σ2x
(
∏N−1
i=0 σ2i

)1/N
=

1/N
∑N−1

i=0 σ2i
(
∏N−1
i=0 σ2i

)1/N
, (7.1.24)

where we used the fact that N · σ2x =
∑
σ2i . Recalling that the variances σ2i are

the eigenvalues of Rx, it follows that the coding gain is the ratio of the arithmetic
and geometric means of the eigenvalues of the autocorrelation matrix (under the
zero-mean assumption). The lower bound on the gain is 1, which is attained only
if all eigenvalues are identical.

Subband coding, being a generalization of transform coding, has a similar be-
havior. If the input is Gaussian, the channel signals are Gaussian as well. If the
filters are ideal bandpass filters, the channels will be decorrelated. In any case, the
distortion resulting from optimally allocating R = N · R̄ bits across N channels
with variances σ2i is, as in the usual transform case

DSBC = N · C · 2−2R̄ · ρ2,

where ρ is the geometric mean of the subband variances. Using (7.1.23) for direct
quantization we get, similarly to (7.1.24), the subband coding gain as

DPCM

DSBC
=

1/N
∑N−1

i=0 σ2i
(
∏N−1
i=0 σ2i

)1/N
,
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where the σ2i ’s are the subband variances. That is, if the spectrum is far from
being flat, there will be a large coding gain in subband methods. This is to be
expected, since it becomes possible to match the spectral characteristics of the
signal very closely, unlike in a sample-domain quantization. It is worthwhile to note
that when the number of channels grows to infinity, both transform and subband
coding achieve the theoretical performance of predictive coding with infinitely long
predictor [143].

The obvious question is of course how do transform and subband coding com-
pare? The ratio of DKLT and DSBC is:

DKLT

DSBC
=

ρ2KLT

ρ2SBC

,

that is, the one with the smaller geometric mean wins. Qualitatively, the one with
the larger spread in variances will achieve better coding gain. The exact comparison
thus requires measurements of variances in specific transforms (such as the DCT)
versus filter banks (of finite length rather than ideal ones).

While the above considerations use some idealized assumptions, the concept
holds true in general: The wider the variations between the component signals
(transform coefficients or subbands), the higher the potential for coding gain. More
about the above can be found in [5, 220, 273, 292, 295].

7.1.3 Entropy Coding

The last step in transform coding as shown in Figure 7.1 is entropy coding. Simi-
larly to the first step, it is reversible and thus, there is no approximation problem
as in quantization. After quantization, the variables take values drawn from a fi-
nite set {ai}. The idea is to find a reversible mapping M to a new set {bi} such
that the average number of bits/symbol is minimized. A historical example is the
Morse code which assigns short codes to the letters that appear frequently in the
English language while reserving long codes to less frequent ones. The parameters
in searching for the mapping M are the probabilities of occurrence of the symbols
ai, p(ai). If the quantized variable is stationary, these probabilities are fixed, and a
fixed mapping such as Huffman coding can be used. If the probabilities evolve over
time, more sophisticated adaptive methods such as adaptive arithmetic coding can
be used. Such mappings will transform fixed-length codewords into variable-length
ones, creating a variable-length bit stream. If a constant bit rate channel is used,
buffering has to smooth out variations so as to accommodate the fixed-rate channel.

Huffman Coding Given an alphabet {ai} of size M and its associated probabil-
ities of occurrence p(ai), the goal is to find a mapping bi = F (ai) such that the



404 CHAPTER 7

Table 7.1 Symbols, probabilities and resulting possible Huffman codewords
whereHa = 2.28 bits and E[l(bi)] = 2.35 bits. First, the symbols are merged
going from (a) to (e). Then, the codewords are assigned going from (e) to
(a).

ai p(ai) bi

0 0.40 0
1 0.20 100
2 0.15 101
3 0.10 110
4 0.10 1110
5 0.05 1111

ai p(ai) bi

0 0.40 0
1 0.20 100
2 0.15 101

4 + 5 0.15 111
3 0.10 110

ai p(ai) bi

0 0.40 0
3+(4+5) 0.25 11

1 0.20 100
2 0.15 101

(a) (b) (c)
ai p(ai) bi

0 0.40 0
1 + 2 0.35 10

3+(4+5) 0.25 11

ai p(ai) bi

(1+2) + (3+(4+5)) 0.60 1
0 0.40 0

(d) (e)

average length l(bi) is minimized:

E(l(bi)) =

M−1∑

i=0

p(ai)l(bi). (7.1.25)

We also require that a sequence of bi’s should be uniquely decodable (note that
invertibility of F is not sufficient). This last requirement puts an extra constraint
on the codewords bi, namely, no codeword is allowed to be a prefix to another
one. Then, the stream of bi’s can be uniquely decoded by sequentially removing
codewords bi. The lower bound of the expected length (7.1.25) is given by the
entropy of the set {ai}

Ha = −
M−1∑

i=0

p(ai) log2(p(ai)). (7.1.26)

Huffman’s construction elegantly meets the prefix condition while coming quite
close to the entropy lower bound. The design is guided by the following property
of optimum binary prefix codes: The two least probable symbols have codewords
of equal length which differ only in the last symbol.

The design of the Huffman code is best looked at as growing a binary tree
from the leaves up to the root. The codeword will be the sequence of zeros and
ones encountered as going from the root to the leaf corresponding to the desired
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Figure 7.7 Huffman code derived from a binary tree and corresponding to the
symbol probabilities given in Table 7.1.

symbol. Start with a list of the probabilities of the symbols. Then, take the two
least probable symbols and make them two nodes with branches (labeled “0” and
“1”) to a common node which represents a new symbol. The new symbol has a
probability which is the sum of the two probabilities of the merged symbols. The
new list of symbols is now shorter by one. Iterate until only one symbol is left. The
codewords can now be read off along the branches of the binary tree. Note that at
every step, we have used the property of optimum binary prefix codes so that the
two least probable symbols were of equal length and had the same prefix.

Example 7.1 Huffman Coding

An example is given in Figure 7.7 where a Huffman tree is shown for the symbol probabilities
given in Table 7.1(a). Let us first consider only the first two columns of each of the tables.
We start from left to right and in Table 7.1(a) choose the two symbols with the lowest
probabilities, that is, 4 and 5, and merge them. We then reorder the symbols in the
decreasing order, and form Table 7.1(b). Now the process is repeated, joining symbols
3 and (4 + 5). After a couple more steps, we obtain the final Table 7.1(e). Now we start
assigning codewords, going from right to left. Thus, 0.6 gets a “1”, and 0.4 gets a “0”.
Then we split 0.6, and assign “10” to 0.35, and “11” to 0.25. The final result of the whole
procedure is given in Table 7.1(a) and Figure 7.7.

Note that we call Huffman coding optimal when the average length E(l(bi)) given
in (7.1.25) reaches the theoretical lower bound given by the entropy (7.1.26), which
is possible only if the symbol probabilities are powers of two. This is a limitation
of Huffman coding, which can be surmounted by using arithmetic coding. It is
more complicated to implement and, in its simplest form, it also requires a priori
knowledge of symbol probabilities. If the source matches the probabilities used to
design the arithmetic coder, then the rate approaches the entropy arbitrarily closely
for long sequences. See [24] and [109] for more details.
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Adaptive Entropy Coding While the above approaches come close to the entropy
of a known stationary source, they fail if the source is not well-known or changes
significantly over time. A possible solution is to estimate the probabilities on the
fly (by counting occurrences of the symbols at both the encoder and decoder) and
modify the Huffman code accordingly. While this seems complicated at first sight, it
turns out that only minor modifications are necessary, since only a single probability
is affected by an entering symbol [105, 109].

Arithmetic coding can be modified as well, in order to estimate probabilities
on the fly. This adaptive version is known as a Q-coder [221]. Finally, Ziv-Lempel
coding [342] is an elegant lossless coding technique which uses no a priori proba-
bilities. It builds up a dictionary of encountered subsequences in such a way that
the decoder can build the same dictionary. Then, the encoder sends only the index
to an encountered entry. The dictionary size is fixed and the index uses a fixed
number of bits. Thus, the Ziv-Lempel coding maps variable-size input sequences
into fixed-size codewords, a dual of the Huffman code. The only limitation of the
Ziv-Lempel code is its fixed-size dictionary, which leads to loss in performance when
very long sequences are encoded. No new entries can be created once the dictionary
is full and the remainder of the sequence has to be coded with the current entries.
Modifications of the basic algorithm allow for dictionary updates. Note that since
there are many variations on this theme, we refer to [24] for a thorough discussion.

Run-Length Coding Another important lossless coding technique is run-length
coding [138]. It is useful when a sequence of samples consists of stretches of zeros
followed by small packs of nonzero samples (this is typically encountered in subband
image coding at the outputs of the highpass channels after uniform quantization
with a dead zone, as in Section 7.3.3). It is thus advantageous to encode the length
of the stretch of zeros, to then encode the values of the nonzero samples and then
an indicator of the start of another run of zeros. Of course, both the length of runs
and the nonzero values can be entropy coded.

7.1.4 Discussion

So far we have separately considered the three building blocks of a transform coder
as depicted in Figure 7.1. Some interaction between the transform and the quan-
tization was discussed when proving the optimality of the KLT. Including entropy
coding after quantization can change the way quantization should be done. In
the high-rate, memoryless4 case, uniform quantization followed by entropy coding
turns out to be better than using nonuniform quantization and fixed codewords

4Memoryless means that the output value at a present time depends only on the present input
value and not on any past or future values.
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[109]. However, this leads to variable-rate schemes and thus requires buffering
when fixed-rate channels are used. This is done with a finite-size buffer, which has
a nonzero probability of overflow. Therefore, a buffer control algorithm is needed.
This usually means moving to coarser quantization when the buffer is close to over-
flow and finer quantization in the underflow case. Obviously, in the overflow control
case, there is a loss in performance in such variable-rate schemes. The size of the
buffer is limited for cost reasons, but also because of the delay it produces in a
real-time transmission case.

Our discussion has focused on MSE-based coding, but we indicated that it
extends readily to weighted MSE. Such weights are usually based on perceptual
criterions [141, 142], and will be discussed later. We note that certain “tricks” such
as the dead zone quantizers used in image compression (uniform quantizers with a
zone around zero larger than the step size that maps to the origin) are heuristics
derived from experiments that are not optimal in the sense discussed so far, but
which produce visually more pleasing images.

7.2 SPEECH AND AUDIO COMPRESSION

In this section, we consider the use of signal expansions for one-dimensional signal
compression. Subband methods are successful for medium compression of speech
[68, 94, 103, 192], and high quality compression of audio [34, 77, 147, 267, 279,
290, 333]. At other rates (for example, low bit rate speech compression) different
methods are used, which we will briefly indicate as well.

7.2.1 Speech Compression

Production-Model Based Compression of Speech A particularity of speech
is that a good production model can be identified. The vocal cords produce an
excitation function which can be roughly classified into voiced (pulse-train like)
and unvoiced (noise-like) excitation. The vocal tract, mouth, and lips act as a filter
on this excitation signal. Therefore, very high compression systems for speech are
based on identifying the parameters of this speech production model. Typically,
linear prediction is used to identify a linear filter of a certain order which will
whiten the speech signal (this is therefore the inverse filter of the speech production
model). Then, the residual signal is analyzed to decide if the speech was voiced or
unvoiced, and in the former case, to identify the pitch. Such an analysis is done on
a segment-by-segment basis. It reduces the original speech signal to a small set of
parameters: voiced/unvoiced decision plus pitch value in the voiced case and filter
coefficients (up to 16 typically). At the decoder, the speech is synthesized following
the production model and using the parameters identified at the encoder. As to be
expected, this approach leads to very high compression factors. Speech sampled at
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Figure 7.8 Critical bands of the auditory system. Bandpass filters’ magnitude
response on a logarithmic frequency axis.

8 kHz with 8 bits/sample, that is, at 64 Kbits/sec, is compressed down to as low
as 2.4 Kbits/sec with adequate intelligibility but some lack of naturalness [141]. At
8 to 16 Kbits/sec, sophisticated versions of linear predictive coders achieve what is
called “toll quality,” that is, they can be used on public telephone networks. Instead
of simple voiced/unvoiced excitation, these higher-quality coders use a codebook
from which the best excitation function is chosen. An important advantage of linear
predictive coding (LPC) of speech is that low delay is achievable.

High-Quality Speech Compression Certain applications require speech com-
pression with better than telephone quality (for example, audio conferencing). This
is often called wideband speech [141] since the sampling rate is raised from 8 kHz
to 14 kHz. Because of the desire for high quality, more attention is focused on the
perception process, since the goal is to attain a perceptually transparent coding.
That is, masking patterns of the auditory system are taken advantage of, so as to
place quantization noise in the least sensitive regions of the spectrum. In that sense,
wideband speech coding is similar to audio coding, and we defer the discussion of
masking to the next section. One difference, however, is the delay constraint which
is stringent for real-time interactive speech compression, while being relaxed in the
audio compression case, since the latter is usually performed off line.

7.2.2 High-Quality Audio Compression

Perceptual Models The auditory system is often modeled as a filter bank in a
first approximation. This filter bank is based on critical bands [254], as shown in
Figure 7.8 and Table 7.2. The key features of such a spectral view of hearing are
[146]:
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Table 7.2 Critical bands of the auditory
system, which are of constant bandwidth
at low frequencies (below 500 Hz) and
of constant relative bandwidth at high
frequencies [146].

Lower Upper
Band edge Center edge BW
number (Hz) (Hz) (Hz) (Hz)

1 0 50 100 100
2 100 150 200 100
3 200 250 300 100
4 300 350 400 100
5 400 450 510 110
6 510 570 630 120
7 630 700 770 140
8 770 840 920 150
9 920 1000 1080 160
10 1080 1170 1270 190
11 1270 1370 1480 210
12 1480 1600 1720 240
13 1720 1850 2000 280
14 2000 2150 2320 320
15 2320 2500 2700 380
16 2700 2900 3150 450
17 3150 3400 3700 550
18 3700 4000 4400 700
19 4400 4800 5300 900
20 5300 5800 6400 1100
21 6400 7000 7700 1300
22 7700 8500 9500 1800
23 9500 10500 12000 2500
24 12000 13500 15500 3500
25 15500 19500

(a) A constant relative bandwidth behavior of the filter (see Figure7.8).

(b) Masking properties of dominant sounds over weaker ones within a critical band
and over nearby bands, as given by a spreading function.

The critical bands can be seen as pieces of the spectrum that are considered as an
entity in the auditory process. For example, a sine wave centered in a given critical
band will mask noise in this band, but not outside. While the masking properties
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Figure 7.9 Generic perceptual coder for high-quality audio compression (after [146]).

are very complex and only partly understood, the basic concepts can be successfully
used in an audio compression system.

Unlike in the case of speech compression, there is no source model for general
audio signals. However, there is a good perceptual model of the auditory process,
which can be used for achieving better compression through perceptual coding [141].

Perceptual Coders A perceptual coder for transparent coding of audio will at-
tempt to keep quantization noise just below the level where it would become no-
ticeable. Quantization noise within a critical band has to be controlled and an easy
way to do that is to use a subband or transform coder. Also, permissible quanti-
zation noise levels have to be calculated and this is based on some form of spectral
analysis of the input. Therefore, a generic perceptual coder for audio is as depicted
in Figure 7.9. Note that one can use the analysis filter bank as a spectrum analyzer
or calculate a separate spectrum estimation. Usually, the two are integrated for
computational reasons.

A filter bank implementing critical bands exactly, is computationally unfeasible.
Instead, some approximation is attempted that has roughly a logarithmic behav-
ior, with an initial octave-band filter bank, but uses short-time Fourier-like banks
within the octaves to get finer analysis at reasonable computational cost. A pos-
sible example is shown in Figure 7.10, where LOT stands for lapped orthogonal
transforms and also refers to cosine-modulated filter banks5 (Section 3.4.3). Re-
cently, Princen has proposed to use nonuniform modulated filter banks [227]. They
are near perfect reconstruction and since they are a straightforward extension of
the cosine-modulated filter banks, they are computationally efficient. High-quality
audio coding usually does not have to meet delay constraints and thus the delay
due to the filter bank is not a problem. Typically, very long filters are used in order

5Note that this filter bank is known under many names, such as LOT, MLT, MDCT, TDAC,
Princen & Bradley filter bank, cosine modulated filter bank [188, 229, 228].
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Figure 7.10 Filter bank example for the analysis part in a perceptual coder
for audio. (a) Architecture. (b) Frequency resolution.

to get excellent band discrimination, and to avoid aliasing as much as possible since
aliasing is perceptually very disturbing in audio.

The next step consists of estimating the masking thresholds within the bands.
Typically, a fast Fourier transform is performed in parallel with the filter bank.
Based on the signal energy and spectral flatness within a critical band, the max-
imum tolerable quantization noise level can be estimated. Typically, single tones
can be identified, their associated masking function derived, and thus, the allow-
able quantization steps follow. Bands which have amplitudes below this maximum
step can be disregarded altogether. For a detailed description of the perceptual
threshold calculations, refer to [145]. Note that this quantization procedure is quite
different from an MSE-based approach as discussed in Section 7.1.2, where only the
variances within bands mattered. Sometimes, the perceptual and MSE approaches
are combined. A first pass allocates an initial number of bits so as to satisfy the
minimum perceptual requirements, while a second pass distributes remaining bits
according to the usual MSE criterions.

The quantization and bit allocation is recalculated for every new segment of the
input signal, and sent as side information to the decoder. Because entropy coding
is used on the quantized subband samples, the bit stream has to be buffered if fixed
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Figure 7.11 Magnitude response of the 32-channel filter bank used in MUSI-
CAM. The prototype is a length 512 window, and cosine modulation is used
to get the 32 modulated filters.

rate transmission is intended. Note that not all systems use entropy coding (for
example, MUSICAM does not).

7.2.3 Examples

Various applications such as digital audio broadcasting (DAB) require CD-quality
audio (44.1 kHz sampling and 16 bits/sample). This lead to the development of
medium compression, high-quality standards for audio coding.

MUSICAM Probably the most well-known audio coding algorithm is MUSICAM
(Masking-pattern Universal Subband Integrated Coding and Multiplexing) [77,
279], used in the MPEG-I standard, and thus frequently referred to as MPEG
audio [38]. It is also conceptually the simplest coder. This system uses a 32-band
uniform filter bank, obtained by modulation of a 512-tap prototype lowpass filter.
The magnitude response of this filter bank is shown in Figure 7.11. One reason for
choosing such a filter bank is that it has a reasonable computational complexity
since it can be implemented with a polyphase filter followed by a fast transform (see
Section 6.2). Another reason is its smaller delay when compared to a tree-structured
filter bank.

In parallel to the filter bank, a fast Fourier transform is used for spectral esti-
mation. Based on the power spectrum, a masking curve is calculated, an example
of which is shown in Figure 7.12. Quantization noise is then allocated in the var-
ious subbands according to the masking function. This allocation is done on a
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Figure 7.12 Example of quantization based on psychoacoustics. (a) Line
spectrum and associated masking function. (b) Quantization noise in the 32
subbands of MUSICAM taking advantage of masking.

small block of subband samples (typically 12). The maximum value within a block,
called scale factor, and the quantization step, based on masking, are calculated for
each block. They are transmitted as side information, together with the quantized
samples. MUSICAM does not use entropy coding, the quantized values are sent
(almost) directly.

The resulting system compresses audio signals of about 700 Kbits/sec (44.1
kHz, 16 bit samples) down to around 128 Kbits/sec, without audible impairments
[77, 279]. When used on stereo signals, it leads to a bit rate of 256 Kbits/sec.

PAC Coder An interesting coder for high-quality compression of audio is the PAC
(Perceptual Audio Coder) coder [147]. In its stereo version, it has been proposed
for digital audio broadcasting as well as for a nonbackward compatible MPEG-II
audio compression system.

The coder has the basic blocks that are typical of many perceptual coders,
given in Figure 7.9. The signal goes through a filter bank and a perceptual model.
Then the outputs of the filter bank and the perceptual model are fed into PCM
quantization, Huffman coding and rate control.

The filter bank is based on the cosine modulated banks presented in Sec-
tion 3.4.3, with window switching. The psychoacoustic analysis provides a noise
threshold for L (Left), R (Right), S (Sum) and D (Difference) channels, where
S = L+R and D = L−R. One feature of the PAC algorithm is that it is adaptive
in time and frequency since, in each frequency band, it sends either the (L,R) or
(S,D) signals, depending on which one is more efficient.

This coder provides transparent or near-transparent quality coding at
192 Kbits/sec/stereo pair, and high-quality coding at 128 Kbits/sec/stereo pair.

AC System Two well-known algorithms for high-quality audio compression are
the AC-2 and AC-3 algorithms, coming from Dolby [34, 290]. They have both stereo
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and five-channel, surround system, versions.

The AC-2 version exploits both the time-domain and frequency-domain psy-
choacoustic models. It uses a time-frequency division scheme, achieving a trade-
off between time and frequency resolutions, on a signal-dependent basis. This is
achieved by selecting the optimal transform block length for each 10ms analysis in-
terval. The filter bank is based again on the cosine-modulated filter bank [229, 228].
This coder operates at a variety of bit rates ranging from 64-192 Kbits/sec/channel.
The 128 Kbits/sec/channel AC-2 version has been selected for use in a new multi-
channel NTSC compression system [34].

As can be seen from the above three examples, filter bank methods had a
substantial impact on audio compression systems. Note that sophisticated time-
frequency analysis is a key component.

7.3 IMAGE COMPRESSION

Multiresolution techniques are most naturally applied to images, where notions
such as resolution and scale are very intuitive. Multiresolution techniques have
been used in computer vision for tasks such as object recognition and motion es-
timation as well as in image compression, with pyramid [41] and subband coding
[111, 314, 337]. An important feature of such image compression techniques is
their successive approximation property: As higher frequencies are added (which
is equivalent to more bands in subband coding or, difference signals in pyramids),
higher-resolution images are obtained. Note that multiresolution successive approx-
imation corresponds to the human visual system which helps the multiresolution
techniques in terms of perceptual quality. Transform coding also has a successive
approximation property (see the discussion on the Karhunen-Loève transform in
Section 7.1.1) and is thus part of this broad class of techniques which are char-
acterized by multiresolution approximations. In short, besides good compression
capabilities, these schemes allow partial decoding of the coded version which lead
to usable subresolution approximations.

We start by discussing the standard image compression schemes, which are based
on block transforms such as the discrete cosine transform (DCT) or overlapping
block transforms such as the lapped orthogonal transform. This leads naturally to
a description of the current image compression standard based on the DCT, called
JPEG [148, 327], indicating some of the constraints of a “real-world” compression
system.

We continue by discussing pyramid coding, which is a very simple but flexi-
ble image coding method. A detailed treatment of subband/wavelet image coding
follows. Several important issues pertaining to the choice of the filters, the decom-
position structure, quantization and compression are discussed and some examples
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are given.
Following these standard coding algorithms, we describe some more recent and

sometimes exploratory compression schemes which use multiresolution as an in-
gredient. These include image compression methods based on wavelet maximums
[184], and a method using adaptive wavelet packets [15, 233]. We also discuss
some recent work on a successive approximation method for image coding using
subband/wavelet trees [259], quantization error analysis in a subband system [331],
joint design of quantization and filtering for subband coding [161], and nonorthog-
onal subband coding [200].

Note that in all experiments, we use the standard image Barbara, with 512×512
pixels and 8-bit gray-scale values (see Figure 7.13). For comparison purposes, we
will use the peak signal-to-noise ratio (SNRp) given by (7.1.3).

7.3.1 Transform and Lapped Transform Coding of Images

We have introduced block transforms in Section 3.4.1, and while they are a par-
ticular case of filter banks (with filter length L equal to the downsampling factor
N), they are usually considered separately. Their importance in practical image
coding applications is such that a detailed treatment is justified. As we mentioned
in audio coding examples, lapped orthogonal transforms are also filter bank expan-
sions since they use modulated filter banks with filters of length typically twice
the downsampling factor, or L = 2N . They have been introduced as an extension
of block transforms in order to solve the problem of blocking in transform coding.
Because of this close relationship between block transforms and lapped transforms,
quantization and entropy coding for both schemes are usually very similar. A text
on transform coding of images is [54], and lapped transform coding is treated in
[188].

Block Transforms Recall that unitary block transforms of size N×N are defined
by N orthonormal basis vectors, that is, the transform matrix T has these basis
vectors as its rows (see Section 3.4.1 and (7.1.4)). For two-dimensional signals, one
usually takes a separable transform which corresponds to the Kronecker product of
T with itself,

T 2D = T ⊗ T .

In other words, this separable transform can be evaluated by taking one-dimensional
transforms along the rows and columns of a block B of an image. This can be
written as:

BT = TB T T ,

where the first product corresponds to transforming the columns, while the second
product computes the transform on rows of the image block. Many transforms have



416 CHAPTER 7

Figure 7.13 Standard image used for the image compression experiments,
called Barbara. The size is 512× 512 pixels and 8 bits/pixel.

been proposed for the coding of images. Besides the DCT given in (7.1.10–7.1.11),
the sine, slant, Hadamard and Haar transform are common candidates, the last
two mainly because of their low computational complexity (only additions and sub-
tractions are involved). All of the transforms have fast, O(N logN) algorithms, as
opposed to the optimal KLT which has O(N2) complexity and is signal dependent.
The performance of the DCT in image compression is sufficiently close to that of
the KLT as well as superior to other transforms so that it has become the standard
transform. Figure 7.14 shows the 8× 8 DCT transform of the original image. Note
the two representations shown. In part (a), we display the transform of each block
of the image, while part (b) has gathered all coefficients of the same frequency into
a block. This latter representation is simply a subband interpretation of the DCT;
for example, the lowest left corner is the output of a filter which takes the average
of 8 × 8 blocks. The similarity of this representation with subband-decomposed
images is obvious. Note that for quantization and entropy coding purposes, the
representation (a) is preferred.

The quantization in the DCT domain is usually scalar and uniform. The lowest
two-dimensional frequency component, called the DC coefficient, is treated with
particular care. According to (7.1.10), it corresponds to the local average of the
block. Mismatches between blocks often lead to the feared blocking effect, that
is, the boundaries between the blocks become visible, a visually annoying artifact.
Because the DC coefficient has the highest energy, a fine scalar quantization leads
to a large entropy. Also, as can be seen in Figure 7.14(b), there is still high correla-
tion among DC coefficients (it resembles the original image). Therefore, predictive
quantization, such as the DPCM, of the DC coefficients is often used to increase
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Figure 7.14 8 × 8 DCT transform of the original image. On the left is the
usual block-by-block representation and on the right is the reordering of the
coefficients so that same frequencies appear together (subband interpretation
of DCT). The lowest frequency is in the lower left corner.

Table 7.3 Example of a quantization matrix
as used in DCT transform coding in JPEG
[148]. The entries are the step sizes for the
quantization of the coefficient (i, j). Note
that the relative step sizes are what is crit-
ical, since the whole matrix can be multi-
plied by an overall scale factor. The lowest
frequency or DC coefficient is in the upper
left corner.

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 194 113 92
49 64 78 87 103 121 120 101
72 92 95 98 121 100 103 99

compression without increasing distortion.

The choice of the quantization steps for the various coefficients of the DCT is
a classic bit-allocation problem, since distortion and rate are additive. However,
perceptual factors are very important and careful experiments lead to quantization
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matrices which take into account the visibility of errors (besides the variance and en-
tropy of the coefficients). While this has the flavor of a weighted MSE bit-allocation
method, it relies heavily on experimental results. An example quantization matrix,
showing the quantizer step sizes used for various DCT coefficients in JPEG, is given
in Table 7.3 [148]. What is particularly important is the relative size of the steps,
because within a certain range one can scale this quantization matrix, that is, mul-
tiply all step sizes by a scale factor greater or smaller than one in order to reduce
or increase the bit rate, respectively. This scale factor is very useful for adaptive
quantization, where the bit allocation is made between blocks which have various
energy levels. Then, one can think of this scale factor as a “super” quantizer step
and the goal is to choose the sequence of scale factors that will minimize the total
distortion given a certain budget. Each block has its rate-distortion function and
thus, the scale factors can be chosen according to the constant-slope rule described
in Section 7.1.2. Sometimes, scale factors are fixed for a number of blocks (called
macro-block) in order to reduce the overhead.

Of course, bit allocation is done by taking entropy coding into account, which
we describe next. As in subband coding, higher frequency coefficients have lower
energy and thus have high probability to be zero after quantization. In particular,
the conditional probability of a high-frequency coefficient to be zero, given that its
predecessors are zero, is close to one. Therefore, there will be runs of zeros, in par-
ticular up to the terminal coefficient. To take better advantage of this phenomenon
in a two-dimensional transform, an ordering of the coefficients called zig-zag scan-
ning is used (see Figure 7.15(a)). Very often, a long stretch of zeros terminates
the sequence (see Figure 7.15(b)) and then an “end of block” (EOB) can be sent
instead. The nonzero values and the run lengths are entropy coded (typically using
Huffman or arithmetic codes).

Note that DCT coding is used not only on images, but also in video cod-
ing. While the same principles are used, specific quantization and entropy coding
schemes have to be developed, as will be seen in Section 7.4.2.

The coding of color images is performed on a component-by-component basis,
that is, after transformation into an appropriate color space such as the luminance
and two chrominance components. The components are coded individually with a
lesser weighting of the errors in the chrominance components.

Overlapping Block Transforms Lapped orthogonal transforms (see also Sec-
tion 3.4.1) were developed specifically to solve the blocking problem inherent to
block transforms. Rather than having a hard transition from one block to the next,
they smooth out the boundary with an overlapping window [44, 188, 189].

For image coding applications, the LOT basis functions are designed so as to
resemble the DCT basis functions and thus, the behavior of lapped orthogonal
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Fig. 7.14 figref. 7.4.3Figure 7.15 Zig-zag scanning of 8 × 8 DCT coefficients. (a) Ordering of
the coefficients. DC stands for the average or constant component, while AC
stands for the higher frequencies. (b) Typical sequence of quantized and zig-zag
scanned DCT coefficients.

transform coefficients is very similar to that of DCT coefficients. That is, the
DCT quantization and entropy coding strategies will work well in LOT encoding
of images as well.

While it is true that blocking effects are reduced in LOT compressed images,
other artifacts tend to appear, such as increased ringing around edges due to longer
basis functions. Because the blocking effect with the LOT is reduced, one can use
more channels, that is, larger blocks, (16 × 16), and achieve better compression.

The LOT represents an elegant extension of the DCT, however, it has not yet
been successful in dislodging it. One of the reasons is that the improvements are
not sufficient to justify the increase in complexity. While the LOT has a fast,
O(N logN) algorithm, the structure is more involved since blocks now interact
with neighbors. While this small increase in complexity is not much of a problem
in software, it has made LOT’s less attractive in VLSI implementations so far.

Example: JPEG Image Coding Standard To describe a transform coding ex-
ample, we will discuss the JPEG industry standard [148, 327]. While it is not the
most sophisticated transform coder, its simplicity and good performance (for the
type of imagery and bit rate it has been designed for) made it very popular. The
availability of special purpose hardware implementing JPEG at high rates (such as
30 frames per second) has further imposed this standard both in still image and in
intraframe video compression (see the next section).

An important point is that the JPEG image compression standard specifies only
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the decoder, thus allowing for possible improvements of the encoder. The JPEG
standard comprises several options or modes of operation [327]:

(a) Sequential encoding: block-by-block encoding in scan order.

(b) Progressive encoding: geared at progressive transmission, or successive ap-
proximation. To achieve higher-resolution pictures, it uses either more and
more DCT coefficients, or more and more bits/coefficient.

(c) Hierarchical encoding: a lower-resolution image is encoded first, upsampled
and interpolated to predict the full resolution and the difference or prediction
error is encoded with one of the other JPEG versions. This is really a pyrami-
dal coder as will be seen in Section 7.3.2 which uses JPEG on the difference
signal.

(d) Lossless encoding: this mode actually does not use the DCT, but predictive
encoding based on a causal neighborhood of three samples.

We will only discuss the sequential encoding mode in its simplest version which
is called the baseline JPEG coder. It uses a size 8 × 8 DCT, which was found to
be a good compromise between coding efficiency (large blocks) and avoidance of
blocking effects (small blocks). This holds true for the typical imagery and bit
rates for which JPEG is designed, such as the 512× 512 Barbara image compressed
to 0.5 bits/pixel. Note that other types of imagery might use other DCT sizes.

The input is assumed to be 8 bits (typical for regular images) or 12 bits (typical
for medical images). Colors are separately treated. After the DCT transform, the
quantization uses a carefully designed set of uniform quantizers. Their step sizes
are stored in a quantization table, where each entry is an integer belonging to the
set {1, . . . , 255}. An example was shown in Table 7.3. Quantization is performed
by rounding the DCT coefficient divided by the step size to the nearest integer. At
the decoder, this rounded value is simply multiplied by the step size. Note that the
quantization tables are based on visual experiments, but since they can be specified
by the user, they are not part of the standard.

Zig-zag scanning follows quantization and finally entropy coding is performed.
First, the DC coefficient (the average of 64 samples) is differentially encoded, that
is, ∆l = DCl − DCl−1 is entropy coded. This removes some of the correlation
left between DC coefficients of adjacent blocks. Then, the sequences of remaining
DCT coefficients is entropy coded. Because of the high probability of stretches
of consecutive zeros, run-length coding is used. A symbol pair (L,A) specifies the
length of the run (0 to 15) and the amplitude range (number of bits, 0, . . . , 10) of the
following nonzero value. Then follows the nonzero value (which has the previously
specified number of bits). For example, (15, 7) would mean that we have 15 zeros
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Fig. 7.15 figref. 7.4.4Figure 7.16 Transform coding following the JPEG standard. The encoder is
shown. The decoder performs entropy decoding, inverse quantization and an
inverse DCT (after [327]).

followed by a number requiring seven bits.
Runs longer than 15 samples simply use a value A equal to zero, signifying con-

tinuation of the run, and the pair (0, 0) stands for end of block (no more nonzero
values in this block). Finally, the pairs (L,A) are Huffman coded with a table spec-
ified by the user (default tables are suggested, but can be replaced). The nonzero
values following a run of zeros are now so-called variable-length integers specified
by the preceding value A. These are not Huffman coded because of insufficient gain
in view of the complexity.

The decoder now operates as follows: Based on the Huffman coding table,
it entropy decodes the incoming bit stream, and using the quantization table, it
“dequantizes” the transform domain values. Finally, an inverse DCT is applied to
reconstruct the image.

Figure 7.16 schematically shows a JPEG encoder. An example of the Barbara
image coded with the baseline JPEG algorithm is shown in Figure 7.17 at the rate
of 0.5 bits/pixel and SNRp = 28.26 dB.

7.3.2 Pyramid Coding of Images

A simple, yet powerful image representation scheme for image compression is the
pyramid scheme of Burt and Adelson [41] (see Section 3.5.2). From an original
image, derive a coarse approximation, for example, by lowpass filtering and down-
sampling. Based on this coarse version, predict the original (by upsampling and
filtering) and calculate the difference as the prediction error. Instead of the original
image, one can compress the coarse version and the prediction error. If the predic-
tion is good (which will be the case for most natural images which have a lowpass
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Figure 7.17 Example of a transform-coded Barbara using the JPEG standard.
The image has 512× 512 pixels, the target rate is 0.5 bits/pixel and SNRp =
28.26 dB.
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Figure 7.18 One-step pyramid coding. Both encoding and decoding are shown.
Note that only the quantization of the difference signal contributes to the
reconstruction error. D stands for deriving a coarse version, and I stands for
interpolation.

characteristic), the error will have a small variance and can thus be well compressed.
Of course, the process can be iterated on the coarse version. Figure 7.18 shows such
a pyramid scheme. Note how perfect reconstruction, in absence of quantization of
the difference signal, is simply obtained by adding back at the decoder the predic-
tion which was subtracted at the encoder.
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Figure 7.19 Quantization noise feedback in a two-step pyramid. Only the
encoder is shown. Note that a decoder is part of the encoder in order to make
predictions based on quantized versions only.

Quantization Noise Refer to Figure 7.18. Because the prediction xp is based on
the quantized coarse version x̂c (rather than xc itself), the only source of quanti-
zation error in the reconstructed signal is the one due to the quantizer Qd. Since
x̂d = xd + ed where ed is the error due to the quantizer Qd, we find that

x̂ = x̂d + xp = xd + ed + xp = x+ ed,

where we used the fact that x = xd + xp in a pyramid coder. This is important
if one is interested in the maximum error introduced by coding. In the pyramid
case, it will simply be the maximum error of the quantizer Qd (typically half the
largest quantization interval). The property holds also for multilevel pyramids if
one uses quantization error feedback [303]. As can be seen from Figure 7.19, the
trick is to use only quantized coarse versions in the prediction of a finer version.
Thus, the same prediction can be obtained in the decoder as well and the source
of quantization noise can be limited to the last quantizer Qd0 . Note that quantizer
error feedback requires the reconstruction of x̂c1 in the encoder, and is thus more
complex than an encoder without feedback and adds encoding delay.

Decimation and Interpolation Operators In Figures 7.18 and 7.19, we used
boxes labeled D and I to denote operators that derive the coarse version and inter-
polate the fine version, respectively. While these operators are often linear filters,
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as in the original Burt and Adelson scheme [41], nothing prohibits the use of non-
linear operators [9]. While such generalized operators have not been often used so
far, they represent a real potential for pyramid coding. For example, sophisticated
methods based on edges could be used to get very rough coarse versions, as long as
the prediction reduces the variance of the difference signal sufficiently.

Another attractive feature of this freedom in choosing the operators is that
visually pleasing coarse versions are easy to obtain. This is because the filters used
for decimation and interpolation, unlike in the subband case, are unconstrained.
Typically, zero-phase FIR filters are used where medium lengths already achieve
good lowpass behavior and visually good looking coarse versions.

Oversampling A drawback of pyramid coding is the implicit oversampling. As-
sume we start with an N ×N image. After one step, we have an N/2×N/2 coarse
version, but also an N ×N difference image. If the scheme is iterated we have the
following number of samples:

N2(1 +
1

4
+

1

42
+ · · ·) ≤ 4

3
N2,

as was given in (3.5.4). This oversampling of up to 33% has often been considered
as a drawback of pyramid coding (in one dimension, the overhead is 100% and thus
a real problem). However, it does not prohibit efficient coding a priori and the
other attractive features such as the control of quantization noise, quality of coarse
pictures, and robustness counterbalance the oversampling problem.

Bit Allocation The problem of allocating bits to the various quantizers is tricky in
pyramid coders, especially when quantization noise feedback is present. The reason
is that the independence assumption used in the optimal bit allocation algorithm
derived in Section 7.1.2 does not hold. Consider Figure 7.18 and assume a choice
of quantizers for Qc and Qd. Because the choice for Qc influences the prediction
xp and thus the variable to be quantized xd, there is no independence between the
choices for Qc and Qd. For example, increasing the step size of Qc not only increases
the distortion of x̂c, but also of x̂d (since its variance will probably increase). Thus,
in the worst case, one might have to search all possible pairs of quantizers for xc
and xd and find the best performing pair given a certain bit budget. It is clear that
this search grows exponentially as the number of levels increases, since we have K l

possible l-tuples of quantizers, where K is the number of quantizers at every level
and l is the number of levels. Even if quantization error feedback is not used, there
is a complication because the total error squared is not the sum of the errors ec and
ed squared (see (7.1.16)), since the pyramid decomposition is not unitary (unless
an ideal lowpass filter is assumed). A discussion of dependent quantization and its
application to pyramid coding can be found in [232].
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7.3.3 Subband and Wavelet Coding of Images

The generalization of subband decomposition to multiple dimensions is straight-
forward, especially in the separable case [314]. The application to compression of
images has become popular [1, 111, 265, 330, 332, 335, 337]. The nonseparable
multidimensional case, using quincunx [314] or hexagonal downsampling [264], as
well as directional decompositions [19, 287], has also found applications in image
compression. Recently, using filters specifically designed for regularity, methods
closely related to subband coding have been proposed under the name of wavelet
coding [14, 79, 81, 101, 176, 244, 260, 341]. The main difference with pyramid
coding, discussed in Section 7.3.2, is that we have a critically sampled scheme and
often an orthogonal decomposition. The price paid is more constrained filters in
the decomposition, which leads to poorer coarse resolution pictures in general. In
what follows, we discuss various forms of subband and wavelet compression schemes
tailored to images.

Separable Decompositions We will call separable decompositions those which
use separable downsampling. Usually, they also use separable filters (but this is not
necessary). When both downsampling and filters are separable, the implementation
is very efficient since it can be done on rows and columns separately, at least at
each stage of the decomposition.

While being constrained, separable systems are often favored because of their
computational efficiency with separable filters, since size-N ×N filters lead to or-
der N rather than N2 operations/input sample (see Section 6.2.4). Conceptually,
separable systems are also much easier to implement since they are cascades of
one-dimensional systems. However, from the fact that the two-dimensional filters
are products of one-dimensional filters, it is clear that only rectangular pieces of
the spectrum can be isolated.

Nonseparable Decompositions Recall that coding gain in subband coding was
maximized when the variances in the channels were as different as possible (see
Section 7.1.2). If one assumes that images have a power spectrum that is roughly
rotationally-invariant and decreases with higher frequencies, then it is clear that
separable systems are not best suited for isolating a lowpass channel containing
most energy and having highpass channels with low energy. A better solution is
found by opting for nonseparable systems. The two most important systems for
image processing are based on the quincunx [314] and hexagonal downsamplings
[264], for two- and four-channel subband coding systems, respectively. Quincunx
and hexagonal sublattices of Z2 are shown in Figure 7.20, together with the more
conventional separable sublattice. They correspond to integer linear combinations
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Figure 7.20 Sublattices of Z2 and shapes of possible ideal lowpass filters (cor-
responding to the Voronoi cell of the dual lattice, which is indicated as well).
(a) Separable sublattice DS . (b) Quincunx DQ. (b) Hexagonal DH .

of the columns of the following matrices6:

DS =

(
2 0
0 2

)

, DQ =

(
2 1
0 1

)

, DH =

(
2 1
0 2

)

,

where the sampling density is reduced by a factor of four for the separable sampling,
two for the quincunx sampling (see also Appendix 3.B) and by a factor of four
for the hexagonal sampling. The repeated spectrums in Fourier domain due to
downsampling appear on the dual lattice, which is given by the transposed inverse
of the lattice matrix. Also shown in Figure 7.20 are possible ideal lowpass filters that
will avoid aliasing when downsampling to these sublattices. If, as we said, images
have circularly symmetric power spectrums that decrease with higher frequencies,
then the quincunx lowpass filter will retain more of the original signal’s energy than
a separable lowpass filter (which would be one-dimensional since the downsampling
is by two). Using the same argument, the hexagonal lowpass filter is then better
than the corresponding lowpass filter in a separable system with downsampling by
two in each dimension. Thus, these nonseparable systems, while being more difficult
to design and more complex to implement, represent a better match to usual image
spectrums.

Furthermore, the simple quincunx case has the following perceptual advantage:
The human visual system is more accurate in horizontal and vertical high frequen-
cies than along diagonals. The lowpass filter in Figure 7.20(b) conserves horizontal

6Recall from Appendix 3.B, that a given sampling lattice may have infinitely many matrix
representations.
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Figure 7.21 Frequency decomposition of iterated quincunx scheme.

and vertical frequencies, while it cuts off diagonals to half of their original range.
This is a good match to the human eye and often, the highpass channel (which is
complementary to the lowpass channel) can be disregarded altogether. That is, a
compression by a factor of two can be achieved with no visible degradation. Such
preprocessing has been used in intraframe coding of HDTV [12]. The above quin-
cunx scheme is often iterated on the lowpass channel, leading to a frequency decom-
position as shown in Figure 7.21. This actually corresponds to a two-dimensional
nonseparable wavelet decomposition [163] and has been used for image compression
[14].

The hexagonal system, besides having a fairly good approximation to a circu-
larly symmetric lowpass, has three directional channels which can be used to detect
directional edges [264]. However, the goal of an isotropic analysis is only approx-
imated, since the horizontal and vertical directions are not treated in the same
manner (see Figure 7.20(c)). Therefore, it is not clear if the added complexity of a
nonseparable four-channel system based on the hexagonal sublattice is justified for
coding purposes.

Choice of Filters Unlike in audio compression, the filters for image subband cod-
ing do not need high out-of-band rejection. Instead, a number of other constraints
have to be satisfied.

Linear phase In regular image filtering, the need for linear phase is well-known since
without linear phase, the phase distortion around edges is very visible. Therefore,
the use of linear phase filters in subband coding has been often advocated [14].
Recall from Section 3.2.4, that in two-band FIR systems, linear phase and orthog-
onality are mutually exclusive and this carries over to four-band separable systems
which are most often used in practice.

However, the case for linear phase is not as obvious as it seems at first sight.
For example, in the absence of quantization, the phase of the filters has no bearing
since the system has perfect reconstruction. This argument carries over for fine
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quantization as well. In the case of coarse quantization, the situation is more
complex. One scenario is to consider the highpass channel as being set to zero.
Look at the two impulse responses of this system. Nonlinear phase systems lead to
nonsymmetric responses, but so do some of the linear phase systems. Only if the
filters meet additional constraints do the two impulse responses remain symmetric.
Note also, that for computational purposes, linear phase is more convenient because
of the symmetry of the filters.

Note that orthogonal FIR filters of sufficient length can be made almost linear
phase by appropriate factorization of their autocorrelation function. Also, there
are nonseparable orthogonal filters with linear phase. Finally, by resorting the IIR
filters, one can have both linear phase and orthogonality, and such noncausal IIR
filters can be used in image processing without problems since we are dealing with
finite-length input signals.

Orthogonality Orthogonal filters implement a unitary transform between the input
and the subbands. The usual features of unitary transforms hold, such as con-
servation of energy. In particular, the total distortion is the sum of the subband
distortions, or:

D =
∑

i

Di, (7.3.1)

and the total bit rate is the sum of all the subband’s bit rates. Therefore, optimal
bit-allocation algorithms which assume additivity of bit rate and distortion can be
used (see Section 7.1.2). In the nonorthogonal case, (7.3.1) does not hold, and thus,
these bit allocation algorithms cannot be used directly. It should be noted that well
designed linear phase FIR filter banks (that is, with good out-of-band rejection) are
often close to being orthogonal and thus satisfy (7.3.1) approximately.

Filter size Good out-of-band rejection or high regularity require long filters. Be-
sides their computational complexity, long filters are usually avoided because they
tend to spread coding errors. For example, sharp edges introduce distortions be-
cause high-frequency channels are coarsely quantized. If the filters are long (and
usually their impulse response has several sign changes), this causes an annoying
artifact known as ringing around edges. Therefore, filters used in audio subband
compression, such as length-32 filters, are too long for image compression. Instead,
shorter “smooth” filters are preferred. Sometimes both their impulse and their step
response are considered from a perceptual point of view [167]. The step response
is important since edges in images will generate step responses at least in some
of the channels. Highly oscillating step responses will require more bits to code,
and coarse quantization will produce oscillations which are related to the step re-
sponse. As can already be seen from this short discussion, there is an intertwining
between the choice of filters and the type of quantization that follows. However,
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it is clear that the frequency-domain criterions used in audio (sharp cut-off, strong
out-of-band rejection) have little meaning in the image compression context, where
time-domain arguments such as ringing, are more important.

Regularity An orthogonal filter with a certain number of zeros at the aliasing fre-
quency (π in the two-channel case) is called regular if its iteration tends to a con-
tinuous function (see Section 4.4). The importance of this property for coding is
potentially twofold when the decomposition is iterated. First, the presence of many
zeroes at the aliasing frequency can improve the coding gain and second, compres-
sion artifacts might be less objectionable. To investigate the first effect, Rioul [243]
compared the compression gain for filters of varying regularity used in a wavelet
coder, or octave-band subband coder, with four stages. The experiment included
bit allocation, quantization, and entropy coding and is thus quite realistic. The
results are quite interesting: Some regularity is desired (the performance with no
regularity is poor) and higher regularity improves compression further (but not
substantially).

As for the compression artifacts, the following argument shows that the filters
should be regular when an octave-band decomposition is used: Assume a single
quantization error in the lowpass channel. This will add an error to the recon-
structed signal which depends only on the equivalent — iterated lowpass filter. If
the iterated filter is smooth, this will be less noticeable than if it is a highly irregular
function (even though both contribute the same MSE). Note also that the lowest
band is upsampled 2i−1 times (where i is the number of iterations) and thus, the
iterated filter’s impulse response is shifted by large steps, making irregular patterns
in the impulse response more visible.

In the case of biorthogonal systems such as linear phase FIR filter banks, one is
often faced with the case where either the analysis or the synthesis is regular, but
not both. In that case, it is preferable to use the regular filter at the synthesis, by
the same argument as above. Visually, an irregular analysis is less noticeable than
an irregular synthesis, as can be verified experimentally.

When the decomposition is not iterated, regularity is of little concern. A typical
example is the lapped orthogonal transform, that is, a multi-channel filter bank
which is applied only once.

Frequency selectivity What is probably the major criterion in audio subband filter
design is of much less concern in image compression. Aliasing, which is a major
problem in audio, is much less disturbing in images [331]. The desire for short filters
limits the frequency selectivity as well. One advantage of frequency selectivity is
that perceptual weighting of errors is easier, since errors will be confined to the
band where they occur.
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In conclusion, subband image coding requires relatively short and smooth filters,
with some regularity if the decomposition is iterated.

Quantization of the Subbands There are basically two ways to approach quan-
tization of a subband-decomposed image: Either the subbands are quantized inde-
pendently of each other, or dependencies are taken into account.

Independent quantization of the subbands While the subbands are only independent
if the input is a Gaussian random variable and the filters decorrelate the bands, the
independence assumption is often made because it makes the system much simpler.
Different tree structures will produce subbands with different behaviors, but the
following facts usually hold:

(a) The lowest band, being a lowpass and downsampled version of the original,
has a behavior much like the original image. That is, traditional quantization
methods used for images can be applied here as well, such as DPCM [337] or
even transform coding [174, 285].

(b) The highest bands have negligible energy and can usually be discarded with
no noticeable loss in visual quality.

(c) Except along edges, little correlation remains within higher bands. Because of
the directional filtering, the edges are confined to certain directions in a given
subband. Also, the probability density function of the pixel values peaks
in zero and falls off very rapidly. While it is often modeled as a Laplacian
distribution, it is actually falling off more rapidly. It is more adequately fitted
with a generalized Gaussian pdf with faster decay than the Laplacian pdf [329].

Besides the lowband compression, which uses known image coding methods, the
bulk of the compression is obtained by appropriate quantization of the high bands.
The following quantizers are typically used:

(a) Lloyd quantizers fitted to the distribution of the particular band to be quan-
tized. Tables of such Lloyd quantizers for generalized Gaussian pdf’s and
decay values of interest for image subbands can be found in [329].

(b) Uniform quantizers with a so-called dead zone which maps a region around the
origin to zero (typically of twice the step size used elsewhere). Such dead zone
quantizers have proven useful because they increase compression substantially
with little loss of visual quality, since they tend to eliminate what is essentially
noise in the subbands [111].
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Because entropy coding is used after quantization, uniform quantizers are nearly
optimal [285]. Thus, since uniform quantizers are much easier to implement than
Lloyd quantizers, the former are usually chosen, unless the variable rate associated
with entropy codes has to be avoided. Note that vector quantization could be used
in the subbands, but its complexity is usually not worthwhile since there is little
dependence between pixels anyway.

An important consideration is the relative perceptual importance of various
subbands. This leads to a weighting of the MSE in various subbands. This weighting
function can be derived through perceptual experiments by finding the level of “just
noticeable noise” in various bands [252]. As expected, high bands tolerate more
noise because the human visual system becomes less sensitive at high frequencies.
Note that more sophisticated models would include masking as well.

Quantization across the bands Looking at subband decomposed images, it is clear
that the bands are not independent. A typical example is the representation of a
vertical edge. It will be visible in the lowpass image and appears in every band
that contains horizontal highpass filtering. It has thus been suggested to use vector
quantization across the bands instead of in the bands [329, 332]. While there is
some gain in doing so, there is also the following problem: Because the subbands are
downsampled versions of the original, we have a shift-variant system. Thus, small
shifts can produce changes in the subband signals which reduce the correlation.
That is, while visually the edge is “preserved”, the exact values in the various
bands depend strongly on the location and are thus difficult to predict from band
to band. In Section 7.3.4, we will see schemes which, by using an approach that
does not rely on vector quantization but simply on local energy, can make use of
some dependence between bands.

It should be noted that the straightforward vector quantization across bands
is easiest when equal-size subbands are used. In the case of an octave-band de-
composition, the vector should use pixels at each level that correspond to the same
region of the original signal. That is, the number of pixels should be inversely pro-
portional to scale. The comparison of vector quantization for equally-spaced bands
and octave-spaced bands is shown in Figure 7.22 for the one-dimensional case for
simplicity.

Bit Allocation For bit allocation between the bands, one can directly use the
procedures developed in Section 7.1.2, at least if the filters are orthogonal. Then,
the total distortion is the sum of the subbands distortions, and the total rate is the
sum of rates for the various bands. In the nonorthogonal case, the distortion is not
additive, but can be approximated as such.

The typical allocation problem is the following: For each channel i, one has a
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Figure 7.22 Vector quantization across the bands in subband decomposition.
(a) Uniform decomposition. (b) Octave-band, or, wavelet decomposition. Note
that the number of samples in the various bands corresponds to a fixed region
of the input signal.

choice from a set of quantizers {qi,j}. Choosing a given quantizer qi,j will produce a
distortion di,j and a rate ri,j for channel i (one can use weighted distortion as well).
The problem is to find which combination of quantizers in the various channels will
produce the minimum squared error while satisfying the budget constraint. The
optimal solution is found using the constant-slope solution as described in Section
7.1.2. The pairs (di,j , ri,j), that is, the operational rate-distortion curves can be
measured over a set of representative images and then used as a fixed allocation.
The problem is that, when applied to a particular image, the budget might not
be met. On the other hand, given an image to be coded, one can measure the
operational rate-distortion curves and use the constant-slope allocation procedure.
This will guarantee an optimal solution, but is computationally expensive. Finally,
one can use allocations based on probability density functions, in which case it is
often sufficient to measure the variance of a particular channel in order to find its
allocation (see (7.1.19) for example). Note that the rates used in the allocation
procedure are after entropy coding.

Entropy Coding Substantial reductions in rate, especially in the case of uniform
quantizers, is obtained by entropy coding quantized samples or groups of samples.
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Figure 7.23 Uniform subband decomposition of an image into 16 subbands.
The spectral decomposition and ordering of the channels is shown. The first
two letters correspond to horizontal filtering and the last two to vertical fil-
tering. LH, for example, means that a lowpass is used in the first stage and
a highpass in the second. The ordering is such that frequencies increase from
left to right and from bottom to top.

Table 7.4 Variances in the various bands of
a uniform decomposition (defined as in Fig-
ure 7.23).

LL LH HH HL

HL 0.58959 0.86237 1.77899 0.88081
HH 2.87483 6.71625 8.56729 3.25402
LH 23.5474 33.4055 60.9195 14.8490
LL 2711.45 56.0058 52.5202 13.9685

Any of the techniques discussed in Section 7.1.3 can be used, such as Huffman
coding. Since Huffman codes are only within one bit of the true entropy [109], they
tend to be inefficient for small alphabets. Thus, codewords from small alphabets
are gathered into groups and vector Huffman coded (see [285]). Another option is to
use vector quantization to group samples [256]. Because higher bands tend to have
large amounts of zeros (especially after deadzone quantizers), run-length coding
and an end of block symbol can be used to increase compression substantially.

Examples Two typical coding examples will be described in some detail. The first
is a uniform separable decomposition. The second is an octave-band or constant
relative bandwidth decomposition (often called a wavelet decomposition).

Uniform decomposition By using a separable decomposition into four bands and
iterating it once, we obtain 16 subbands as shown in Figure 7.23. The resulting
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Figure 7.24 Uniform subband decomposition of the Barbara image. The or-
dering of the subbands is given in Figure 7.23.

Table 7.5 Step sizes for the quantiz-
ers in the various bands (as defined in
Figure 7.23), for a target rate of 0.5
bits/pixel. The lowest band was JPEG
coded, and the step size corresponds to
the quality factor (QF) used in JPEG.

LL LH HH HL

HL 9.348 8.246 8.657 22.318
HH 8.400 10.161 8.887 13.243
LH 6.552 7.171 10.805 16.512
LL QF-89 8.673 11.209 15.846

subband images are shown in Figure 7.24. The filters used are linear phase length-
12 QMF’s [144] and the image was symmetrically extended before filtering. The
variances of the samples in the bands are shown in Table 7.4. We code the lowest
subband (LL,LL) with JPEG (see Section 7.3.1). For all other bands, we use
uniform quantization with a dead zone of twice the step size used elsewhere. Using
a set of step sizes, one can derive rate-distortion curves by measuring the entropy
of the resulting quantized channels. A true operational rate-distortion curve would
have to include run-length coding and actual entropy coding. Based on these rate-
distortion curves, one can perform an optimal constant-slope bit allocation, that
is, one can choose the optimal quantizer step sizes for the various bands. The step
sizes for a budget of 0.5 bits/pixel are listed in Table 7.5. A set of Huffman codes
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Figure 7.25 Octave-band or wavelet decomposition of an image into unequal
subbands. The spectral decomposition and ordering of the channels is shown.

Figure 7.26 Subband images corresponding to the spectral decomposition
shown in Figure 7.25.

and run-length codes are designed for each subband channel. Note that the special
symbol “start of run” (SR) is entropy coded as any other nonzero pixel. Altogether,
one obtains the final rate of 0.497 bits/pixel (the difference in rate comes from the
fact that bit allocation was based on entropy measures). Then, the coded image
has SNRp of 30.38 dB. Figure 7.27 (top row) shows the compressed Barbara image
and a detail at the same rate.

Octave-band decomposition Instead of uniformly decomposing the spectrum of the
image, we iterate a separable four-band decomposition three times. The resulting
split of the spectrum is shown in Figure 7.25, together with the subband images
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Figure 7.27 Compression results on Barbara image. Top left: Subband coding
in 16 uniform bands at 0.4969 bits/pixel and SNRp = 30.38 dB. Top right:
Detail of top left. Bottom left: Octave-band or wavelet compression at 0.4990
bits/pixel and SNRp = 29.21 dB. Bottom right: Detail of bottom left.

in Figure 7.26. Here, we used the Daubechies’ maximally flat orthogonal filters
of length 8. At the boundaries, we used periodic extension. The variances in the
bands are shown in Table 7.6. Histograms of pixel values of the bands are similar
to the ones in a uniform decomposition. Because the lowest band (LLL, LLL) is
small enough (64×64 pixels), we use scalar quantization on it as on all other bands.
Again, uniform quantizers with double-sized dead zone are used and rate-distortion
curves are derived for bit-allocation purposes. The resulting step sizes for the target
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Table 7.6 Variances in the different
bands of an octave-band decomposi-
tion (defined as in Figure 7.25).

Band Variance

LLL,LLL 2559.8
LLH,LLL 60.7
LLL,LLH 43.8
LLH,LLH 21.2
LH,LL 55.4
LL,LH 24.5
LH,LH 33.7
H,L 141.4
L,H 15.2
H,H 16.2

Table 7.7 Step sizes for uniform quan-
tizer in the octave subband or wave-
let decomposition of Figure 7.25, for a
target rate of 0.5 bits/pixel.

Band Step size

LLL,LLL 5.21
LLH,LLL 3.69
LLL,LLH 4.42
LLH,LLH 4.08
LH,LL 8.42
LL,LH 9.22
LH,LH 7.45
H,L 17.23
L,H 22.05
H,H 21.57

bit rate of 0.5 bits/pixel are given in Table 7.7.

The development of entropy coding (including run-length coding for higher
bands) is similar to the uniform-decomposition case discussed earlier. The final
rate is 0.499 bits/pixel, with SNRp of 29.21 dB. The coded image and a detail are
shown in Figure 7.27 (bottom row). Note that there is little difference between the
uniform and the octave-band decomposition results.

We would like to emphasize that the above examples are “textbook examples”
for illustration purposes. For example, no statistics over large sets of images were
taken and thus, the entropy coders might perform poorly for a substantially different
image. The aim was more to demonstrate the ingredients used in a subband/wavelet
image coder.

State of the art coders, which can be found in the current literature, improve
substantially the results shown here. Major differences with respect to the simple
coders we discussed so far are the following:

(a) Vector quantization can be used in the subbands, such as lattice vector quan-
tization [13].

(b) Adaptive entropy coding is used to achieve immunity to changes in image statis-
tics.

(c) Adaptive quantization in the subbands can take care of busy versus nonbusy
regions.

(d) Dependencies across scales, either by vector quantization or prediction of
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Fig. 7.26 figref. 7.4.15

Figure 7.28 Zero-tree structure on an octave-band decomposed image. Three
possible trees in different bands are shown.

structures across scales, are used to reduce the bit rate [176, 222, 259].

(e) Perceptual tuning using band sensitivity, background luminance level and mask-
ing of noise due to high activity can improve the visual quality [252].

The last point — perceptual models for subband compression, is where most gain
can be obtained.

With these various fine tunings, good image quality for a compressed version
of a 512× 512 original image such as Barbara can be obtained in the range of 0.25
to 0.5 bits/pixel. Note that the complexity level is still of the same order as the
coders we presented and is comparable in order of magnitude to a DCT coder such
as JPEG.

7.3.4 Advanced Methods in Subband and Wavelet Compression

The discussion so far has focused on standard methods. Below, we describe some
more recent algorithms which are both of theoretical and practical interest.

Zero-Tree Based Compression From looking at subband pictures such as those
in Figures 7.24 or 7.26, it is clear that there are some dependencies left among
the bands, as well as within the bands. Also, for natural images with decaying
spectrums, it is unlikely to find significant high-frequency energy if there is little
low-frequency energy in the same spatial location. These observations lead to the
development of an entropy coding method specifically tailored to octave-band or
wavelet coding. It is based on a data structure called a zero tree [176, 260], which
is the analogous to zig-zag scanning and the end of block (EOB) symbol used in
the DCT.
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The idea is to define a tree of zero symbols which starts at a root which is also
zero. Therefore, this root can be labeled as an “end of block”. A few such zero
trees are shown in Figure 7.28. Because the tree grows as powers of four, a zero
tree allows us to disregard many insignificant symbols at once. Note also that a
zero tree gathers coefficients that correspond to the same spatial location in the
original image.

Zero trees have been combined with bit plane coding in an elegant and efficient
compression algorithm due to Shapiro [260, 259]. It incorporates nicely many of
the key ideas presented in this section and demonstrates the effectiveness of wavelet
based coding. The resulting algorithm is called embedded zero-tree wavelet (EZW)
algorithm. Embedded means that the encoder can stop encoding at any desired
target rate. Similarly, the decoder can stop decoding at any point resulting in the
image that would have been produced at the rate of the truncated bit stream. This
compression method produces excellent results without requiring a priori knowledge
of the image source, without prestored tables of codebooks, and without training.

The EZW algorithm uses the discrete-time wavelet transform decomposition
where at each level i the lowest band is split into four more bands: LLi+1, LHi+1,
HLi+1, and HHi+1. In simulations in [260], six levels are used with length-9 sym-
metric filters given in [1].

The second important ingredient is that the absence of significance across scales
is predicted by exploiting self-similarity inherent in images. A coefficient x is called
insignificant with respect to a given threshold T , if |x| < T . The assumption is that
if x is insignificant, then all of its descendents of the same orientation in the same
spatial location at all finer scales are insignificant as well. We call a coefficient at
a coarse scale a parent. All coefficients at the next finer scale at the same spatial
location and of similar orientation are children. All coefficients at all finer scales
at the same spatial location and of similar orientation are descendents. Although
there exist counterexamples to the above assumption, it holds true most of the
time. Then, one can make use of it, and code such a parent as a zero-tree root
(ZTR), thereby avoiding to code all its descendants. When the assumption is not
true, that is, the parent is insignificant but down the tree, there exists a significant
descendant, then such a parent will be coded as an isolated zero (IZ). To code the
coefficients, Shapiro uses four symbols, ZTR, IZ, POS for a positive significant
coefficient, and NEG for a negative significant one. In the highest bands which
do not have any children, IZ and ZTR are merged into a zero symbol (Z). The
order in which the coefficients are scanned is of importance as well. It is performed
so that no child is scanned before its parent. Thus, one scans bands LLN , HLN ,
LHN , HHN , and moves on to the scale (N−1) scanning HLN−1, LHN−1, HHN−1,
until reaching the starting scale HL1, LH1, HH1. This scanning pattern orders the
coefficients in the order of importance, allowing for embedding.
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Table 7.8 An example of a 3-level
discrete-time wavelet transform of an
8× 8 image.

5 11 5 6 0 3 -4 4
2 -3 6 -4 3 6 3 6
3 0 -3 2 3 -2 0 4
-5 9 -1 47 4 6 -2 2
9 -7 -14 8 4 -2 3 2
15 14 3 -12 5 -7 3 9
-31 23 14 -13 3 4 6 -1
63 -34 49 10 7 13 -12 7

The next step is successive approximation quantization. It entails keeping at
all times two lists: the dominant list and the subordinate list. The dominant list
contains the coordinates of those coefficients that have not yet been found to be
significant. The subordinate list contains the magnitudes of those coefficients that
have been found to be significant. The process is as follows: We decide on the initial
threshold T0, (for example, it could be half of the positive range of the coefficients)
and start with the dominant pass where we evaluate each coefficient in the scanning
order described above to be one of the four symbols ZTR, IZ, POS and NEG.
Then we cut the threshold in half obtaining T1 and add another bit of precision
to the magnitudes on the list of coefficients known to be significant, that is, the
subordinate list. More precisely, we assign the symbols 0 and 1 depending whether
the refinement leaves the reconstruction of a coefficient in the upper or lower half
of the previous bin. We reorder the coefficients in the decreasing order and go onto
the dominant pass again with the threshold T1. Note that now those coefficients
that have been found to be significant during a previous pass are set to zero so that
they do not preclude a possibility of finding a zero tree. The process then alternates
between these two passes until some stopping condition is met, such as that the
bit budget is exhausted. Finally, the symbols are losslessly encoded using adaptive
arithmetic coding.

Example 7.2 EZW Example from [260]

Let us consider a simple example given in [260]. We assume that we are given an 8 × 8
image whose 3-level discrete-time wavelet transform is given in Table 7.8. Since the largest
coefficient is 63, the initial threshold is T0 = 32.

We start in the scanning order as we explained before. 63 is larger than 32 and thus
gets POS. −34 is larger than 32 in absolute value and gets NEG. We go onto −31 which is
smaller in absolute value than 32. However, going through its tree, which consists of bands
LH2 and LH1, we see that it is not a root of a zero tree due to a large value of 47. Therefore
its assigned symbol is IZ. We continue with 23 and establish that it is a root of a zero tree
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Table 7.9 The first dominant pass through the
coefficients.

Subband Coefficient Symbol Reconstruction

LL3 63 POS 48
HL3 -34 NEG -48
LH3 -31 IZ 0
HH3 23 ZTR 0
HL2 49 POS 48
HL2 10 ZTR 0
HL2 14 ZTR 0
HL2 -13 ZTR 0
LH2 15 ZTR 0
LH2 14 IZ 0
LH2 -9 ZTR 0
LH2 -7 ZTR 0
HL1 7 Z 0
HL1 13 Z 0
HL1 3 Z 0
HL1 4 Z 0
LH1 -1 Z 0
LH1 47 POS 48
LH1 -3 Z 0
LH1 -2 Z 0

comprising bands HH2 and HH3. We continue the process in the scanning order, except
that we skip all those coefficients for which we have previously established that they belong
to a zero tree. The result of this procedure is given in Table 7.9.

After we have scanned all available coefficients, we are ready to go onto the first
subordinate pass. We commence by halving the threshold, to obtain T1 = 16 as well
as quantization intervals. The resulting intervals are now [32, 48) and [48, 64). The first
significant value, 63, obtains a 1, and is reconstructed to 56. The second one, −34, gets
a 0 and is reconstructed to −40, 49 gets a 1 and is reconstructed to 56, and finally, 47
gets a 0 and is reconstructed to 40. We then order these values in the decreasing order of
reconstructed values, that is, (63, 49, 34, 47). If we want to continue the process, we start
the second dominant pass with the threshold of 16. We first set all significant values from
the previous pass to zero, in order to be able to identify zero trees. In this pass, we establish
that −31 in LH3 is NEG and 23 in HH3 is POS. All the other coefficients are then found
to be either zero tree roots or zeros. We add to the list of significant coefficients 31 and 23
and halve the quantization intervals, to obtain, [16, 24), [24, 32), [32, 40), [40, 48), [48, 56),
and [56, 64). At the end of this pass, the revised list is (63, 49, 47, 34, 31, 23), while the
reconstructed list is (60, 52, 44, 36, 28, 20). This process continues until, for example, the bit
budget is met.
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Adaptive Decomposition Methods In our discussions of subband and wavelet
coding of images, we have seen that both full-tree decompositions and octave-band
tree decompositions are used. A natural question is: Why not use arbitrary binary-
tree decompositions, and in particular, choose the best binary tree for a given
image? This is exactly what the best basis algorithm of Coifman, Meyer, Quake and
Wickerhauser [62, 64] attempts. Start with a collection of bases given by all binary
subband coding trees of a given depth, called wavelet packets (see Section 3.3.4).
From a full tree, the best basis algorithm uses dynamic programming to prune back
to the best tree, or equivalently, the best basis.

In [233], the best basis algorithm was modified so as to be optimal in an oper-
ational rate-distortion sense, that is, for compression. Assume we choose a certain
tree depth K, and for each node of the tree, a set of quantizers. Thus, given an in-
put signal, we can evaluate an operational rate-distortion curve for each node of the
binary tree. Then, we can prune the full tree based on operational rate distortion.
Specifically, we introduce a Lagrange multiplier λ (as we did in bit allocation, see
Section 7.1.2) and compute a cost L(λ) = D+ λR for a root r and its two children
c1 and c2. This is done at points of constant slope −λ. Then, if

Lr(λ) < Lc1(λ) + Lc2(λ),

we can prune the children and keep the root, otherwise, we keep the children. The
comparison is made at constant-slope points (of slope λ) on the respective rate-
distortion curves. Going up the tree in this fashion will result in an optimal binary
tree for the image to be compressed. Note that in order to apply the Lagrange
method, we assumed independence of the nodes, an assumption that might be
violated (especially for deep trees).

An extension of this idea consists of considering not only frequency divisions
(obtained by a subband decomposition) but also splitting of the signal in time,
so that different wavelet packets can be used for different portions of the time-
domain signal (see also Figure 3.13). This is particularly useful if the signal is
nonstationary. The solution consists in jointly splitting in time and frequency
using a double-tree algorithm [132, 230] (one tree for frequency and another for
time splitting). Using dynamic programming and an operational rate-distortion
criterion, one can obtain best time and frequency splittings. This algorithm was
applied to image compression in [15]. An example of space and frequency splitting
of the Barbara image is shown in Figure 7.29, showing that large regions with
similar characteristics are gathered into blocks, while busy regions get split into
many smaller blocks. Over each of these blocks, a specific wavelet packet is used.

Methods Based on Wavelet Maximums Since edges are critical to image percep-
tion [168], there is a strong motivation to find a compression scheme that contains
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Figure 7.29 Simultaneous space and frequency splitting of the Barbara image
using the double-tree algorithm. Black lines correspond to spatial segmenta-
tions, while white lines correspond to frequency splits.

edges as critical information. This is done in Mallat and Zhong’s algorithm [184]
which is based on wavelet maximums representations. The idea is to decompose
the image using a redundant representation which approximates the continuous
wavelet transform at scales which are powers of two. This can be done using non-
downsampled octave-band filter banks. Because there is no downsampling, the
decomposition is shift-invariant. If the highpass filter is designed as an edge de-
tector (such as the derivative of a Gaussian), then we will have edges represented
at all scales by some local maximums or minimums. Because the representation is
redundant, keeping only these maximums/minimums still allows good reconstruc-
tion of the original using an iterative procedure (based on alternating projections
onto convex sets [29, 70, 184]). While this is an interesting approach, it turns out
that coding the edges is expensive. Also, textures are not easily represented and
need separate treatment. Finally, the computational burden, even for reconstruc-
tion only, is heavy due to the iterative algorithm involved. Thus, such an approach
needs further research in order to fully assess its potential as an image compression
method.

Quantization Error Analysis in a Subband System In compression schemes
we have seen so far, the approach has been to first design the linear transform
and then find the best quantization and entropy coding strategies possible. The
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problem of analyzing the system as a whole, although of significant theoretical and
practical importance, has not been addressed by many authors. One of the few
works on the topic is due to Westerink, Biemond and Boekee [331]. The authors
use the optimal scalar quantizer to quantize the subbands — Lloyd-Max. For that
particular quantizer, it can be shown that (see, for example, [143])

σ2y = σ2x − σ2q , (7.3.2)

where σ2q , σ
2
x, σ

2
y are the variances of the quantization error, the input and output

signals, respectively. Consider now a so-called “gain plus additive noise” linear
model for this quantizer. Its input/output relationship is given by

y = αx + r

where x,y are the input/output of the quantizer,7 r is the additive noise term, and
α is the gain factor (α ≤ 1). The main advantage of this model is that, by choosing

α = 1 −
σ2q
σ2x
, (7.3.3)

the additive noise will not be correlated with the signal and (7.3.2) will hold. In
other words, to fit the model to our given quantizer, (7.3.3) must be satisfied. Note
also, that the additive noise term is not correlated with the output signal.

The authors in [331] then incorporate this model into a QMF system (where the
filters are designed to cancel aliasing, as given in (3.2.34–3.2.35)). That is, each of
the two channel signals are quantized, use a gain factor αi, and generate an additive
noise ri. Consequently, the error at the output of the system can be written as the
sum of the error terms

E(z) = EQ(z) + ES(z) + EA(z) + ER(z),

where

EQ(z) =
1

2
[H2(z) − H2(−z) − 2] X(z),

ES(z) =
1

2
[(α0 − 1)H2(z) − (α1 − 1)H2(−z)] X(z),

EA(z) =
1

2
(α0 − α1) H(z) H(−z) X(−z),

ER(z) = H(z)R0(z
2) − H(−z)R1(z

2).

Note that here, z2 in Ri(z
2) appears since the noise component passes through the

upsampler. This breakdown into different types of errors allows one to investigate

7Bold letters denote random variables.
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their influence and severity. Here, EQ denotes the QMF (lack of perfect reconstruc-
tion) error, ES is the signal error (term with X(z)), EA is the aliasing error (term
with X(−z)), and ER is the random error. Note that only the random error ER
is uncorrelated with the signal. The QMF error is insignificant and can be disre-
garded. Aliasing errors become negligible if filters of length 12 or more are used.
Finally, the signal error determines the sharpness while the random error is most
visible in flat areas of the image.

Joint Design of Quantization and Filtering in a Subband Syst em Let us now
extend the idea from the previous section into more general subband systems. The
surprising result is that by changing the synthesis filter bank according to the quan-
tizer used, one can cancel all signal-dependent errors [161]. In other words, the re-
constructed signal error will be of only one type, that is, random error, uncorrelated
to the signal.

The idea is to use a general subband system with Lloyd-Max quantization and
see whether one can eliminate certain types of errors. Note that here, no assump-
tions are made about the filters, that is, filters (H0,H1) and (G0, G1) do not consti-
tute a perfect reconstruction pair. Assume, however, that given (H0,H1), we find
(T0, T1) such that the system is perfect reconstruction. Then, it can be shown that
if the synthesis filters are chosen as

G0(z) =
1

α0
T0(z), G1(z) =

1

α1
T1(z),

where αi are the gain factors of the quantizer models, all errors depending on X(z)
and X(−z) are cancelled and the only remaining error is the random error

E(z) = ER(z) =
1

α0
T0(z)R0(z

2) +
1

α1
T1(z)R1(z

2),

where Ri(z) are the noise terms appearing in the linear model. In other words,
by appropriate choice of synthesis filters, the only remaining error is uncorrelated
to the signal. The potential benefit of this approach is that one has to deal only
with a random, noise-like error at the output, which can then be alleviated with
an appropriate noise removal technique. Note, however, that the random error has
been boosted by dividing the terms by αi ≤ 1. For more details, see [161].

Nonorthogonal Subband Coding Most of the subband coding literature uses
orthogonal filters, since otherwise the squared norm of the quantization error would
not be preserved leading to a possibly large reconstruction error. If nonorthogonal
transforms are used, they are usually very close to the orthogonal ones [14].
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Moulin in [200] shows that the fact that nonorthogonal transforms do not per-
form well when compared to orthogonal ones, is due to an inappropriate formulation
of the coding problem, rather than to the use of the nonorthogonal transform itself.

Let us recall how the usual subband decomposition/reconstruction is performed.
We have an image x, going through the analysis stage H, to produce subband
images

y = Hx.

The next step is to compute a quantized image ŷ,

ŷ = Q(y).

Finally, we reconstruct the image as

x̂ = Gŷ,

where the system is perfect or near-perfect reconstruction. Moulin, instead, suggests
the following: Find ŷ that minimizes the squared error at the output

E(ŷopt) = ‖Gŷopt − x‖2,

where ŷopt belongs to the set of all possible quantized images. Due to this con-
straint, the problem becomes a discrete optimization problem and is solved using a
numerical relaxation algorithm. Experiments on images show significant visual as
well as MSE improvement. For more details, refer to [200].

7.4 VIDEO COMPRESSION

Digital video compression has emerged as an area of intense research and devel-
opment activity recently. This is due to the demand for new video services such
as high-definition television, the maturity of the compression techniques, and the
availability of technology to implement state of the art coders at reasonable costs.
Besides the large number of research papers on video compression, good examples
of the increased activity in the field are the standardization efforts such as MPEG
[173, 201] (the Moving Pictures Experts Group of the International Standardiza-
tions Organization). While the video compression problem is quite different from
straight image coding, mainly because of the presence of motion, techniques suc-
cessful with images are often part of video coding algorithms as well. That is, signal
expansion methods are an integral part of most video coding algorithms and are
used in conjunction with motion based techniques.

This section will discuss both signal expansion and motion based methods used
for moving images. We start by describing the key problems in video compression,
one of which is compatibility between standards of various resolutions and has a
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Figure 7.30 Moving objects in a video sequence. One object is still — zero
motion, whereas the other has a purely translational motion.

natural answer in multiresolution coding techniques. Standard motion compensated
video compression is described next, as well as the use of transforms for coding
the prediction error signal. Then, pyramid coding of video, which attempts to
get the best of subband and motion based techniques, is discussed. Subband or
wavelet decomposition techniques in three dimensions are presented, indicating both
their usefulness and their shortcomings. Finally, the emerging MPEG standard is
discussed.

Note that by intraframe coding we will denote video coding techniques where
each frame is coded separately. On the other hand, interframe coding will mean
that we take the time dimension and the correlation between frames into account.

7.4.1 Key Problems in Video Compression

Video is a sequence of images, that is, a three-dimensional signal. A number of
key features distinguishes video compression from being just a multidimensional
extension of previously discussed compression methods. Moreover, the data rates
are several orders of magnitude higher than those in speech and audio (for exam-
ple, digital standard television uses more than 200 Mbits/sec, and high-definition
television more than 1 Gbits/sec).

Motion Models in Video The presence of structures related to motion in the
video signal indicates ways to achieve high compression by using model based pro-
cessing. That is, instead of looking at the three-dimensional video signal as simply
a sequence of images, one knows that very often, future images can be deduced
from the past ones by some simple transformation such as translation. This is
shown schematically in Figure 7.30, where two objects appear in front of a uniform
background, one being still (no motion) and the other moving (simple, translational
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motion). It is clear that a compact description of this scene can be obtained by de-
scribing the first image and then indicating only how the objects move in subsequent
images. It turns out that most video scenes are well described by such motion mod-
els of objects, as well as global modifications such as zooms and pans. Of course, a
number of problems have to be addressed such as occlusion or uncovering of back-
ground due to an object’s movement. Overall, the motion based approaches in video
processing have been very successful [207]. Note that motion is an “image-domain”
phenomenon, since we are looking for displacements of image features. Thus, many
of the motion estimation algorithms are of a correlative nature. An example is the
block matching algorithm, which searches for local correlation maximums between
successive images.

A Transform-Domain View Assume the following simplified view of video: a sin-
gle object has a translational motion in front of a black background. One can verify
that the three-dimensional Fourier transform is zero except on a plane orthogonal
to the motion vector and passing through the origin. The values on the plane are
equal to the two-dimensional Fourier transform of the object. That is, motion sim-
ply tilts the Fourier transform of a still object. It seems therefore attractive to code
the moving object in Fourier space, where the coding would reduce to coding of the
object’s Fourier transform and the direction of the plane. This idealized view has
lead to various proposals for video coding which would first include an appropriate
transform domain approximating Fourier space (such as a subband division) and
then locate the region where the energy is mostly concentrated (corresponding to
the tilted plane of the object). It would then disregard other Fourier components
to achieve compression. While such an approach seems attractive at first sight, it
has some shortcomings.

First, real video scenes do not match the model. The background, which has
an “untilted” Fourier transform, gets covered and uncovered by the moving object,
creating spurious frequencies. Then, there are usually several moving objects with
different motions, thus several tilted planes would be necessary. Finally, most
of the transforms proposed (such as N -band subband division where N is not a
large integer for complexity reasons) partition the spectrum coarsely and thus,
they cannot approximate the tilted plane very well.

Since coding the spectrum requires coding of one image (or its two-dimensional
spectrum) plus the direction of the tilted plane, staying in the sequence domain will
perform just as well. Note also that motion is easier to analyze in the image plane
rather than the Fourier domain. The argument is simple; compare two images where
an object has moved. In the image plane, it is a localized phenomenon described
by a single motion vector, while in spectral domain, it results in a different phase
shift of every Fourier component.
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The Perceptual Point of View Just as in coding of speech or images, the ultimate
judge of quality is the human observer. Therefore, spatio-temporal models of the
human visual system (HVS) are important. These turn out to be more complex
than for static images, especially because of spatio-temporal masking phenomena
related to motion. If one considers sensitivity to spatio-temporal gratings (sinusoids
with an offset and various frequencies in all three dimensions), then the eye has
a lowpass/bandpass characteristic [207]. The sensitivity is maximum at medium
spatial and temporal frequencies, falls off slightly at low frequencies, and falls off
rapidly toward high frequencies (note that the sensitivity function is not separable
in space and time). Finally, sinusoids separated by more than an octave in spatial
frequency are treated in an independent manner.

Masking does occur, but it is a very local effect and cannot be well modeled in
the frequency domain. This masking is both spatial (reduced sensitivity at sharp
transitions) and temporal (reduced sensitivity at scene changes). The perception of
motion is a complex phenomenon and psychophysical results are only starting to be
applicable to coding. One effect is clear and intuitive however: The perception of a
moving object depends on if it is tracked by the eye or not. While in the latter case,
the object could be blurred without noticeable effect, in the former, the object will
be perceived as accurately as if it were still. Since it cannot be predicted if the viewer
will or will not follow the object, one cannot increase compression of moving objects
by blurring them. This somewhat naive approach has sometimes been suggested
in conjunction with three-dimensional frequency-domain coding methods, but does
not work, since more often than not, the interest of the viewer is in the moving
object.

Progressive and Interlaced Scanning When thinking of sampling a three-di-
mensional signal, the most natural sampling lattice seems to be the rectangular
lattice, as shown in Figure 7.31(a). The scanning corresponding to this lattice
is called progressive scanning in television cameras and displays. However, for
historical and technological reasons, a different sampling called interlaced scanning
is often used. It corresponds to a quincunx lattice in the (vertical, time)-plane and
its shifted versions along the horizontal axis, as shown in Figure 7.31(b). The name
interlaced comes from the fact that even and odd lines are scanned alternately. A
set of even or odd lines is called a field, and two successive fields form a frame.

While interlacing complicates a number of signal processing tasks such as mo-
tion estimation, it represents an interesting compromise between space and time
resolutions for a given number of sampling points in a space-time volume. Typi-
cally, high frequencies in both vertical and time dimensions cannot be represented,
but this loss in resolution is not very noticeable. Progressive scanning would have
to reduce the sampling rate by two in either dimension in Figure 7.31(a) to achieve



450 CHAPTER 7

x

y t(a)

x

y t(b)

even field

odd field

even field

x

y t(c)

even field

odd field

even field

Fig. 7.29 figref. 7.5.2

Figure 7.31 Scanning modes used in television. (a) Progressive scanning,
which corresponds to the ordinary rectangular lattice. (b) Interlaced scan-
ning, which samples alternately even and odd lines. It corresponds to the
quincunx lattice in the (vertical, time)-plane. (c) Face centered orthorhombic
(FCO) lattice, which is the true three-dimensional downsampling by two of the
rectangular lattice.

the same density as in Figure 7.31(b), which is more noticeable than to resort to
interlacing.

An even better compromise would be obtained with the face-centered orthorhom-
bic (FCO) lattice [164], which is the true generalization of the two-dimensional
quincunx lattice to three dimensions (see Figure 7.31(c)). Then, only frequencies
which are high in all three dimensions simultaneously are lost, and these are not well
perceived anyway. However, for technological reasons, FCO is less attractive than
interlaced scanning. Of course, in the various sampling schemes discussed above,
one can always construct counter examples that lose resolution, in particular when
tracked by the human observer (for example, objects with high frequency patterns
moving in a worst case direction). However, these counter examples are unlikely in
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real world imagery, particularly for interlaced and even more for FCO scanning.8

Compatibility In three-dimensional imagery such as television and movies, the
issue of compatibility between various standards, or at least easy transcoding, has
become a central issue. For many years, progressive scanning used in movies and
interlaced scanning used in television and video had an uneasy coexistence, just as
the 50 Hz frame rate for television in Europe versus 60 Hz frame rate for television in
US and Japan. Some ad hoc techniques were used to transcode from one standard
to another, such as the so-called 2/3 pull-down to go from 24 Hz progressively
scanned movies to 60 Hz interlaced video.

The advent of digital television with its potential for higher quality, as well as
the development of new formats (usually referred to as high definition television or,
HDTV) has pushed compatibility to the forefront of current concerns.

Conceptually, multiresolution techniques form an adequate framework to deal
with compatibility issues [323]. For example, standard television can be seen as a
subresolution of high definition television (although this is a very rough approxima-
tion), but with added problems such as different aspect ratios (the ratio of width
and height of the picture). However, there are two basic problems which make the
problem difficult:

Sublattice property Unless the lower-resolution scanning standard is a sublattice of
the higher-resolution one, it cannot be used directly as a subresolution signal in
a multiresolution scheme such as a subband coder. Consider the following two
examples in Figure 7.32.

First, take as full resolution a 1024×1024 progressive sequence at 60 Hz, with a
512×512 interlaced sequence at 60 Hz as subresolution (note that 60 Hz is the frame
and field rate in the progressive and interlaced case, respectively). The latter exists
on a sublattice of the former, namely, by downsampling by two in the horizontal and
vertical dimension, followed by quincunx downsampling in the (vertical, time)-plane
(see Figure 7.32(a)).

The second example starts with a 1024 × 1024 interlaced sequence at 60Hz
and one would like to obtain a 512 × 512 interlaced one at 60Hz as well (see Fig-
ure 7.32(b)). Half of the points have to be interpolated, since the latter scanning
is not a sublattice of the former. It can still be used as a coarse resolution in a
pyramid coder, but cannot be used as one of the channels in subband coding.

Compatibility as an overconstraint Sometimes, it is stated that all video services from
videotelephone to HDTV should be embedded in one another, somewhat like Rus-
sian dolls. That is, the whole video hierarchy can be progressively built up from the

8The famous backward turning wagon wheels in movies provide an example of aliasing in pro-
gressive scanning which could only be avoided by blurring in time.
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Figure 7.32 Sublattice property for compatibility (the (vertical, time)-plane
is shown). The “•” represents the original lattice, and the squares the sparser
lattice. (a) 1024× 1024 progressive, 60 Hz versus 512× 512 interlaced, 60 Hz.
The sublattice property is verified. (b) 1024 × 1024 interlaced, 60 Hz versus
512× 512 interlaced, 60 Hz. The sublattice property is not verified.

simplest to the most sophisticated. However, the successive refinement property is a
constraint with a price [93] and a complete refinement property with some stringent
bit rates requirements (for example, videotelephone at 64 Kbits/sec, standard tele-
vision at 5 Mbits/sec and HDTV at 20 Mbits/sec) is quite constrained and might
not lead to the best quality pictures. This is because each of the individual rates
is a difficult target in itself, and the combination thereof can be an overconstrained
problem.

While we will discuss compatibility issues and use multiresolution techniques
as a possible technique to address the problems, we want to point out that there
is no panacea. Each case of compression with compatibility requirement has to be
carefully addressed essentially from scratch.

7.4.2 Motion-Compensated Video Coding

As discussed above, motion models allow a compact description of moving imagery
and motion prediction permits high compression. Typically, a future frame is pre-
dicted from past frames using local motion information. That is, a particular N×N
block of the current frame to be coded is predicted as a displaced N×N block from
the previous reconstructed frame and the prediction error is compressed using tech-
niques such as transform coding. The decoder can construct the same prediction
and add it to the decoded prediction error. Such a scheme is essentially an adaptive
DPCM over the time dimension, where the predictor is based on motion estima-
tion. Figure 7.33 shows such a scheme, which is called hybrid motion-compensated
predictive DCT video coding and is part of several standard coding algorithms [177].
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Figure 7.33 Hybrid motion-compensated predictive DCT coding.

As can be seen in Figure 7.33, the prediction error is compressed using the DCT,
even though there is little correlation left in the prediction error on average.

Note also that the DCT could be replaced by another expansion such as sub-
bands (see Figure 7.39(b)). Because of its resemblance to a standard coder, the
approach will work. However, because motion compensation is done on a block-by-
block basis (for example, in block matching motion compensation), there can be a
block structure in the prediction error. Thus, choosing a DCT of the same block size
is a natural expansion, while taking an expansion that crosses the boundaries could
suffer from that blocking structure (which creates artificially high frequencies). It
should not be forgotten, however, that the bulk of the compression comes from the
motion compensation loop using accurate motion estimates and thus, replacing the
DCT by a LOT or a discrete wavelet transform can improve the performance, but
not dramatically.

7.4.3 Pyramid Coding of Video

The difficulty of including motion in three-dimensional subband coding will be
discussed shortly. It turns out that it is much easier to include motion in pyramid
coding, due to the fact that the prediction or interpolation from low resolution to
full resolution (see Figure 7.18) can be an arbitrary predictor [9], such as a motion
based one. This is a general idea which can be used in various forms for video
compression and we will describe a particular scheme as an example.

This video compression scheme was studied in [301, 302, 303]. Consider a pro-
gressive video sequence and its subresolutions, obtained by spatial filtering and
downsampling as well as frame skipping over time. Note that filtering over time
would create so-called “double images” when there is motion and thus straight



454 CHAPTER 7

0 1 2 3 4 5 6 7

0 1 2 3
(a) (b)

8

0 1

4

2

0 1 2

0 1

Fig. 7.35 figref. 7.5.8Figure 7.34 Spatio-temporal pyramid video coding. (a) Three layers of the
pyramid, corresponding to three resolutions. (b) Prediction of the higher res-
olution. The spatial resolution is interpolated first (using linear filtering) and
then the temporal resolution is increased using motion interpolation.

downsampling in time is preferable. This is shown schematically in Figure 7.34(a),
where the resolution is decreased by a factor of two in each dimension between
one level of the pyramid and the next. Now we apply the classic pyramid coding
scheme, which consists of the following:

(a) Coding the low resolution.

(b) Predicting the higher resolution based on the coded low resolution.

(c) Taking the difference between the predicted and the true higher resolution,
resulting in the prediction error.

(d) Coding the prediction error.

While these steps could be done in the three dimensions at once, it is preferable
to separate the spatial and temporal dimensions. First, the spatial dimension is
interpolated using filtering and then the temporal dimension is interpolated using
motion-based interpolation. This is shown in Figure 7.34(b). Following each inter-
polation step, the prediction error is computed and coded and this coded value is
added to the prediction before going to the next step. Because at each step, we
use coded versions for our prediction, we have a pyramid scheme with quantization
noise feedback, as was described in Figure 7.19. Therefore, there is only one source
of error, namely the compression of the last prediction error.

The oversampling inherent in pyramid coding is not a problem in the three-



7.4. VIDEO COMPRESSION 455

dimensional case, since, following (3.5.4), we have a total number of samples which
increases only as

(1 +
1

8
+
N

82
+ · · ·)N <

8

7
N,

or at most 14%, since every coarser level has only 1/8th the number of samples of
its predecessor.

The key technique in the spatio-temporal pyramid scheme is the motion interpo-
lation step, which predicts a frame from its two neighbors based on motion vectors.
Assume the standard rigid-object and pure translational motion model [207]. If we
denote the intensity of a pixel at location r = (x, y) and time t by I(r, t), we are
looking for a mapping d(r, t) such that we can write:

I(r, t) = I(r − d(r, t), t− 1).

If motion is not changing over time, we also have:

I(r, t) = I(r + d(r, t), t+ 1).

The goal is to find the function d(r, t), that is, estimate the motion. This is
a standard estimation procedure, where some simplifying assumptions are made
(such as constant motion over a neighborhood). Typically, for a small block b in
the current frame, one searches over a set of possible motion vectors such that the
sum of squared differences,

∑

r∈b

|I(r, t)− Î(r, t)|2, (7.4.1)

is minimized, where
Î(r, t) = I(r − db, t− 1), (7.4.2)

corresponds to a block in the previous frame displaced by db (the motion for the
block under consideration in the current frame). It is best to actually perform a
symmetric search by considering the past (as in (7.4.2)), the future ((7.4.2) with
sign reversals for db), and the average,

Î(r, t) =
1

2
[I(r − db, t− 1) + I(r + db, t+ 1)],

and then to choose the best match. Choosing past or future for the interpolation
is especially important for covering and uncovering of background due to moving
objects, as well as in case of abrupt changes (scene changes).

Interestingly, a very successful technique to perform motion estimation (that
is, finding the displacement db that minimizes (7.4.1)) is based on multiresolution
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Figure 7.35 Multiresolution motion vector fields used in the interpolation.
Each corresponds to a layer in the pyramid, with coarse (top left), medium
(top right) and fine (bottom) resolutions.

or successive approximation. Instead of solving (7.4.1) directly, one solves a coarse
version of the same problem, refines the solution (by interpolating the motion vector
field), and uses this new field as a starting point for a new, finer search. This is not
only computationally less complex, but also more robust in general [31, 302]. It is
actually a regularization of the motion estimation problem.

As an illustration of this video coding scheme, a few representative pictures are
shown. First, Figure 7.35 shows the successive refinement of the motion vector field,
which starts with a sparse field on a coarse version and refines it to a fine field on the
full-resolution image. In Figure 7.36, we show the resulting spatial and temporal
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Figure 7.36 Results of spatio-temporal coding of video (after [301]). The
spatial (left) and temporal (right) prediction errors are shown. The recon-
struction (not shown) is indistinguishable from the original at the rate used in
this experiment (around 1.0 bits/pixel).

prediction error signals. As can be seen, the spatial prediction error has higher
energy than the temporal one, which shows that temporal interpolation based on
motion is quite successful (actually, this sequence has high frequency spatial details,
which cannot be well predicted from the coarse resolution).

A point to note is that the first subresolution sequence (which is downsampled by
2 in each dimension) is of good visual quality and could be used for a compatible
coding scheme. This coding scheme was implemented for high quality coding of
HDTV with a compatible subchannel and it performed well at medium compression
(of the order of 10-15 to 1) with essentially no visible degradation [301, 303].

7.4.4 Subband Decompositions for Video Representation and Compression

Decompositions for Representation We will discuss here two ways of sampling
video by 2; the first, using quincunx sampling along (vertical, time)-dimensions and
the second, true three-dimensional sampling by 2, using the FCO sampling lattice.

Quincunx sampling for scanning format conversions We have outlined previously the
existence of different scanning standards (such as interlaced and progressive) as well
as the desire for compatibility. A simple technique to deal with these problems is
to use perfect reconstruction filter banks to go back and forth between progressive
and interlaced scanning, as shown in Figure 7.37 [320]. This is achieved by quin-
cunx downsampling the channels in the (vertical, time)-plane. Properly designed
filter pairs (either orthogonal or biorthogonal solutions) lead to a lowpass channel
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Figure 7.37 Progressive to interlaced conversion using a two-channel perfect
reconstruction filter bank with quincunx downsampling.

that is a usable interlaced sequence, while the original sequence can be perfectly
recovered when using both the lowpass and highpass channels in the reconstruction.
This is a compatible solution in the following sense: A low-quality receiver would
only decode the lowpass channel and thus show an interlaced sequence, while a
high-quality receiver would synthesize a full resolution progressive sequence based
on both the lowpass and the highpass channels.

If one starts with an interlaced sequence, one can obtain a progressive sequence
by quincunx downsampling. Thus, an interlaced sequence can be broken into low-
pass and highpass progressive sequences, again allowing perfect reconstruction when
perfect reconstruction filter banks are used. This is a very simple, linear technique
to produce a deinterlaced sequence (the lowpass signal) as well as a helper signal
(the highpass signal) from which to reconstruct the original signal. While more
powerful, motion based techniques can produce better results, the above technique
is attractive because of its low complexity and the fact that no motion model needs
to be assumed.

Perfect reconstruction filter banks for these applications, in particular having
low complexity, have been designed in [320]. Both orthogonal and biorthogonal
solutions are given. As an example, we give the two-dimensional impulse responses
of a simple linear phase filter pair,

h0[n1, n2] =
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−1 4 28 4 −1
−2 4 −2

−1









, h1[n1, n2] =





1
1 −4 1

1



 ,

(7.4.3)
which are lowpass and highpass filters, respectively. Since it is a biorthogonal pair,
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the synthesis filters (if the above are used for analysis) are obtained by modulation
with (−1)(n1+n2) and thus, the roles of lowpass and highpass are reversed (see also
Problem 7.7).

FCO sampling for video representation We mentioned previously that using the FCO
lattice (depicted in Figure 7.31(c)) might produce visually more pleasing sequences
if a data reduction by two is needed. This is due in part to the fact that an ideal
lowpass in the FCO case would retain more of the energy of the original signal than
the corresponding quincunx lowpass filter. Actually, assuming that the original
signal has a spherically uniform spectrum, and that the ideal lowpass filters are
Voronoi regions both in the quincunx and the FCO cases, the quincunx lowpass
would retain 84.3% of the original spectrum, while the FCO lowpass would retain
95.5% of the original spectrum [164].

To evaluate the gain of processing a video signal with a true three-dimensional
scheme when a data rate reduction of two is needed, we can use a two-channel
perfect reconstruction filter bank [164]. The sampling matrix is

DFCO =





1 0 1
−1 −1 1
0 −1 0



 ,

and the perfect reconstruction filter pair is a generalization of the above diamond-
shaped quincunx filters to three dimensions. To compare the low bands obtained
in this manner, they are interpolated back to the original lattice, since we cannot
observe the FCO output directly. Upon observing the result, the conclusion is that
FCO produces visually more pleasing sequences. For more detail, see [164].

Three-Dimensional Subband Decomposition for Compression A straightfor-
ward generalization of separable subband decomposition to three dimensions is
shown in Figure 7.38, with the separable filter tree shown in part (a) and slicing
of the spectrum given in part (b) [153]. In general, most of the energy will be
contained in the band that has gone through lowpass filtering in all three directions
thus iterating the decomposition on this band is most natural. This is actually
a three-dimensional discrete-time wavelet decomposition and is used in [153, 224].
Such three-dimensional decompositions work best for isotropic data, such as tomo-
graphic images used in medical imaging or multispectral images used in satellite
imagery. In that case, the same filters can be used in each dimension, together with
the same compression strategy (at least as a first approximation).

As we said, in video sequences, time should be treated differently from the
spatial dimensions. Typically, only very short filters are used along time (such as
Haar filters given in (3.1.2) and (3.1.17)) since long filters will smear motion in the
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Fig. 7.33 figref. 7.5.6
Figure 7.38 Three-dimensional subband decomposition of video. (a) Sepa-
rable filter bank tree. LP and HP stand for lowpass and highpass filtering,
respectively, and the circle indicates downsampling by two. (b) Slicing of the
three-dimensional spectrum.

lowpass channel and create artificial high frequencies in the highpass channel. If
one looks at the output of a three-dimensional subband decomposition, one can
note that the lowpass version is similar to the original and the only other channel
with substantial energy is the one containing a highpass filter over time followed by
lowpass filters in the two spatial dimensions. This channel contains energy every
time there is substantial motion and can be used as a motion indicator.

While motion-compensated methods can outperform subband decompositions
over time, recently, there have been some promising results [223, 286]. Also, it is
a simple, low-complexity method and can easily be used in a joint source-channel
coding environment because of the natural ordering in importance of the subbands
[323]. Subband representation is also very convenient for hierarchical decomposition
and coding [35] and has been used for compression of HDTV [336].

Motion and Subband Coding Intuitively, instead of lowpass and highpass fil-
tering along the time axis, one should filter along the direction of motion instead.
Then, motion itself would not create artificial high frequencies as it does in straight
three-dimensional subband coding. This view, although conceptually appealing, is
difficult to translate into practice, except in very limited cases (such as panning,
which corresponds to a single translational motion). In general, there are different
motion trajectories as well as covering and uncovering of background by moving
objects. Thus, subband decomposition along motion trajectories is not a practical
approach (see [167] for further discussions on this topic).
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Figure 7.39 Motion-compensated subband coding. SB: subband, ME: motion
estimation, MC: motion compensation, MCL: motion-compensation loop. (a)
Motion compensation of each subband. (b) Subband decomposition of the
motion-compensated prediction error.

Instead, one has to go back to more traditional motion-compensation techniques
and see how they fit into a subband coding framework or, conversely, how subband
coding can be used within a motion-compensated coder [110]. Consider inclusion of
motion compensation into a subband decomposition. That is, instead of processing
the time axis using Haar filters, we use a motion-compensation loop in each of the
four spatial bands. One advantage is that the four channels are now treated in an
independent fashion. While this scheme should perform better than the straight
three-dimensional decomposition, it also has a number of drawbacks. First, motion
compensation requires motion estimation. If it is done in the subbands, it is less
accurate than the motion estimates obtained from the original sequence. Also,
motion estimation in the high frequency subbands will be difficult. Thus, motion
estimation should probably be done on the original sequence and the estimates
then used in each band after proper rescaling (see Figure 7.39(a)). One of the
attractive features of the original scheme, namely that motion processing is done
in parallel and at a lower resolution, is thus partly lost, since motion estimation
is now shared. Moreover, it is hard to perform motion compensation in the high
frequency subbands, since they mostly consist of edge information and thus slight
motion errors lead to large prediction errors.

As can be been from the above discussion, motion compensation in the subbands
is not easy. An intuitive explanation is the following: motion, that is, translation of
objects, is a sequence-domain phenomenon. Going to a subband domain is similar to
going into frequency domain, but there, translation is a complex phenomenon, with
different phase factors at different frequencies. This shows that motion estimation
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Table 7.10 Comparison of subband and pyra-
mid coding of video. N is the number of
channels in the subband decomposition and
δ is the quantizer step size.

Method Subband Pyramid

Oversampling 0% < 14%

Maximum coding error
√
Nδ δ

Subchannel quality Limited Good
Inclusion of motion Difficult Easy
Nonlinear processing Difficult Easy

Model-based processing Difficult Easy
Encoding delay Moderate Large

and compensation is more difficult in the subband domain than in the original
sequence domain.

Consider the alternative of using subband decomposition within a motion- com-
pensated coder, as shown in Figure 7.39(b). The subband decomposition is used to
decompose the prediction error signal spatially and replaces simply the DCT which
is usually present in such a hybrid motion-compensated DCT coder. This approach
was discussed in Section 7.4.2, where we indicated its feasibility, but also some of
its possible shortcomings.

Comparison of Subband and Pyramid Coding for Video Because both sub-
band and pyramid coding of video are three-dimensional multiresolution decom-
positions, it is natural to compare them. A slight disadvantage of pyramid over
subband coding is the oversampling; however, it is small in this three-dimensional
case. Also, the encoding delay is larger in pyramid coding than in subband coding.
On all other counts, pyramid coding turns out to be advantageous when compared
to subband coding, a somewhat astonishing fact considering the simplicity of the
pyramid approach. First, there is an easy control of quantization error, using the
quantization error feedback and this leads to a tight bound on a maximum possi-
ble error, unlike in transform or subband coders. Second, the inclusion of motion,
which we discovered to be difficult in subband coding, is very simple in a pyrami-
dal scheme, as demonstrated in the spatio-temporal scheme discussed previously.
The quality of a compatible subchannel is limited in a subband scheme due to the
constrained filters that are used. In the pyramid case, however, the freedom on
the filters involved both before downsampling and for interpolation can be used
to obtain visually pleasing coarse resolutions as well as good quality interpolated
versions, a useful feature for compatibility. The above comparison is summarized
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in Table 7.10.

7.4.5 Example: MPEG Video Compression Standard

Just as in image compression, where several key ideas led to the JPEG standard (see
Section 7.3.1), the work on video compression led to the development of a successful
standard called MPEG [173, 201]. Currently, MPEG comes in two versions, namely
a “coarse” version called MPEG-I (for noninterlaced television at 30 frames/second,
and a compressed bit rate of the order of 1 Mbits/sec) and a “finer” version named
MPEG-II (for 60 fields/sec regular interlaced television, and a compressed bit rate
of 5 to 10 Mbits/sec). The principles used in both versions are very similar and
we will concentrate on MPEG-I in the following. What makes MPEG both in-
teresting and powerful is that it combines several of the ideas discussed in image
and video compression earlier in this chapter. In particular, it uses both hybrid
motion-compensated predictive DCT coding (for a subset of frames) and bidirec-
tional motion interpolation (as was discussed in the context of video pyramids).
But first, it segments the infinite sequence of frames into temporal blocks called
group of pictures (GOP). A GOP typically consists of 15 frames (that is, half a
second of video). The first frame of a GOP is coded using standard image compres-
sion and no prediction from the past frames (this decouples the GOP from the past
and allows one to decode a GOP independently of other GOP’s). This intraframe
coded image — I-frame, is used as the start frame of a motion-compensation loop
which predicts every N -th frame in the GOP where N is typically two or three.
The predicted frames (P-frames) are then used together with the I-frame in order
to interpolate the N − 1 intermediate frames (called B-frames because the inter-
polation is bidirectional) between the P-frames. A GOP, the various frame types,
and their dependencies are shown in Figure 7.40.

Both the intraframe and the various prediction errors (corresponding to the
difference between the true frame and its prediction either from the past or from
its neighbors in the P and B case, respectively) are compressed using a JPEG-like
standard (DCT, quantization with an appropriate quantization matrix, and zigzag
scanning with entropy coding). One important difference, however, is that the
quantization matrix can be scaled by a multiplicative factor and this factor is sent
as overhead. This allows a coarse form of adaptive quantization if desired.

A key for good compression performance is good motion estimation/prediction.
In particular, motion can be estimated at different accuracies (motion by integer
pixel distances, or finer, subpixel accuracy). Of course, finer motion information
increases the overhead to be sent to the decoder, but typically, the reduction in
prediction error justifies this finer motion estimation and prediction. For example,
it is common to use half-pixel accuracy motion estimation in MPEG.
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Figure 7.40 A group of pictures (GOP) in the MPEG video coding standard.
I, P, and B stand for intra, predicted and bidirectionally interpolated frames,
respectively. There are nine frames in this GOP, with two B-frames between
every P-frame. The arrows show the dependencies between frames.

7.5 JOINT SOURCE-CHANNEL CODING

The source coding methods we have discussed so far are used in order to transport
information (such as a video sequence) over a channel with limited capacity (such
as a telephone line which can carry up to 20 Kbits/sec). In many situations, source
coding can be performed separately from channel coding, which is known as the
separation principle of source and channel coding. For example, in a point-to-point
transmission using a known, time-invariant channel such as a telephone line, one
can design the best possible channel coding method to approach channel capacity,
that is, achieve a rate R in bits/sec such that R ≤ C where C is the channel capacity
[258]. Then, the task of the source compression method is to reduce the bit rate so
as to match the rate of the channel.

However, there exist other situations where a separation principle cannot be
used. In particular, when the channel is time-varying and there is a delay con-
straint, or when multiple channels are present as in broadcast or multicast, it can
be advantageous to jointly design the source and channel coding so that, for exam-
ple, several transmission rates are possible.

The development of such methods is beyond the scope of this book. As an
example, the case of multiple channels falls into a well studied branch of informa-
tion theory called multiuser information theory [66]. Instead, we will show sev-
eral examples indicating how multiresolution source coding fits naturally into joint
source-channel coding methods. In all these examples, the transmission, or channel
coding, uses a principle we call multiresolution transmission and can be seen as the
dual of multiresolution source coding.

Multiresolution transmission is based on the idea that a transmission system
can operate at different rates, depending on the channel conditions, or that certain
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bits will be better protected than others in case of adverse channel conditions. Such
a behavior of the transmission system can be achieved using different techniques,
depending on the transmission media. For example, unequal error protection codes
can be used, thus making certain bits more robust than others in the case of a
noisy channel. The combination of such a transmission scheme with a multires-
olution source coder is very natural. The multiresolution source coder segments
the information into a part which reconstructs a coarse, first approximation of the
signal (such as the lowpass channel in a subband coder) as well as a part which
gives the additional detail signal (typically, the higher frequencies). The coarse
approximation is now sent using the highly protected bits and has a high prob-
ability of arriving successfully, while the detail information will only arrive if the
channel condition is good. The scheme generalizes to more levels of quality in an
obvious manner. This intuitive matching of successive approximation of the source
to different transmission rates, depending on the quality of the channel, is called
multiresolution joint source-channel coding.

7.5.1 Digital Broadcast

As a first example, we consider digital broadcast. This is a typical instance of a
multiuser channel, since a single emitter sends to many users, each with a different
channel. One can of course design a digital communication channel that is geared
to the worst case situation, but that is somewhat of a waste for the users with
better channels. For simplicity, consider two classes of users U1 and U2 having
“good” and “bad” channels, with capacities C1 > C2, respectively. Then, the idea
is to superimpose information for the users with the good channel on top of the
information that can be received by the users with the bad channel (which can
also be decoded by the former class of users ) [66]. Interestingly, this simple idea
improves the joint capacity of both classes of users over simply multiplexing between
the two channels (sending information at rate R1 ≤ C1 to U1 part of the time, and
then at rate R2 ≤ C2 to U1 and U2 the rest of the time). See Figure 7.41(a) for
a graphical description of the joint capacity region and Figure7.41(b) for a typical
constellation used in digital transmission where information for the users with better
channels is superimposed over information which can be received by both classes
of users. Now, keeping our multiresolution paradigm in mind, it is clear that we
can send coarse signal information to both classes of users, while superposing detail
information that can be taken by the users with the good channel. In [231], a
digital broadcast system for HDTV was designed using these principles, including
multiresolution video coding [301] and multiresolution transmission with graceful
degradation (using constellations similar to the one in Figure 7.41(b)).

The principles just described can be used for transmission over unknown time-
varying channels. Instead of transmitting assuming the worst case channel, one can
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Figure 7.41 Digital broadcast. (a) Joint capacity region for two classes of users
with channel capacities C1 and C2, respectively, and C1 > C2. Any point on
or below the curves is achievable, but superposition outperforms multiplexing.
(b) Example of a signal constellation (showing amplitudes of cosine and sine
carriers in a digital communication system) using superposition of information.
As can be seen, there are four clouds at four points each. When the channel is
good, 16 points can be distinguished, (or four bits of information), while under
adverse conditions, only the clouds are seen (or two bits of information).

superpose information decodable on a better channel, in case the channel is actually
better than worst case. On average, this will be better than simply assuming worst
case all the time. As an example, consider a wireless channel without feedback.
Because of the changing location of the user, the channel can vary greatly, and
the worst case channel can be very poor. Superposition allows delivery of different
levels of quality, depending on how good the reception actually is. When there is
feedback (as in two-way wireless communication), then one can use a channel coding
optimized for the current channel (see [114]). The source coder then has to adapt to
the current transmission rate, which again is easy to achieve using multiresolution
source coding. A study of wireless video transmission using a two resolution video
source coder can be found in [157].
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7.5.2 Packet Video

Another example of application of multiresolution coding for transmission is found
in real-time services such as voice and video over asynchronous transfer mode
(ATM) networks. The problem is that packet transmission can have greatly varying
delays as well as packet losses. However, it is possible to protect certain packets (for
example, using priorities). Again, the natural idea is to use multiresolution source
coding and put the coarse approximation into high priority so that it will almost
surely be received [154]. The detail information is carried with lower priority pack-
ets and will only arrive when the network has enough resources to carry them. Such
an approach can lead to substantial improvements over nonprioritized transmission
[107]. In video compression, this approach is often called layered coding, with the
layers corresponding to different levels of approximation (typically, two layers are
used) and different layers having different protections for transmission.

This concludes our brief overview of multiresolution methods for joint source
and channel coding. It can be argued that because of increasing interconnectivity
and heterogeneity, traditional fixed-rate coding and transmission will be replaced
by flexible multiresolution source coding and multiple or variable-rate transmission.
For an interface protocol allowing such flexible interconnection, see [127]. The main
advantage is the added flexibility, which will allow users with different requirements
to be interconnected through a mixture of possible channels.

APPENDIX 7.A S TATISTICAL SIGNAL PROCESSING

Very often, a signal has some statistical characteristics of which we can take
advantage. A full blown treatment of statistical signal processing requires the study
of stochastic processes [122, 217]. Here, we will only consider elementary concepts
and restrict ourselves to the discrete-time case.

We start by reviewing random variables and then move to random processes.
Consider a real-valued random variable X over R with distribution PX . The dis-
tribution PX(A) indicates the probability that the random variable X takes on a
value in A, where A is a subset of the real line. The cumulative distribution function
(cdf) FX is defined as

FX(α) = PX({x|x ≤ α}), α ∈ R.

The probability density function (pdf) is related to the cdf (assume that FX is
differentiable) as

fX(α) =
dFX(α)

dα
, α ∈ R,

and thus

FX(α) =

∫ α

−∞
fX(x)dx, α ∈ R.
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A vector random variable X is a collection of k random variables (X0, . . . ,Xk−1),
with a cdf FX given by

FX(α) = PX({x|xi ≤ αi, i = 0, 1, . . . , k − 1}),

where α = (α0, . . . , αk−1). The pdf is obtained, assuming differentiability, as

fX(α) =
∂k

∂α0, ∂α1, . . . , ∂αk−1
FX(α0, α1, . . . , αk−1).

A key notion is independence of random variables. A collection of k random vari-
ables is independent if and only if the joint pdf has the form

fX0X1···Xk−1
(x0, x1, . . . , xk−1) = fX0(x0) · fX1(x1) · · · fXk−1

(xk−1). (7.A.1)

In particular, if each random variable has the same distribution, then we have an
independent and identically distributed (iid) random vector.

Intuitively, a discrete-time random process is the infinite-dimensional general-
ization of a vector random variable. Therefore, any finite subset of random variables
from a random process is a vector random variable.

Example 7.3 Jointly Gaussian Random Process

An important class of vector random variables is the Gaussian vector random variable
of dimension k. To define its pdf, we need a length-k vector m and a positive definite matrix
Λ of size k × k. Then, the k-dimensional Gaussian pdf is given by

f(x) = (2π)−k/2(detΛ)−1/2e−(x−m)T Λ
−1(x−m)/2, x ∈ R

k (7.A.2)

Note how, for k = 1 and Λ = σ2, this reduces to the usual Gaussian (normal) distribution

f(x) =
1√
2πσ2

· e−(x−m)2/2σ2

, x ∈ R,

of which (7.A.2) is a k-dimensional generalization.

A discrete-time random process is jointly Gaussian if all finite subsets of samples
{Xn0

, Xn1
, . . . , Xnk−1

} are Gaussian random vectors. Thus, a Gaussian random process is
completely described by m and Λ, which are called the mean and covariance as we will see.

For random variables as for random processes, a fundamental concept is that of
expectation, defined as

E(X) =

∫ ∞

−∞
xfX(x) dx.

Expectation is a linear operator, that is, given two random variables X and Y ,
we have E(aX + bY ) = aE(X) + bE(Y ). The expectation of products of random
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variables leads to the concept of correlation. Given two random variables X and
Y , their correlation is E(XY ). They are uncorrelated if

E(XY ) = E(X) E(Y ).

From (7.A.1) we see that independent variables are uncorrelated (but uncorrelated-
ness is not sufficient for independence). Sometimes, the “centralized” correlation,
or covariance, is used, namely

cov(X,Y ) = E((X − E(X))(Y − E(Y )))

= E(XY )− E(X)E(Y ),

from which it follows that two random variables are uncorrelated if and only if their
covariance is zero. The variance of X, denoted by σ2X , equals cov(X,X), that is,

σ2X = E((X −E(X))2),

and its square root σX is called the standard deviation of X. Higher-order moments
are obtained from E(Xk), k > 2. The above functions can be extended to random
processes. The autocorrelation function of a process {Xn, n ∈ Z}, is defined by

RX [n,m] = E(Xn Xm), n,m ∈ Z,

and the autocovariance function is

KX [n,m] = cov(Xn,Xm)

= RX [n,m]− E(Xn)E(Xm), n,m ∈ Z.

An important class of processes are stationary random processes, for which the
probabilistic behavior is constant over time. In particular, the following then hold:

E(Xn) = E(X), n ∈ Z, (7.A.3)

σ2Xn = σ2X , n ∈ Z. (7.A.4)

By the same token, all other moments are independent of n. Also, correlation and
covariance depend only on the difference (n −m), or

RX [n,m] = RX [n−m], n,m ∈ Z, (7.A.5)

KX [n,m] = KX [n−m], n,m ∈ Z. (7.A.6)

While stationarity implies that the full probabilistic description is time-invariant,
nth-order stationarity means that distributions and expectations involving n sam-
ples are time-invariant. The case n = 2, which corresponds to (7.A.3–7.A.6) is called
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wide-sense stationarity . An important property of Gaussian random processes is
that if they are wide-sense stationary, then they are also strictly stationary.

Often, we are interested in filtering a random process by a linear time-invariant
filter with impulse response h[n]. That is, the output equals Y [n] =

∑∞
k=−∞ h[k]

X[n−k]. Note that Y [.] and X[.] denote random variables and are thus capitalized,
while h[.] is a deterministic value. We will assume a stable and causal filter. The
expected value of the output is

E(Y [n]) = E(
∞∑

k=0

h[k]X[n − k]) =
∞∑

k=0

h[k]E(X[n − k]) =
∞∑

k=0

h[k]mn−k, (7.A.7)

whereml is the expected value of Xl. Note that if the input is wide-sense stationary,
that is, E(Xn) = E(X) for all n, then the output has a constant expected value
equal to E(X)

∑∞
k=0 h[k]. It can be shown that the covariance function of the output

depends also only on the difference n −m (as in (7.A.5)) and thus, filtering by a
linear time-invariant system conserves wide-sense stationarity (see Problem 7.9).

When considering filtered wide-sense stationary processes, it is useful to intro-
duce the power spectral density function (psdf), which is the discrete-time Fourier
transform of the autocorrelation function

SX(e
jω) =

∞∑

n=−∞
RX [n] e

−jωn.

Then, it can be shown that the psdf of the output process after filtering with h[n]
equals

SY (e
jω) =

∣
∣H(ejω)

∣
∣
2
SX(e

jω), (7.A.8)

where H(ejω) is the discrete-time Fourier transform of h[n]. Note that when the
input is uncorrelated, that is, RX [n] = E2(X)δ[n], then the output autocorrelation
is simply the autocorrelation of the filter, or RY [n] = E2(X)〈h[k], h[k + n]〉, as can
be seen from (7.A.8). If we define the crosscorrelation function

RXY [m] = E(X[n] Y [n+m]),

then its Fourier transform leads to

SXY (e
jω) = H(ejω) SX(e

jω). (7.A.9)

Again, when the input is uncorrelated, this can be used to measure H(ejω).
An important application of filtering is in linear estimation. The simplest linear

estimation problem is when we have two random variables X and Y , both with zero
mean. We wish to find an estimate X̂ of the form X̂ = αY from the observation
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Y , such that the mean square error (MSE) E((X − X̂)2) is minimized. It is easy
to verify that

α =
E(XY )

E(Y 2)
,

minimizes the expected squared error. One distinctive feature of the MSE esti-
mate is that the estimation error (X − X̂) is orthogonal (in expected value) to the
observation Y , that is,

E((X − X̂)Y ) = E((X − αY )Y ) = E(XY )− αE(Y 2) = 0.

This is known as the orthogonality principle: The best linear estimate in the MSE
sense is the orthogonal projection of X onto the span of Y . It follows that the
minimum MSE is

E((X − X̂)2) = E(X2)− α2E(Y 2),

because of orthogonality of (X − X̂) and Y . This geometric view follows from
the interpretation of E(XY ) as an inner product and thus E(X2) is the squared
length of the vector X. Similarly, orthogonality of X and Y is seen as E(XY ) = 0.
Based on this powerful geometric point of view, let us tackle a more general linear
estimation problem. Assume two zero-mean jointly wide-sense stationary processes
{X[n]} and {Y [n]}. We want to estimate X[n] from Y [n] using a filter with the
impulse response h[n], that is

X̂ [n] =
∑

k

h[k] Y [n− k], (7.A.10)

in such a way that E((X[n]−X̂ [n])2) is minimized. The range of k is restricted to a
setK (for example, k ≥ 0 so that only y[n], y[n−1], . . . are used). The orthogonality
principle states that the optimal solution will satisfy

E((X[n] − X̂[n])Y [k]) = 0, k ∈ K.
Using (7.A.10), we can rewrite the orthogonality condition as

E(X[n]Y [k]) −E(
∑

i

h[i]Y [n− i]Y [k])

= RXY [n, k]−
∑

i

h[i]RY [n− i, k]

= RXY [n− k]−
∑

i

h[i]RY [n− k − i], k ∈ K,

where we used wide-sense stationarity in RXY [n, k] = RXY [n− k]. Replacing n− k
by l, we get

RXY [l] =
∑

i

h[i] RY [l − i], n− l ∈ K. (7.A.11)
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In particular, when there is no restriction on the set of samples {Y [n]} used for the
estimation, that is K = Z, then we can take the Fourier transform of (7.A.11) to
find

H(ejω) =
Sxy(e

jω)

Sy(ejω)
,

which is the optimal linear estimator. Note that this is in general a noncausal
filter. Finding a causal solution (K = (−∞, n]) is more involved [122], but the
orthogonality principle is preserved.

This concludes our brief overview of statistical signal processing. One more
topic, namely the discrete-time Karhunen-Loève transform, is discussed in the main
text, in Section 7.1, since it lays the foundation for transform-based signal compres-
sion.
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PROBLEMS

7.1 For a uniform input pdf, as well as uniform quantization, prove that the distortion between
the input and the output of the quantizer is given by (7.1.14), that is

D =
∆2

12
,

where ∆ is the quantizer step size ∆ = (b− a)/N , a, b are the boundaries of the input, and
N is the number of intervals.

7.2 Coding gain as a function of number of channels: Consider the coding gain of an ideal filter
bank with N channels (see Section 7.1.2).

(a) Construct a simple example where the coding gain for a 2-channel system is bigger
than the coding gain for a 3-channel system. Hint: Construct a piecewise constant
power spectrum for which the 2-channel system is better matched than the 3-channel
system.

(b) For the example constructed above, show that a 4-channel system outperforms both
the 2- and 3-channel systems.

7.3 Consider the coding gain (see Section 7.1.2) in an ideal subband coding system with N
channels (the filters used are ideal bandpass filters). Start with the case N = 2 before
looking at the general case.

(a) Assume that the power spectrum of the input signal |X(ejω)|2 is given by

|X(ejω)|2 = 1− |ω|
π

|ω| ≤ π.

Give the coding gain as a function of N .

(b) Same as above, but with

|X(ejω)|2 = e−α|ω| |ω| ≤ π.

Give the coding gain as a function of N and α, and compare to (a).

7.4 Huffman and run-length coding: A stream of symbols has the property that stretches of
zeros are likely. Thus, one can use code the length of the stretch of zeros, after a special
“start of run” (SR) symbol.

(a) Assume there are runs of lengths 1 to 8, with probabilities:

Length 1 2 3 4 5 6 7 8

Probability 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/128

Design a Huffman code for the run lengths. How close does it come to the entropy?

(b) There are 8 nonzero symbols, plus the start of run symbols, with probabilities:

Symbol ±1 ±2 ±3 ±4 SR

Probability 0.2 0.15 0.075 0.05 0.05

Design a Huffman code for these symbols. How close does it come to the entropy?
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(c) As an example, take a typical sequence, including stretches of zeros, and encode it,
then decode it, with your Huffman code (small example). Can you decode your bit
stream?

(d) Give the average compression of this run-length and Huffman coding scheme.

7.5 Consider a pyramid coding scheme as discussed in Section 7.3.2. Assume a one-dimensional
signal and an ideal lowpass filter both for coarse-to-fine and fine-to-coarse resolution change.

(a) Assume an exponentially decaying power spectrum

|X(ejω)|2 = e−3|ω|/π |ω| < π.

Derive the variances of the coarse and the difference channels.

(b) Assume now that the coarse channel is quantized before being interpolated and used
as a prediction. Assume an additive noise model, with variance c∆2 where ∆ is the
quantizer step. Give the variance of the difference channel (which now depends on ∆,
or the number of bits allocated to the coarse channel).

(c) Investigate experimentally the bit allocation problem in a pyramid coder using a
quantized coarse version for the prediction. That is, generate some correlated random
process (for example, first-order Markov with high correlation) and process it using
pyramid coding. Allocate part of the bit budget to the coarse version, and the rest
for the difference signal. Discuss the two limiting cases, that is, zero bits to the coarse
version and all the bits for the coarse version.

7.6 Consider the embedded zero tree wavelet (EZW) transform algorithm discussed in Sec-
tion 7.3.4, and study a one-dimensional version.

(a) Assume a one-dimensional octave-band filter bank and define a zero tree for this case.
Compare to the two-dimensional case. Discuss if the dominant and subordinate passes
of the EZW algorithm have to be modified, and if so, how.

(b) One can define a zero tree for arbitrary subband decomposition trees (or wavelet
packets). In which case is the zero tree most powerful?

(c) In the case of a full tree subband decomposition in two dimensions (for example, of
depth 3, leading to 64 channels), compare the zero tree structure with zig-zag scanning
used in DCT.

7.7 Progressive to interlaced conversion:

(a) Verify that the filters given in (7.4.3) form a perfect reconstruction filter bank for
quincunx downsampling and give the reconstruction filters as well.

(b) Show that cascading the quincunx decomposition twice on a progressive sequence (on
the vertical-time dimension) yields again a progressive sequence, with an intermediate
interlaced sequence. Use the downsampling matrix

D =

(

1 1
−1 1

)
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7.8 Consider a two-channel filter bank for three-dimensional signals (progressive video sequences)
using FCO downsampling (see Section 7.4.4).

(a) Consider a lowpass filter

H0(z1, z2, z3) =
1√
2
(1 + z1z2z3),

and a highpass filter

H1(z1, z2, z3) = H0(−z1,−z2,−z3).

Show that this corresponds to an orthogonal Haar decomposition for FCO downsam-
pling.

(b) Give the output of a two-channel analysis/synthesis system with FCO downsampling
as a function of the input, the aliased version, and the filters.

7.9 Filtering of wide-sense stationary processes: Consider a wide-sense stationary process {x[n]}
and its filtered version y[n] =

∑

k h[k]x[n− k], where h[k] is a stable and causal filter.

(a) In Appendix 7.A, we saw that the mean of {y[n]} is independent of n (see below
Equation (7.A.7)). Show that the covariance function of {y[n]}, KY [n,m] = cov(y[n] ·
y[m]) is a function of (n−m) only, and given by

KY [k] =
∞
∑

n=0

∞
∑

m=0

h[n] h[m] KX [k − (n−m)]

(b) Prove (7.A.9) in time domain, or assuming zero-mean input,

KXY [m] =
∞
∑

h=0

h[k] KX [m− k].

(c) Consider now one-sided wide-sense stationary processes, which can be thought of as
wide-sense stationary processes that are “turned on” at time 0. Consider filtering of
such processes by causal FIR and IIR filters, respectively. What can be said about
E(Y [n]) n ≥ 0 in these cases?

Projects: The following problems are computer-based projects with an experimental flavor.
Access to adequate data (images, video) is helpful.

7.10 Coding gain and R(d) optimal filters for subband coding: Consider a two-band perfect re-
construction subband coder with orthogonal filters in lattice structure. As an input, use a
first-order Markov process with high correlation (ρ = 0.9). For small filter lengths (L = 4, 6
or so), optimize the lattice coefficients so as to maximize coding gain or minimize first-order
entropy after uniform scalar quantization. Find what filter is optimal, and try for fine and
coarse quantization steps.

Use optimal bit allocation between the two channels, if possible. The same idea can be
extended to Lloyd-Max quantization, and to logarithmic trees. This project requires some
experience with coding algorithms. For relevant literature, see [79, 109, 244, 295].
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7.11 Pyramids using nonlinear operators: One of the attractive features of pyramid coding schemes
over critically sampled coding schemes is that nonlinear operators can be used. The goal of
the project is to investigate the use of median filters (or some other nonlinear operators) in
a pyramidal scheme.

The results could be theoretical or experimental. The project requires image processing
background. For relevant literature, see [41, 138, 303, 323].

7.12 Motion compensation of motion vectors: In video coding, motion compensation is used to
predict a new frame from reconstructed previous frames. Usually, a sparse set of motion
vectors is used (such as one per 8× 8 block), and thus, sending motion vectors contributes
little to the bit rate overhead. An alternative scheme could use a dense motion vector field
in order to reduce the prediction error. In order to reduce the overhead, predict the motion
vector field, since it is usually not changing radically in time within a video scene. Thus,
the aim of the project is to treat the motion vector field as a sequence (of vectors), and find
a meta-motion vector field to predict the actual motion vector field (for example, per block
of 2×2 motion vectors).

This project requires image/video processing background. For more literature on motion
estimation, see [138, 207].

7.13 Adaptive Karhunen-Loève transform: The Karhunen-Loève transform is optimal for energy
packing of stationary processes, and under certain conditions, for transform coding and
quantization of such processes. However, if the process is nonstationary, compression might
be improved by using an adaptive transform. An interesting solution is an overhead free
transform which is derived from the coded version of the signal, based on some estimate of
local correlations.

The goal of the project is to explore such an adaptive transform on some synthetic nonsta-
tionary signals, as well as on real signals (such as speech).

This project requires good signal processing background. For more literature, see [143].

7.14 Three-dimensional wavelet coding: In medical imaging and remote sensing, one often en-
counters three-dimensional data. For example, multispectral satellite imagery consists of
many spectral band images. Develop a simple three-dimensional coding algorithm based on
the Haar filters, and iteration on the lowpass channel. This is the three-dimensional equiv-
alent of the octave-band subband coding of images discussed in Section 7.3.3. Apply your
algorithm to real imagery if available, or generate synthetic data with a lowpass nature.
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[166] J. Kovačević and M. Vetterli. Perfect reconstruction filter banks with rational sam-
pling factors. IEEE Trans. Signal Proc., 41(6):2047–2066, June 1993.

[167] T. Kronander. Some Aspects of Perception Based Image Coding. PhD thesis,
Linkoeping University, Linkoeping, Sweden, 1989.

[168] M. Kunt, A. Ikonomopoulos, and M. Kocher. Second generation image coding tech-
niques. Proc. IEEE, 73(4):549–575, April 1985.

[169] W. Lawton. Tight frames of compactly supported wavelets. J. Math. Phys., 31:1898–
1901, 1990.

[170] W. Lawton. Necessary and sufficient conditions for constructing orthonormal wavelet
bases. J. Math. Phys., 32:57–61, 1991.

[171] W. Lawton. Applications of complex valued wavelet transforms to subband decompo-
sition. IEEE Trans. on Signal Proc., Special Issue on Wavelets and Signal Processing,
41(12):3566–3567, December 1993.

[172] W. M. Lawton and H. L. Resnikoff. Multidimensional wavelet bases. AWARE
preprint, 1991.

[173] D. LeGall. MPEG: a video compression standard for multimedia applications. Com-
munications of the ACM, 34(4):46–58, April 1991.

[174] D. J. LeGall, H. Gaggioni, and C. T. Chen. Transmission of HDTV signals under
140 Mbits/s using a subband decomposition and Discrete Cosine Transform cod-
ing. In L. Chiariglione, editor, Signal Processing of HDTV, pages 287–293. Elsevier,
Amsterdam, 1988.



488 BIBLIOGRAPHY
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adaptive entropy coding, 406
algorithme à trous, 372
audio compression, 408

cosine-modulated filter banks, 410
critical bands, 409
Dolby, 413
MUSICAM, 412
perceptual audio coder, 413
perceptual coding, 408

autocorrelation, 65
autocorrelation polynomial, 134

Balian-Low theorem
in continuous time, 339
in discrete time, 174

Battle-Lemarié wavelet, 242
Bessel’s inequality, 24
best basis algorithm, 442
Beylkin, Coifman and Rokhlin algorithm, 380
biorthogonal bases, see biorthogonal expan-

sions
biorthogonal expansions, 27, 101, 113, 150,

282
bit allocation, 397

rate-distortion function, 397
block transforms, 83, 163

in image coding, 415

Carroll, 209

Cauchy-Schwarz inequality, 20
Chinese Remainder Theorem, 350
coding gain, 401
complexity

divide and conquer principle, 347
of computing narrow-band filters, 358
of discrete-time wavelet series, 363
of filter bank trees, 363
of filtering and downsampling, 356
of iterated filters, 370
of iterated multirate systems, 358
of modulated filter banks, 366
of multidimensional filter banks, 368
of overcomplete expansions, 371
of short-time Fourier transform, 371
of short-time Fourier transform in dis-

crete time, 366
of two-channel filter banks, 360
of upsampling and interpolation, 357
of wavelet series, 369

compression systems, 385
entropy coding, 403
for audio, 408
for images, 414
for speech, 407
for video, 446
linear transformations, 386
quantization, 390

499



500 INDEX

conservation of energy
in continuous wavelet transforms, 318
in filter banks, 100, 133, 158
in Fourier transforms, 42, 44, 52
in general bases, 24, 28
in wavelet series, 273

construction of wavelets, 226
Fourier method, 232
using iterated filter banks, 246

continuous-time wavelet transform, see wave-
let transform

convergence, 89
convolution

circular, or, periodic, 354
fast, 348
running, 376, 377

Cook-Toom algorithm, 348
correlation

deterministic, 50
polynomial, 119, 141, 144
statistical, 469

Daubechies’ filters, 135–138, 267
Daubechies’ wavelets, 221, 267
Descartes, 347
differential pulse code modulation, 396
digital video broadcast, 465
Dirac function, 45
discrete cosine transform, 355, 388

fast algorithm, 355
hybrid motion-compensated predictive

DCT video coding, 452
use in image coding, 416, 420

discrete-time wavelet series
complexity, 363
in image compression, 439
properties, 156

discrete-time wavelet transform, see discrete-
time wavelet series

distortion measures
mean square error, 386
signal-to-noise ratio, 386

Dolby, 413
downsampling, 69, 113, 202
dyadic grid, 156, 329

entropy coding, 403
adaptive entropy coding, 406
Huffman Coding, 403
run-length coding, 406

Fast Fourier transform, 352
Cooley-Tukey FFT, 352
Good-Thomas FFT, 353
Rader’s algorithm, 354
Winograd’s FFT, 354

filter banks, 2, 97, 129
adaptive filtering, 195
aliasing cancellation, 124, 127, 170, 175
analysis filter banks, 106, 114, 117
biorthogonal, 127, 282
complexity, 360
cosine-modulated, 173, 175
design of, 134, 189, 191
finite impulse response, 126
Haar, 104, 141, 247
history of, 98
implementation of overlap-save/add con-

volution, 183
in audio compression, 410
in image compression, 414, 425
infinite impulse response, 145, 288
iterated, 150
lattice factorizations, 138, 142, 172
linear phase, 139, 140, 142, 144, 427
lossless, see filter banks: orthonormal
modulation-domain analysis, 122, 130,

168, 187
multidimensional, 184, 293
N -channel, 163, 289
octave-band, 149, 159
orthonormal, 128, 132, 171, 188, 428
paraunitary, see filter banks: orthonor-

mal
perfect reconstruction, 98, 113, 119, 124,

126, 170, 188
polyphase-domain analysis, 120–122, 132,

169, 186
pseudo quadrature mirror filter banks,

175
quadrature mirror filter banks, 98, 127,

144
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quincunx, 188, 190
separable in two dimensions, 185
sinc, 109, 248
synthesis filter banks, 108, 114
time-domain analysis, 113, 122, 129, 167
tree-structured, 148, 161
two-channel, 106, 112, 131
used for construction of wavelets, 246

filters
allpass, 68
Butterworth, 61, 67, 147, 288
complementary, 145
Daubechies’, 135, 137, 138, 267
Haar, 105, 141, 150
infinite impulse response, 145, 148
linear phase, 140, 142, 144
orthonormal, 129, 131, 133
power complementary, 131
quadrature mirror, 127, 144
sinc, 109
Smith-Barnwell, 134
Vaidyanathan and Hoang, 138

Fourier theory, 1, 37
best approximation property, 44
block discrete-time Fourier series, 103
discrete Fourier transform, 53
discrete-time Fourier series, 52, 97, 101,

102
discrete-time Fourier transform, 50
Fourier series, 43, 212
Fourier transform, 39
short-time Fourier transform in contin-

uous time, 81, 325
short-time Fourier transform in discrete

time, 173
frames, 28, 328, 331, 332, 336

dual frame, 334
frame bounds, 332
frame operator, 334
frequency localization of wavelet frames,

338
of short-time Fourier transform, 338
of wavelets, 336
reconstruction in, 335
redundancy ratio, 332

tight, 28, 179, 332
time localization of wavelet frames, 338

frequency localization, 110, 275, 320, 338

Gabor transform, see Fourier theory— short-
time Fourier transform in continu-
ous time

Gram-Schmidt orthogonalization, 23

Haar expansion, 104, 216, 228, 247
basis property, 104, 218
equivalent filters, 105
generalization to multiple dimensions, 297

high definition television, 451
Hilbert spaces, 17, 21

completeness, 18
linear operators on, 85
L2(R), 23
l2(Z), 22
norm, 17

Huffman coding, 403

image compression, 414
block transforms, 415
JPEG standard, 419
overlapping block transforms, 419
pyramid coding, 421
subband coding, 425
transform coding, 415
wavelet coding, 425

image database, 9
implementation of overlap-save/add convo-

lution, 376
inner product, 20
interlaced scanning, 449
iterated filter banks, see filter banks: used

for construction of wavelets

joint source-channel coding, 464
digital broadcast, 465
multiresolution transmission, 464
packet video, 467
separation principle, 464

JPEG image coding standard, 419

Karhunen-Loève transform, 5, 387, 401
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Kronecker product, 32, 354

Lao-Tzu, 15, 383
Laplace transform, 59
lapped orthogonal transforms, 163

in image coding, 419
lattices, 202

coset, 202
FCO, 450, 459
hexagonal, 425
quincunx, 186, 204, 425, 449, 457
reciprocal, 202
separable, 203
separable in two dimensions, 186
Voronoi cell, 202

linear algebra, 29
eigenvectors and eigenvalues, 33
least-squares approximation, 32
matrices, see matrices

linear transformations for compression, 386
discrete cosine transform, 388
Karhunen-Loève transform, 387

local cosine bases, 300
lossless systems, 196, see filter banks: or-

thonormal
factorizations, 197, 198, 200
orthogonal and linear phase factoriza-

tions, 200
state-space description, 201

L2(R), 23
l2(Z), 22

Mallat’s algorithm, 280, 369
matrices, 30

block Toeplitz, 36
circulant, 35
DFT, 36
factorizations, 86, 198, 200
paraunitary, 37
polynomial, 36
positive definite, 36
pseudocirculant, 124
rational, 37
Toeplitz, 35
unimodular, 37
unitary, 34

McClellan transformation, 191, 300
mean square error, 386
Meyer’s wavelet, 233
motion

and subband coding, 460
models, 447

motion-compensated video coding, 452
MPEG video compression standard, 463
multirate operations, 68
multiresolution, 2, 414, 451

analysis, 158, 222, 293
approximation and detail spaces, 158,

159, 221
axiomatic definition, 223
decomposition, 158
pyramids, 9, 181
transmission, 464

MUSICAM, 412

orthogonal projections, 25
orthogonality, 21
orthonormal bases, see orthonormal expan-

sions
orthonormal expansions, 23, 97, 100, 150,

188
completeness, 116
Haar, 104
periodically time-invariant, 98
sinc, 109
time-invariant, 110

overcomplete expansions, 28, 101, 179
overlap-add/save algorithms, 376

packet video, 467
ATM networks, 467

Parseval’s equality, see conservation of en-
ergy

Pascal, 311
perceptual coding, 449

of audio, 410
of images, 417, 438
of video, 449

piecewise Fourier series, 215
Poincaré, 1
Poisson sum formula, 46
polynomial
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autocorrelation, 134
correlation, 119, 141, 144
cyclotomic, 350

polyphase transform, 74
power complementary condition, see conser-

vation of energy, 133, 177, 180
predictive quantization, 395

differential pulse code modulation, 396
progressive scanning, 449
pyramids, 179, 181

bit allocation, 424
comparison with subband coding for video,

462
decimation and interpolation operators,

423
in image coding, 421
in video coding, 453
oversampling, 424
quantization noise, 423

quadrature mirror filters, 127
quantization, 390

bit allocation, 397
coding gain, 401
error analysis in a subband system, 443
Lloyd-Max, 393
of DCT coefficients, 417
of the subbands, 430
predictive, 395
scalar, 390
uniform, 391
vector, 394

quincunx, see lattices: quincunx, subband
coding: quincunx

Quintilian, 97

random processes, see statistical signal pro-
cessing: random process

jointly Gaussian, 468
stationary, 469
wide-sense stationary, 470

regularity, 90, 257
in subband coding, 429
sufficient condition, 263

reproducing kernel, 322
resolution, 78

run-length coding, 406

sampling, 47
theorem, 48, 213

scalar quantization, 390
centroid condition, 392
Lloyd-Max, 393
nearest neighbor condition, 392
uniform, 391

scale, 78
series expansions, 3

block discrete-time Fourier series, 103
continuous-time, 38, 211
discrete-time, 38, 100
discrete-time Fourier series, 52, 101, 102
Fourier series, 43, 212
sampling theorem, 49, 213

Shensa’s algorithm, 369
short-time Fourier transform in continuous

time, 325
discretization, 331
fast algorithm and complexity, 371
Gaussian window, 327
properties, 325

short-time Fourier transform in discrete time
fast algorithm, 366

signal-to-noise ratio, 386
sinc expansion, 109, 212, 230, 248

basis property, 109
iterated, 160

Smith and Barnwell filters, 136
Smith-Barnwell condition, 131
spectral factorization, 65, 134
speech compression, 407

high-quality, 408
linear predictive coding, 408
production model, 407

spline spaces, 238
statistical signal processing, 467

correlation, 469
covariance, 469
cumulative distribution function, 467
expectation, 468
jointly Gaussian random process, 468
linear estimation, 470
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orthogonality principle, 471
power spectral density function, 470
probability density function, 467
random process, 468
stationary random processes, 469
uncorrelatedness, 469
variance, 469
wide-sense stationarity, 470

Stromberg wavelet, 242
subband coding, 2, 383, 425, 438

bit allocation, 431
choice of filters, 427
comparison with pyramids for video, 462
entropy coding, 432
joint design of quantization and filter-

ing, 445
nonorthogonal, 445
nonseparable decompositions, 425
of images, 425
of video, 457, 459
quantization error analysis, 443
quantization of the subbands, 430
quincunx, 425
separable decompositions, 425

successive approximation, 27, 98

time localization, 108, 109, 214, 274, 319,
338

time-frequency representations, 7, 76
transmultiplexers, 192

analysis, 193
crosstalk, 194
perfect reconstruction, 194

two-scale equation, 224, 255, 277, 293

uncertainty principle, 78
upsampling, 70, 113, 203

Vaidyanathan and Hoang filters, 136
vector quantization, 394

fractional bit rate, 394
of subbands, 431
packing gain, 394
removal of linear and nonlinear depen-

dencies, 394
vector spaces, 18

video compression, 446
compatibility, 451
motion-compensated video coding, 452
MPEG standard, 463
perceptual point of view, 449
progressive/interlaced scanning, 449, 457
pyramid coding, 453
three-dimensional subband coding, 459
transform coding, 448

wavelet coding, 425, 438
based on wavelet maximums, 442
based on zero trees, 438
best basis algorithm, 442

wavelet series, 270
biorthogonal, 282
characterization of singularities, 275
fast algorithm and complexity, 369
frequency localization, 275
Haar, 216
Mallat’s algorithm, 280
properties of basis functions, 276
sinc, 230
time localization, 274

wavelet theory, 1
admissibility condition, 313
basis property of wavelet series, 255
Battle-Lemarié wavelets, 242
characterization of singularities, 275
continuous-time wavelet transform, see

wavelet transform
Daubechies’ wavelets, 267
discrete-time wavelet series, 150, 154
frequency localization, see frequency lo-

calization, 214, 275
Haar wavelet, 216, 228, 247
Meyer’s wavelet, 233
moment properties, 277
orthogonalization procedure, 240
regularity, 257
resolution of the identity, 314
scaling function, 224
sinc wavelet, 230, 248
Stromberg wavelet, 242
time localization, see time localization,

214, 274
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two-scale equation, 224, 255, 277, 293
wavelet, 226
wavelet packets, 161, 289
wavelet series, 270
wavelet transform, 82

wavelet transform, 313
admissibility condition, 313
characterization of regularity, 320
conservation of energy, 318
discretization of, 328
frequency localization, 320
properties, 316
reproducing kernel, 322
resolution of the identity, 314
scalograms, 325
time localization, 319

wavelets
”twin dragon”, 298
based on Butterworth filters, 288
based on multichannel filter banks, 289
Battle-Lemarié, 242
biorthogonal, 282
construction of, 226
Daubechies’, 221, 267
Haar, 216, 228, 247
Malvar’s, 300
Meyer’s, 233
Morlet’s, 323
mother wavelet, 313
multidimensional, 293
sinc, 230, 248
spline, 238
Stromberg’s, 242
with exponential decay, 288

Wigner-Ville distribution, 83
Winograd short convolution algorithms, 350

z-transform, 62, 117
zero trees, 438


